This repository has been archived by the owner on Nov 9, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathhorn.py
112 lines (91 loc) · 4.63 KB
/
horn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
#!/usr/bin/python3
import argparse
import numpy as np
import mayavi.mlab as mlab
def generate_random_points(n, min, max):
return np.random.uniform(min, max, (n, 3))
def apply_random_transform(points, range_rad, trans_max, noise_sd):
#Generate random Euler Angles(I think.. there must be a better way to do this)
#Seems to work for this demo however.
alpha, beta, gamma = np.random.uniform(0, range_rad, 3)
#Build rotation matrices for each principal axis.
Rx = np.matrix([[np.cos(alpha), -np.sin(alpha), 0], [np.sin(alpha), np.cos(alpha), 0], [0, 0, 1]])
Ry = np.matrix([[np.cos(beta), 0, np.sin(beta)], [0, 1, 0], [-np.sin(beta), 0, np.cos(beta)]])
Rz = np.matrix([[1, 0, 0], [0, np.cos(gamma), -np.sin(gamma)], [0, np.sin(gamma), np.cos(gamma)]])
#Get random translation vector.
t = np.random.uniform(1, 10, (1, 3))
#Apply transform.
trans_points = np.dot(points, Rx.transpose())
trans_points = np.dot(trans_points, Ry.transpose())
trans_points = np.dot(trans_points, Rz.transpose())
trans_points += t
if noise_sd is not None:
noise_variance = noise_sd * noise_sd
noise_covariance = np.eye(3) * noise_variance
for point in trans_points:
eps = np.random.multivariate_normal(np.zeros(3), noise_covariance)
point += eps
return (np.asarray(trans_points), Rx, Ry, Rz, t, np.dot(Rx, np.dot(Ry, Rz)))
def apply_transform(R, t, points):
return np.dot(R, points.transpose()).transpose() + t
def horn(P, Q):
if P.shape != Q.shape:
print("Matrices P and Q must be of the same dimensionality")
sys.exit(1)
centroids_P = np.mean(P, axis=1)
centroids_Q = np.mean(Q, axis=1)
A = P - np.outer(centroids_P, np.ones(P.shape[1]))
B = Q - np.outer(centroids_Q, np.ones(Q.shape[1]))
C = np.dot(A, B.transpose())
U, S, V = np.linalg.svd(C)
R = np.dot(V.transpose(), U.transpose())
if(np.linalg.det(R) < 0):
L = np.eye(3)
L[2][2] *= -1
R = np.dot(V.transpose(), np.dot(L, U.transpose()))
t = np.dot(-R, centroids_P) + centroids_Q
return (R, t)
def display_points(points_A, points_B, points_A_rectified):
def plot_point_pair(fig_name, A, B):
fig = mlab.figure(fig_name, bgcolor=(0, 0, 0), size=(800, 800))
mlab.points3d(A[:, 0], A[:, 1], A[:, 2], color=(0, 1, 0), scale_factor=0.5, opacity=0.5)
mlab.points3d(B[:, 0], B[:, 1], B[:, 2], color=(0, 0, 1), scale_factor=0.5, opacity=0.5)
plot_point_pair("BeforeTransform", points_A, points_B)
plot_point_pair("AfterTransform", points_A_rectified, points_B)
mlab.show()
def run_demo(num_points, bc_min, bc_max, range_rad, trans_max, noise_sd):
#Generate random points and apply random rigid transform.
points_A = generate_random_points(num_points, bc_min, bc_max)
transformed = apply_random_transform(points_A, range_rad, trans_max, noise_sd)
#Apply Horns Method to align the point clouds.
trans = horn(points_A.transpose(), transformed[0].transpose())
rectified_points = apply_transform(trans[0], trans[1], points_A)
#Give some output.
display_points(points_A, transformed[0], rectified_points)
#Calculate RMS.
diff = transformed[0] - rectified_points
rmse = np.sqrt((diff**2).mean())
#Give output.
np.set_printoptions(formatter={'float_kind':'{:f}'.format})
print("Registration RMSE: %f" % rmse)
print("True rotation:")
print(transformed[5])
print("True translation:")
print(transformed[4])
print("Estimated rotation:")
print(trans[0])
print("Estimated translation:")
print(trans[1])
if __name__ == "__main__":
arg_parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter)
arg_parser.add_argument('num_points', help="Number of test points to generate.")
arg_parser.add_argument('bc_min', help="Min x,y,z value for genrated points(within bounding cube).")
arg_parser.add_argument('bc_max', help="Max x,y,z value for genrated points(within bounding cube).")
arg_parser.add_argument('--range_radians', help="Range of randomised Euler Angles. [0, 2pi)")
arg_parser.add_argument('--trans_max', help="Max value for random translation.")
arg_parser.add_argument('--noise_sd', help="Random noise Standard Deviation for transformed points.")
args = arg_parser.parse_args()
range_rad = float(args.range_radians) if args.range_radians else 2*np.pi
trans_max = int(args.trans_max) if args.trans_max else 10
noise_sd = float(args.noise_sd) if args.noise_sd else None
run_demo(int(args.num_points), float(args.bc_min), float(args.bc_max), range_rad, trans_max, noise_sd)