-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataloader.py
52 lines (40 loc) · 1.61 KB
/
dataloader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import os
import cv2
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from torch.utils.data import Dataset, DataLoader
class BoneAgeDataset(Dataset):
def __init__(self, annotations_file, transform=None):
self.img_labels = annotations_file
self.transform = transform
def __len__(self):
return len(self.img_labels)
def __getitem__(self, idx):
img_path = self.img_labels.path.iloc[idx]
image = cv2.imread(img_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
gender = self.img_labels.gender.iloc[idx]
boneage = self.img_labels.boneage.iloc[idx]
if self.transform:
augmented = self.transform(image=image)
image = augmented["image"]
return {"image": image, "gender": gender[..., np.newaxis], "boneage": boneage[..., np.newaxis]}
if __name__ == "__main__":
import albumentations as A
augmentations = A.Compose([
A.Resize(width=450, height=450),
A.CenterCrop(width=350, height=350),
A.RandomBrightnessContrast(brightness_limit=0.2, contrast_limit=0.2, p=0.5)
])
bad_train = BoneAgeDataset(
annotations_file=pd.read_csv(os.path.join('data', 'rsna-bone-age', 'training', 'train_df.csv')),
transform=augmentations)
dataloader = DataLoader(bad_train, batch_size=16, shuffle=True, num_workers=0)
print(len(dataloader))
for i_batch, sample_batched in enumerate(dataloader):
# plot an image from the batch
print(sample_batched['image'][0].size())
plt.imshow(sample_batched['image'][0])
plt.show()
break