forked from nest/nest-simulator
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added connection dumping HPC benchmark variant
- Loading branch information
1 parent
3d0a0ba
commit 94e88ec
Showing
1 changed file
with
344 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,344 @@ | ||
import os | ||
import sys | ||
import time | ||
|
||
import nest | ||
import nest.raster_plot | ||
import numpy as np | ||
import scipy.special as sp | ||
|
||
M_INFO = 10 | ||
M_ERROR = 30 | ||
|
||
############################################################################### | ||
# Parameter section | ||
# Define all relevant parameters: changes should be made here | ||
|
||
|
||
params = { | ||
"num_threads": 8, # total number of threads per process | ||
"scale": 0.03, # scaling factor of the network size | ||
# total network size = scale*11250 neurons | ||
"simtime": 1000.0, # total simulation time in ms | ||
"presimtime": 500.0, # simulation time until reaching equilibrium | ||
"dt": 0.1, # simulation step | ||
"record_spikes": True, # switch to record spikes of excitatory | ||
# neurons to file | ||
"path_name": ".", # path where all files will have to be written | ||
"log_file": "log", # naming scheme for the log files | ||
} | ||
|
||
|
||
def convert_synapse_weight(tau_m, tau_syn, C_m): | ||
""" | ||
Computes conversion factor for synapse weight from mV to pA. | ||
This function is specific to the leaky integrate-and-fire neuron model with alpha-shaped postsynaptic currents. | ||
""" | ||
|
||
# compute time to maximum of V_m after spike input | ||
# to neuron at rest | ||
a = tau_m / tau_syn | ||
b = 1.0 / tau_syn - 1.0 / tau_m | ||
t_rise = 1.0 / b * (-lambertwm1(-np.exp(-1.0 / a) / a).real - 1.0 / a) | ||
|
||
v_max = ( | ||
np.exp(1.0) | ||
/ (tau_syn * C_m * b) | ||
* ((np.exp(-t_rise / tau_m) - np.exp(-t_rise / tau_syn)) / b - t_rise * np.exp(-t_rise / tau_syn)) | ||
) | ||
return 1.0 / v_max | ||
|
||
|
||
############################################################################### | ||
# For compatibility with earlier benchmarks, we require a rise time of | ||
# ``t_rise = 1.700759 ms`` and we choose ``tau_syn`` to achieve this for given | ||
# ``tau_m``. This requires numerical inversion of the expression for ``t_rise`` | ||
# in ``convert_synapse_weight``. We computed this value once and hard-code | ||
# it here. | ||
|
||
|
||
tau_syn = 0.32582722403722841 | ||
|
||
brunel_params = { | ||
"NE": int(9000 * params["scale"]), # number of excitatory neurons | ||
"NI": int(2250 * params["scale"]), # number of inhibitory neurons | ||
"model_params": { # Set variables for iaf_psc_alpha | ||
"E_L": 0.0, # Resting membrane potential(mV) | ||
"C_m": 250.0, # Capacity of the membrane(pF) | ||
"tau_m": 10.0, # Membrane time constant(ms) | ||
"t_ref": 0.5, # Duration of refractory period(ms) | ||
"V_th": 20.0, # Threshold(mV) | ||
"V_reset": 0.0, # Reset Potential(mV) | ||
# time const. postsynaptic excitatory currents(ms) | ||
"tau_syn_ex": tau_syn, | ||
# time const. postsynaptic inhibitory currents(ms) | ||
"tau_syn_in": tau_syn, | ||
"tau_minus": 30.0, # time constant for STDP(depression) | ||
# V can be randomly initialized see below | ||
"V_m": 5.7, # mean value of membrane potential | ||
}, | ||
#################################################################### | ||
# Note that Kunkel et al. (2014) report different values. The values | ||
# in the paper were used for the benchmarks on K, the values given | ||
# here were used for the benchmark on JUQUEEN. | ||
"randomize_Vm": True, | ||
"mean_potential": 5.7, | ||
"sigma_potential": 7.2, | ||
"delay": 1.5, # synaptic delay, all connections(ms) | ||
# synaptic weight | ||
"JE": 0.14, # peak of EPSP | ||
"sigma_w": 3.47, # standard dev. of E->E synapses(pA) | ||
"g": -5.0, | ||
"stdp_params": { | ||
"delay": 1.5, | ||
"alpha": 0.0513, | ||
"lambda": 0.1, # STDP step size | ||
"mu": 0.4, # STDP weight dependence exponent(potentiation) | ||
"tau_plus": 15.0, # time constant for potentiation | ||
}, | ||
"eta": 1.685, # scaling of external stimulus | ||
"filestem": params["path_name"], | ||
} | ||
|
||
############################################################################### | ||
# Function Section | ||
|
||
|
||
def build_network(logger): | ||
"""Builds the network including setting of simulation and neuron parameters, creation of neurons and connections. | ||
Requires an instance of Logger as argument. | ||
""" | ||
tic = time.time() # start timer on construction | ||
|
||
# unpack a few variables for convenience | ||
NE = brunel_params["NE"] | ||
NI = brunel_params["NI"] | ||
model_params = brunel_params["model_params"] | ||
stdp_params = brunel_params["stdp_params"] | ||
|
||
# set global kernel parameters | ||
nest.local_num_threads = params["num_threads"] | ||
nest.resolution = params["dt"] | ||
nest.overwrite_files = True | ||
nest.rng_seed = 55 | ||
nest.set_verbosity(M_ERROR) | ||
|
||
nest.message(M_INFO, "build_network", "Creating excitatory population.") | ||
E_neurons = nest.Create("iaf_psc_alpha", NE, params=model_params) | ||
|
||
nest.message(M_INFO, "build_network", "Creating inhibitory population.") | ||
I_neurons = nest.Create("iaf_psc_alpha", NI, params=model_params) | ||
|
||
if brunel_params["randomize_Vm"]: | ||
nest.message(M_INFO, "build_network", "Randomizing membrane potentials.") | ||
|
||
random_vm = nest.random.normal(brunel_params["mean_potential"], brunel_params["sigma_potential"]) | ||
nest.GetLocalNodeCollection(E_neurons).V_m = random_vm | ||
nest.GetLocalNodeCollection(I_neurons).V_m = random_vm | ||
|
||
# number of incoming excitatory connections | ||
CE = int(1.0 * NE / params["scale"]) | ||
# number of incomining inhibitory connections | ||
CI = int(1.0 * NI / params["scale"]) | ||
|
||
nest.message(M_INFO, "build_network", "Creating excitatory stimulus generator.") | ||
|
||
# Convert synapse weight from mV to pA | ||
conversion_factor = convert_synapse_weight(model_params["tau_m"], model_params["tau_syn_ex"], model_params["C_m"]) | ||
JE_pA = conversion_factor * brunel_params["JE"] | ||
|
||
nu_thresh = model_params["V_th"] / ( | ||
CE * model_params["tau_m"] / model_params["C_m"] * JE_pA * np.exp(1.0) * tau_syn | ||
) | ||
nu_ext = nu_thresh * brunel_params["eta"] | ||
|
||
E_stimulus = nest.Create("poisson_generator", 1, {"rate": nu_ext * CE * 1000.0}) | ||
|
||
nest.message(M_INFO, "build_network", "Creating excitatory spike recorder.") | ||
|
||
if params["record_spikes"]: | ||
recorder_label = os.path.join(brunel_params["filestem"], "alpha_" + str(stdp_params["alpha"]) + "_spikes") | ||
E_recorder = nest.Create("spike_recorder", params={"record_to": "ascii", "label": recorder_label}) | ||
|
||
BuildNodeTime = time.time() - tic | ||
|
||
logger.log(str(BuildNodeTime) + " # build_time_nodes") | ||
logger.log(str(memory_thisjob()) + " # virt_mem_after_nodes") | ||
|
||
tic = time.time() | ||
|
||
nest.SetDefaults("static_synapse_hpc", {"delay": brunel_params["delay"]}) | ||
nest.CopyModel("static_synapse_hpc", "syn_ex", {"weight": JE_pA}) | ||
nest.CopyModel("static_synapse_hpc", "syn_in", {"weight": brunel_params["g"] * JE_pA}) | ||
|
||
stdp_params["weight"] = JE_pA | ||
nest.SetDefaults("stdp_pl_synapse_hom_hpc", stdp_params) | ||
|
||
nest.message(M_INFO, "build_network", "Connecting stimulus generators.") | ||
|
||
# Connect Poisson generator to neuron | ||
nest.Connect(E_stimulus, E_neurons, {"rule": "all_to_all"}, {"synapse_model": "syn_ex"}) | ||
nest.Connect(E_stimulus, I_neurons, {"rule": "all_to_all"}, {"synapse_model": "syn_ex"}) | ||
|
||
if not os.path.exists("../../hpc_test/connections_0.dat") and not os.path.exists("connections.sion"): | ||
nest.message(M_INFO, "build_network", "Connecting excitatory -> excitatory population.") | ||
|
||
nest.Connect( | ||
E_neurons, | ||
E_neurons, | ||
{"rule": "fixed_indegree", "indegree": CE, "allow_autapses": False, "allow_multapses": True}, | ||
{"synapse_model": "stdp_pl_synapse_hom_hpc"}, | ||
) | ||
|
||
nest.message(M_INFO, "build_network", "Connecting inhibitory -> excitatory population.") | ||
|
||
nest.Connect( | ||
I_neurons, | ||
E_neurons, | ||
{"rule": "fixed_indegree", "indegree": CI, "allow_autapses": False, "allow_multapses": True}, | ||
{"synapse_model": "syn_in"}, | ||
) | ||
|
||
nest.message(M_INFO, "build_network", "Connecting excitatory -> inhibitory population.") | ||
|
||
nest.Connect( | ||
E_neurons, | ||
I_neurons, | ||
{"rule": "fixed_indegree", "indegree": CE, "allow_autapses": False, "allow_multapses": True}, | ||
{"synapse_model": "syn_ex"}, | ||
) | ||
|
||
nest.message(M_INFO, "build_network", "Connecting inhibitory -> inhibitory population.") | ||
|
||
nest.Connect( | ||
I_neurons, | ||
I_neurons, | ||
{"rule": "fixed_indegree", "indegree": CI, "allow_autapses": False, "allow_multapses": True}, | ||
{"synapse_model": "syn_in"}, | ||
) | ||
|
||
if params["record_spikes"]: | ||
if params["num_threads"] != 1: | ||
local_neurons_E = nest.GetLocalNodeCollection(E_neurons) | ||
local_neurons_I = nest.GetLocalNodeCollection(I_neurons) | ||
# GetLocalNodeCollection returns a stepped composite NodeCollection, which | ||
# cannot be sliced. In order to allow slicing it later on, we're creating a | ||
# new regular NodeCollection from the plain node IDs. | ||
local_neurons_E = nest.NodeCollection(local_neurons_E.tolist()) | ||
local_neurons_I = nest.NodeCollection(local_neurons_I.tolist()) | ||
else: | ||
local_neurons_E = E_neurons | ||
local_neurons_I = I_neurons | ||
|
||
nest.message(M_INFO, "build_network", "Connecting spike recorders.") | ||
nest.Connect(local_neurons_E, E_recorder, "all_to_all", "static_synapse_hpc") | ||
nest.Connect(local_neurons_I, E_recorder, "all_to_all", "static_synapse_hpc") | ||
|
||
# read out time used for building | ||
BuildEdgeTime = time.time() - tic | ||
|
||
logger.log(str(BuildEdgeTime) + " # build_edge_time") | ||
logger.log(str(memory_thisjob()) + " # virt_mem_after_edges") | ||
|
||
return None | ||
|
||
|
||
def run_simulation(): | ||
"""Performs a simulation, including network construction.""" | ||
|
||
# open log file | ||
with Logger(params["log_file"]) as logger: | ||
nest.ResetKernel() | ||
nest.set_verbosity(M_INFO) | ||
|
||
logger.log(str(memory_thisjob()) + " # virt_mem_0") | ||
|
||
sr = build_network(logger) | ||
|
||
tic = time.time() | ||
|
||
nest.Simulate(params["presimtime"]) | ||
|
||
PreparationTime = time.time() - tic | ||
|
||
logger.log(str(memory_thisjob()) + " # virt_mem_after_presim") | ||
logger.log(str(PreparationTime) + " # presim_time") | ||
|
||
tic = time.time() | ||
|
||
nest.Simulate(params["simtime"]) | ||
|
||
SimCPUTime = time.time() - tic | ||
|
||
logger.log(str(memory_thisjob()) + " # virt_mem_after_sim") | ||
logger.log(str(SimCPUTime) + " # sim_time") | ||
|
||
print(nest.kernel_status) | ||
|
||
|
||
def compute_rate(sr): | ||
"""Compute local approximation of average firing rate. | ||
This approximation is based on the number of local nodes, number of local spikes and total time. Since this also | ||
considers devices, the actual firing rate is usually underestimated. | ||
""" | ||
|
||
n_local_spikes = nest.local_spike_counter # sr.n_events | ||
n_local_neurons = brunel_params["Nrec"] | ||
simtime = params["simtime"] | ||
return 1.0 * n_local_spikes / (n_local_neurons * simtime) * 1e3 | ||
|
||
|
||
def memory_thisjob(): | ||
"""Wrapper to obtain current memory usage""" | ||
nest.ll_api.sr("memory_thisjob") | ||
return nest.ll_api.spp() | ||
|
||
|
||
def lambertwm1(x): | ||
"""Wrapper for LambertWm1 function""" | ||
# Using scipy to mimic the gsl_sf_lambert_Wm1 function. | ||
return sp.lambertw(x, k=-1 if x < 0 else 0).real | ||
|
||
|
||
class Logger: | ||
"""Logger context manager used to properly log memory and timing information from network simulations.""" | ||
|
||
def __init__(self, file_name): | ||
# copy output to cout for ranks 0..max_rank_cout-1 | ||
self.max_rank_cout = 5 | ||
# write to log files for ranks 0..max_rank_log-1 | ||
self.max_rank_log = 30 | ||
self.line_counter = 0 | ||
self.file_name = file_name | ||
|
||
def __enter__(self): | ||
if nest.Rank() < self.max_rank_log: | ||
# convert rank to string, prepend 0 if necessary to make | ||
# numbers equally wide for all ranks | ||
rank = "{:0" + str(len(str(self.max_rank_log))) + "}" | ||
fn = "{fn}_{rank}.dat".format(fn=self.file_name, rank=rank.format(nest.Rank())) | ||
|
||
self.f = open(fn, "w") | ||
|
||
return self | ||
|
||
def log(self, value): | ||
if nest.Rank() < self.max_rank_log: | ||
line = "{lc} {rank} {value} \n".format(lc=self.line_counter, rank=nest.Rank(), value=value) | ||
self.f.write(line) | ||
self.line_counter += 1 | ||
|
||
if nest.Rank() < self.max_rank_cout: | ||
print(str(nest.Rank()) + " " + value + "\n", file=sys.stdout) | ||
print(str(nest.Rank()) + " " + value + "\n", file=sys.stderr) | ||
|
||
def __exit__(self, exc_type, exc_val, traceback): | ||
if nest.Rank() < self.max_rank_log: | ||
self.f.close() | ||
|
||
|
||
if __name__ == "__main__": | ||
run_simulation() |