Skip to content

Commit

Permalink
Finishing Kalman and Bayesian Filters in Python
Browse files Browse the repository at this point in the history
  • Loading branch information
James Bristow committed Feb 5, 2024
1 parent 4a08862 commit f811470
Show file tree
Hide file tree
Showing 14 changed files with 9,410 additions and 3 deletions.
1,062 changes: 1,061 additions & 1 deletion kalman_and_bayesian_filters/06-Multivariate-Kalman-Filters.ipynb

Large diffs are not rendered by default.

616 changes: 616 additions & 0 deletions kalman_and_bayesian_filters/07-Kalman-Filter-Math.ipynb

Large diffs are not rendered by default.

2,109 changes: 2,109 additions & 0 deletions kalman_and_bayesian_filters/08-Designing-Kalman-Filters.ipynb

Large diffs are not rendered by default.

419 changes: 419 additions & 0 deletions kalman_and_bayesian_filters/09-Nonlinear-Filtering.ipynb

Large diffs are not rendered by default.

1,541 changes: 1,541 additions & 0 deletions kalman_and_bayesian_filters/10-Unscented-Kalman-Filter.ipynb

Large diffs are not rendered by default.

826 changes: 826 additions & 0 deletions kalman_and_bayesian_filters/11-Extended-Kalman-Filters.ipynb

Large diffs are not rendered by default.

741 changes: 741 additions & 0 deletions kalman_and_bayesian_filters/12-Particle-Filters.ipynb

Large diffs are not rendered by default.

344 changes: 344 additions & 0 deletions kalman_and_bayesian_filters/13-Smoothing.ipynb

Large diffs are not rendered by default.

1,154 changes: 1,154 additions & 0 deletions kalman_and_bayesian_filters/14-Adaptive-Filtering.ipynb

Large diffs are not rendered by default.

160 changes: 160 additions & 0 deletions kalman_and_bayesian_filters/Appendix-E-Ensemble-Kalman-Filters.ipynb

Large diffs are not rendered by default.

144 changes: 144 additions & 0 deletions kalman_and_bayesian_filters/kf_book/adaptive_internal.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,144 @@
# -*- coding: utf-8 -*-

"""Copyright 2015 Roger R Labbe Jr.
Code supporting the book
Kalman and Bayesian Filters in Python
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
This is licensed under an MIT license. See the LICENSE.txt file
for more information.
"""

from __future__ import (absolute_import, division, print_function,
unicode_literals)

import kf_book.book_plots as bp
from matplotlib.patches import Circle, Rectangle, Polygon, Arrow, FancyArrow
import matplotlib.pyplot as plt
import numpy as np


def plot_track_and_residuals(dt, xs, z_xs, res):
""" plots track and measurement on the left, and the residual
of the filter on the right. Helps to visualize the performance of
an adaptive filter.
"""

assert np.isscalar(dt)
t = np.arange(0, len(xs)*dt, dt)
plt.subplot(121)
if z_xs is not None:
bp.plot_measurements(t, z_xs, label='z')
bp.plot_filter(t, xs)
plt.legend(loc=2)
plt.xlabel('time (sec)')
plt.ylabel('X')
plt.title('estimates vs measurements')
plt.subplot(122)
# plot twice so it has the same color as the plot to the left!
plt.plot(t, res)
plt.plot(t, res)
plt.xlabel('time (sec)')
plt.ylabel('residual')
plt.title('residuals')
plt.show()


def plot_markov_chain():
""" show a markov chain showing relative probability of an object
turning"""

fig = plt.figure(figsize=(4,4), facecolor='w')
ax = plt.axes((0, 0, 1, 1),
xticks=[], yticks=[], frameon=False)

box_bg = '#DDDDDD'

kf1c = Circle((4,5), 0.5, fc=box_bg)
kf2c = Circle((6,5), 0.5, fc=box_bg)
ax.add_patch (kf1c)
ax.add_patch (kf2c)

plt.text(4,5, "Straight",ha='center', va='center', fontsize=14)
plt.text(6,5, "Turn",ha='center', va='center', fontsize=14)


#btm
plt.text(5, 3.9, ".05", ha='center', va='center', fontsize=18)
ax.annotate('',
xy=(4.1, 4.5), xycoords='data',
xytext=(6, 4.5), textcoords='data',
size=10,
arrowprops=dict(arrowstyle="->",
ec="k",
connectionstyle="arc3,rad=-0.5"))
#top
plt.text(5, 6.1, ".03", ha='center', va='center', fontsize=18)
ax.annotate('',
xy=(6, 5.5), xycoords='data',
xytext=(4.1, 5.5), textcoords='data',
size=10,

arrowprops=dict(arrowstyle="->",
ec="k",
connectionstyle="arc3,rad=-0.5"))

plt.text(3.5, 5.6, ".97", ha='center', va='center', fontsize=18)
ax.annotate('',
xy=(3.9, 5.5), xycoords='data',
xytext=(3.55, 5.2), textcoords='data',
size=10,
arrowprops=dict(arrowstyle="->",
ec="k",
connectionstyle="angle3,angleA=150,angleB=0"))

plt.text(6.5, 5.6, ".95", ha='center', va='center', fontsize=18)
ax.annotate('',
xy=(6.1, 5.5), xycoords='data',
xytext=(6.45, 5.2), textcoords='data',
size=10,
arrowprops=dict(arrowstyle="->",
fc="0.2", ec="k",
connectionstyle="angle3,angleA=-150,angleB=2"))


plt.axis('equal')
plt.show()


def turning_target(N=600, turn_start=400):
""" simulate a moving target"""

#r = 1.
dt = 1.
phi_sim = np.array(
[[1, dt, 0, 0],
[0, 1, 0, 0],
[0, 0, 1, dt],
[0, 0, 0, 1]])

gam = np.array([[dt**2/2, 0],
[dt, 0],
[0, dt**2/2],
[0, dt]])

x = np.array([[2000, 0, 10000, -15.]]).T

simxs = []

for i in range(N):
x = np.dot(phi_sim, x)
if i >= turn_start:
x += np.dot(gam, np.array([[.075, .075]]).T)
simxs.append(x)
simxs = np.array(simxs)

return simxs


if __name__ == "__main__":
d = turning_target()
247 changes: 247 additions & 0 deletions kalman_and_bayesian_filters/kf_book/ekf_internal.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,247 @@
# -*- coding: utf-8 -*-

"""Copyright 2015 Roger R Labbe Jr.
Code supporting the book
Kalman and Bayesian Filters in Python
https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python
This is licensed under an MIT license. See the LICENSE.txt file
for more information.
"""

from __future__ import (absolute_import, division, print_function,
unicode_literals)

import kf_book.book_plots as bp
import filterpy.kalman as kf
from math import radians, sin, cos, sqrt, exp
import matplotlib.pyplot as plt
import numpy as np
import numpy.random as random

def ball_kf(x, y, omega, v0, dt, r=0.5, q=0.02):

g = 9.8 # gravitational constant
f1 = kf.KalmanFilter(dim_x=5, dim_z=2)

ay = .5*dt**2
f1.F = np.array ([[1, dt, 0, 0, 0], # x = x0+dx*dt
[0, 1, 0, 0, 0], # dx = dx
[0, 0, 1, dt, ay], # y = y0 +dy*dt+1/2*g*dt^2
[0, 0, 0, 1, dt], # dy = dy0 + ddy*dt
[0, 0, 0, 0, 1]]) # ddy = -g.

f1.H = np.array([
[1, 0, 0, 0, 0],
[0, 0, 1, 0, 0]])

f1.R *= r
f1.Q *= q

omega = radians(omega)
vx = cos(omega) * v0
vy = sin(omega) * v0

f1.x = np.array([[x,vx,y,vy,-9.8]]).T

return f1


def plot_radar(xs, track, time):
plt.figure()
bp.plot_track(time, track[:, 0])
bp.plot_filter(time, xs[:, 0])
plt.legend(loc=4)
plt.xlabel('time (sec)')
plt.ylabel('position (m)')

plt.figure()
bp.plot_track(time, track[:, 1])
bp.plot_filter(time, xs[:, 1])
plt.legend(loc=4)
plt.xlabel('time (sec)')
plt.ylabel('velocity (m/s)')

plt.figure()
bp.plot_track(time, track[:, 2])
bp.plot_filter(time, xs[:, 2])
plt.ylabel('altitude (m)')
plt.legend(loc=4)
plt.xlabel('time (sec)')
plt.ylim((900, 1600))
plt.show()


def plot_bicycle():
plt.clf()
plt.axes()
ax = plt.gca()
#ax.add_patch(plt.Rectangle((10,0), 10, 20, fill=False, ec='k')) #car
ax.add_patch(plt.Rectangle((21,1), .75, 2, fill=False, ec='k')) #wheel
ax.add_patch(plt.Rectangle((21.33,10), .75, 2, fill=False, ec='k', angle=20)) #wheel
ax.add_patch(plt.Rectangle((21.,4.), .75, 2, fill=True, ec='k', angle=5, ls='dashdot', alpha=0.3)) #wheel

plt.arrow(0, 2, 20.5, 0, fc='k', ec='k', head_width=0.5, head_length=0.5)
plt.arrow(0, 2, 20.4, 3, fc='k', ec='k', head_width=0.5, head_length=0.5)
plt.arrow(21.375, 2., 0, 8.5, fc='k', ec='k', head_width=0.5, head_length=0.5)
plt.arrow(23, 2, 0, 2.5, fc='k', ec='k', head_width=0.5, head_length=0.5)

#ax.add_patch(plt.Rectangle((10,0), 10, 20, fill=False, ec='k'))
plt.text(11, 1.0, "R", fontsize=18)
plt.text(8, 2.2, r"$\beta$", fontsize=18)
plt.text(20.4, 13.5, r"$\alpha$", fontsize=18)
plt.text(21.6, 7, "w (wheelbase)", fontsize=18)
plt.text(0, 1, "C", fontsize=18)
plt.text(24, 3, "d", fontsize=18)
plt.plot([21.375, 21.25], [11, 14], color='k', lw=1)
plt.plot([21.375, 20.2], [11, 14], color='k', lw=1)
plt.axis('scaled')
plt.xlim(0,25)
plt.axis('off')
plt.show()

#plot_bicycle()

class BaseballPath(object):
def __init__(self, x0, y0, launch_angle_deg, velocity_ms, noise=(1.0,1.0)):
""" Create baseball path object in 2D (y=height above ground)
x0,y0 initial position
launch_angle_deg angle ball is travelling respective to ground plane
velocity_ms speeed of ball in meters/second
noise amount of noise to add to each reported position in (x,y)
"""

omega = radians(launch_angle_deg)
self.v_x = velocity_ms * cos(omega)
self.v_y = velocity_ms * sin(omega)

self.x = x0
self.y = y0

self.noise = noise


def drag_force (self, velocity):
""" Returns the force on a baseball due to air drag at
the specified velocity. Units are SI
"""
B_m = 0.0039 + 0.0058 / (1. + exp((velocity-35.)/5.))
return B_m * velocity


def update(self, dt, vel_wind=0.):
""" compute the ball position based on the specified time step and
wind velocity. Returns (x,y) position tuple.
"""

# Euler equations for x and y
self.x += self.v_x*dt
self.y += self.v_y*dt

# force due to air drag
v_x_wind = self.v_x - vel_wind

v = sqrt (v_x_wind**2 + self.v_y**2)
F = self.drag_force(v)

# Euler's equations for velocity
self.v_x = self.v_x - F*v_x_wind*dt
self.v_y = self.v_y - 9.81*dt - F*self.v_y*dt

return (self.x + random.randn()*self.noise[0],
self.y + random.randn()*self.noise[1])



def plot_ball():
y = 1.
x = 0.
theta = 35. # launch angle
v0 = 50.
dt = 1/10. # time step

ball = BaseballPath(x0=x, y0=y, launch_angle_deg=theta, velocity_ms=v0, noise=[.3,.3])
f1 = ball_kf(x,y,theta,v0,dt,r=1.)
f2 = ball_kf(x,y,theta,v0,dt,r=10.)
t = 0
xs = []
ys = []
xs2 = []
ys2 = []

while f1.x[2,0] > 0:
t += dt
x,y = ball.update(dt)
z = np.mat([[x,y]]).T

f1.update(z)
f2.update(z)
xs.append(f1.x[0,0])
ys.append(f1.x[2,0])
xs2.append(f2.x[0,0])
ys2.append(f2.x[2,0])
f1.predict()
f2.predict()

p1 = plt.scatter(x, y, color='green', marker='o', s=75, alpha=0.5)

p2, = plt.plot (xs, ys,lw=2)
p3, = plt.plot (xs2, ys2,lw=4, c='r')
plt.legend([p1,p2, p3], ['Measurements', 'Kalman filter(R=0.5)', 'Kalman filter(R=10)'])
plt.show()


def show_radar_chart():
plt.xlim([0.9,2.5])
plt.ylim([0.5,2.5])

plt.scatter ([1,2],[1,2])
ax = plt.gca()

ax.annotate('', xy=(2,2), xytext=(1,1),
arrowprops=dict(arrowstyle='->', ec='r',shrinkA=3, shrinkB=4))

ax.annotate('', xy=(2,1), xytext=(1,1),
arrowprops=dict(arrowstyle='->', ec='b',shrinkA=0, shrinkB=0))

ax.annotate('', xy=(2,2), xytext=(2,1),
arrowprops=dict(arrowstyle='->', ec='b',shrinkA=0, shrinkB=4))



ax.annotate('$\epsilon$', xy=(1.2, 1.05), color='b')
ax.annotate('Aircraft', xy=(2.04,2.), color='b')
ax.annotate('altitude (y)', xy=(2.04,1.5), color='k')
ax.annotate('x', xy=(1.5, .9))
ax.annotate('Radar', xy=(.95, 0.8))
ax.annotate('Slant\n (r)', xy=(1.5,1.62), color='r')

plt.title("Radar Tracking")
ax.xaxis.set_ticklabels([])
ax.yaxis.set_ticklabels([])
ax.xaxis.set_ticks([])
ax.yaxis.set_ticks([])
plt.show()


def show_linearization():
xs = np.arange(0, 2, 0.01)
ys = [x**2 - 2*x for x in xs]

def y(x):
return x - 2.25

plt.plot(xs, ys, label='$f(x)=x^2−2x$')
plt.plot([1, 2], [y(1), y(2)], color='k', ls='--', label='linearization')
plt.gca().axvline(1.5, lw=1, c='k')
plt.xlim(0, 2)
plt.ylim([-1.5, 0.0])
plt.title('Linearization of $f(x)$ at $x=1.5$')
plt.xlabel('$x=1.5$')
plt.legend(loc=4)
plt.show()
Loading

0 comments on commit f811470

Please sign in to comment.