-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathminihf_infer.py
237 lines (228 loc) · 9.56 KB
/
minihf_infer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import os
import json
import time
import random
import hashlib
import zipfile
from contextlib import contextmanager
from functools import partial
from flask import Flask, request, jsonify, make_response
from tqdm import tqdm
import torch
import torch.nn as nn
import peft
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from transformers import StoppingCriteria, StoppingCriteriaList
from transformers import BitsAndBytesConfig
from weave import weave_tree_search, generate_outputs, evaluate_outputs
from weave import make_score_prompt_fn, TreeNode
from lora_tune import lora_tune_evaluator
from dataset import ZippedConversationsDataset
@contextmanager
def set_adapter(model, adapter_name):
old_adapter_name = model.active_adapter
try:
if adapter_name is not None:
model.set_adapter(adapter_name)
print(adapter_name)
yield model
else:
with model.disable_adapter():
print("Reached here!")
yield model
finally:
model.set_adapter(old_adapter_name)
def load_generator_evaluator():
evaluator_adapter_name = "jdpressman/minihf_evaluator_mistral_7b_v0.1"
generator_adapter_name = None
peft_config = peft.PeftConfig.from_pretrained(evaluator_adapter_name)
model_name = peft_config.base_model_name_or_path
tokenizer = AutoTokenizer.from_pretrained(evaluator_adapter_name)
tokenizer.truncation_side = "left"
tokenizer.padding_side = "left"
tokenizer.pad_token = tokenizer.eos_token
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
)
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto",
quantization_config=bnb_config,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
)
model = peft.PeftModel.from_pretrained(model, evaluator_adapter_name, "evaluator")
if generator_adapter_name:
model.load_adapter(generator_adapter_name, "generator")
peft_config = peft.LoraConfig(
peft.TaskType.CAUSAL_LM,
inference_mode=False,
r=32,
lora_alpha=8,
lora_dropout=0.0,
target_modules=[
"self_attn.q_proj",
"self_attn.k_proj",
"self_attn.v_proj",
"self_attn.o_proj",
"mlp.gate_proj",
"mlp.up_proj",
"mlp.down_proj",
],
)
return tokenizer, model
def load_models():
global evaluator, evaluate_fn, generator, generate_fn
tokenizer, model = load_generator_evaluator()
evaluator = generator = (tokenizer, model)
adapter_name = "generator" if "generator" in generator[1].peft_config else None
generate_fn = set_adapter(generator[1], adapter_name)(partial(generate_outputs, generator, batch_size=1))
evaluate_fn = set_adapter(evaluator[1], "evaluator")(partial(evaluate_outputs, evaluator))
load_models()
app = Flask(__name__)
@app.route("/generate", methods=['OPTIONS', 'POST'])
def generate():
if request.method == 'OPTIONS':
response = make_response()
response.headers.add("Access-Control-Allow-Origin", "*")
response.headers.add("Access-Control-Allow-Headers", "*")
response.headers.add("Access-Control-Allow-Methods", "*")
return response
if request.method =='POST':
params = request.get_json()
prompt = params['prompt']
if 'prompt_node' in params:
prompt_node = params['prompt_node']
else:
prompt_node = False
new_tokens = int(params['tokens_per_branch'])
n_outputs = int(params['output_branches'])
base_model_name = generator[1].active_peft_config.base_model_name_or_path
try:
adapter = params["adapter"]
except KeyError:
adapter = "generator" if "generator" in generator[1].peft_config else None
if (adapter == "generator") or (adapter == None):
gen_fn = generate_fn
elif adapter == "evaluator":
gen_fn = set_adapter(generator[1], "evaluator")(partial(generate_outputs, generator, batch_size=1))
outs = gen_fn(prompt, new_tokens, n=n_outputs)
batch = []
if prompt_node:
timestamp = str(time.time())
id_ = hashlib.md5((prompt + timestamp).encode("UTF-8")).hexdigest()
batch.append({"id":id_,
"prompt":prompt,
"text":"",
"timestamp":timestamp,
"nodes":[]})
for out in outs:
timestamp = str(time.time())
id_ = hashlib.md5(out.encode("UTF-8")).hexdigest()
batch.append({"id":id_,
"base_model": base_model_name,
"prompt": prompt,
"text":out,
"timestamp":timestamp,
"nodes":[]})
# TODO: Proper CORS
response = jsonify(batch)
response.headers.add("Access-Control-Allow-Origin", "*")
return response
@app.route("/weave", methods=['OPTIONS', 'POST'])
def weave():
if request.method == 'OPTIONS':
response = make_response()
# TODO: Have the interface served by the server on GET request
response.headers.add("Access-Control-Allow-Origin", "*")
response.headers.add("Access-Control-Allow-Headers", "*")
response.headers.add("Access-Control-Allow-Methods", "*")
return response
if request.method =='POST':
params = request.get_json()
prompt = params['prompt']
context = params['context']
if 'prompt_node' in params:
prompt_node = params['prompt_node']
else:
prompt_node = False
evaluation_prompt = params['evaluationPrompt']
full_prompt = context + " " + prompt
tree = TreeNode(full_prompt)
score_prompt_fn = partial(make_score_prompt_fn, evaluator)
score_prompt_fn = partial(score_prompt_fn, evaluation_prompt)
# MiniHF evaluator LoRA suffix
score_prompt_fn = partial(score_prompt_fn, "<|end|>")
# Change name to avoid overwriting global baseline evaluate_fn partial
score_fn = partial(evaluate_fn, score_prompt_fn)
weave_param_defaults = {"weave_n_tokens":32, "weave_budget":72,
"weave_round_budget":24, "weave_n_expand":8,
"weave_beam_width":1, "weave_max_lookahead":3,
"weave_temperature":0.25}
wp = {}
for key in weave_param_defaults.keys():
if key in params:
try:
wp[key] = int(params[key])
except ValueError:
wp[key] = float(params[key])
else:
wp[key] = weave_param_defaults[key]
branches = weave_tree_search(tree=tree,
generate_fn=partial(generate_fn,
n_tokens=wp["weave_n_tokens"]),
evaluate_fn=score_fn,
budget=wp["weave_budget"],
round_budget=wp["weave_round_budget"],
n_expand=wp["weave_n_expand"],
beam_width=wp["weave_beam_width"],
max_lookahead=wp["weave_max_lookahead"],
temperature=wp["weave_temperature"])
batch = []
if prompt_node:
timestamp = str(time.time())
id_ = hashlib.md5((prompt + timestamp).encode("UTF-8")).hexdigest()
batch.append({"id":id_,
"prompt":prompt,
"evaluationPrompt":evaluation_prompt,
"text":"",
"timestamp":timestamp,
"nodes":[]})
for branch in branches:
branch_text = branch.branch_text()
timestamp = str(time.time())
id_ = hashlib.md5((branch_text + timestamp).encode("UTF-8")).hexdigest()
batch.append({"id":id_,
"prompt": prompt,
"evaluationPrompt": evaluation_prompt,
"text":branch_text,
"timestamp":timestamp,
"nodes":branch.serialize_branch()})
# TODO: Proper CORS
response = jsonify(batch)
response.headers.add("Access-Control-Allow-Origin", "*")
return response
@app.route("/check-tokens", methods=['OPTIONS', 'POST'])
def check_tokens():
if request.method == 'OPTIONS':
response = make_response()
# TODO: Have the interface served by the server on GET request
response.headers.add("Access-Control-Allow-Origin", "*")
response.headers.add("Access-Control-Allow-Headers", "*")
response.headers.add("Access-Control-Allow-Methods", "*")
return response
if request.method =='POST':
params = request.get_json()
text = params['text']
tokenizer, model = generator
inputs = tokenizer([text] * 1, return_tensors="pt", truncation=True, max_length=4096).to("cuda")
# TODO: Proper CORS
response = jsonify(inputs['input_ids'][0].shape[0])
response.headers.add("Access-Control-Allow-Origin", "*")
return response
@app.route("/")
def index():
return app.send_static_file("minihf.html")