-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
74 lines (65 loc) · 2.45 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
from torch import nn
# ----------------------------------------------------------------
# define the model
class ResidualBlock(nn.Module):
def __init__(self, in_channels):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, in_channels, 3, stride=1, padding=1)
self.relu = nn.ReLU(True)
self.conv2 = nn.Conv2d(in_channels, in_channels, 3, stride=1, padding=1)
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.relu(out)
out = self.conv2(out)
out += residual
out = self.relu(out)
return out
class AutoEncoder(nn.Module):
def __init__(self):
super(AutoEncoder, self).__init__()
self.encoder = nn.Sequential(
nn.Conv2d(1, 16, 3, stride=1, padding=1), # b, 16, 28, 28
nn.ReLU(True),
ResidualBlock(16),
nn.Conv2d(16, 16, 3, stride=3, padding=1), # b, 16, 10, 10
nn.ReLU(True),
nn.MaxPool2d(2, stride=2), # b, 16, 5, 5
ResidualBlock(16),
nn.Conv2d(16, 12, 3, stride=1, padding=1), # b, 12, 5, 5
nn.ReLU(True),
nn.Conv2d(12, 8, 3, stride=2, padding=1), # b, 8, 3, 3
nn.ReLU(True),
nn.MaxPool2d(2, stride=1) # b, 8, 2, 2
)
self.decoder = nn.Sequential(
nn.ConvTranspose2d(8, 8, 3, stride=2, padding=1), # b, 8, 3, 3
nn.ReLU(True),
ResidualBlock(8),
nn.ConvTranspose2d(8, 12, 3, stride=2, padding=1), # b, 12, 5, 5
nn.ReLU(True),
nn.ConvTranspose2d(12, 16, 2, stride=2), # b, 16, 10, 10
nn.ReLU(True),
ResidualBlock(16),
nn.ConvTranspose2d(16, 1, 3, stride=3, padding=1), # b, 1, 28, 28
nn.Sigmoid()
)
def forward(self, x):
encoded = self.encoder(x)
decoded = self.decoder(encoded)
return encoded, decoded
class Classifier(nn.Module):
def __init__(self, encoder, num_classes):
super(Classifier, self).__init__()
dim = 8*2*2 # 8*2*2 is the output shape of encoder
self.encoder = encoder
self.classifier = nn.Sequential(
nn.Linear(dim, dim),
nn.ReLU(True),
nn.Linear(dim, num_classes),
)
def forward(self, x):
x = self.encoder(x)
x = x.view(x.size(0), -1) # flatten the tensor
x = self.classifier(x)
return x