-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathlasso.py
120 lines (91 loc) · 3.53 KB
/
lasso.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
import matplotlib.pyplot as plt
import numpy as np
x = np.array([i * np.pi / 180 for i in range(60, 300, 4)])
X = np.zeros((len(x), 16))
for idx in range(len(x)):
X[idx, 0] = x[idx]
for j in range(1, 16):
X[idx, j] = X[idx, j - 1] * x[idx]
np.random.seed(10)
Y = np.sin(x) + np.random.normal(0, 0.15, len(x))
def normalize_features(feature_matrix):
norms = np.linalg.norm(feature_matrix, axis=0)
normalized_features = feature_matrix / norms
return normalized_features, norms
def predict_output(feature_matrix, weights):
predictions = np.dot(feature_matrix, weights)
return predictions
def from_file(path):
return np.loadtxt(path)
weights = np.full((16,), fill_value=0.5)
# def calculate_ro(num_features, feature_matrix, output, prediction, weights):
# for i in range(num_features):
# ro_i = (feature_matrix[:, i] * (output - prediction)).sum()
# # ro_arr.append(ro_i)
# print(ro_i)
# print(i)
# return 0
#
#
# ro = calculate_ro(16, X, Y, predict_output(X, weights), weights)
def lasso_coordinate_descent_step(num_features, feature_matrix, output, weights, l1_penalty):
# compute prediction
prediction = predict_output(feature_matrix, weights)
# z_i= (feature_matrix*feature_matrix).sum()
for i in range(num_features + 1):
# compute ro[i] = SUM[ [feature_i]*(output - prediction + weight[i]*[feature_i]) ]
ro_i = (feature_matrix[:, i] * (output - prediction + weights[i] * feature_matrix[:, i])).sum()
print("RO %d: : %f" % (i, ro_i))
if i == 0: # intercept -- do not regularize
new_weight_i = ro_i
elif ro_i < -l1_penalty / 2.:
new_weight_i = (ro_i + (l1_penalty / 2))
elif ro_i > l1_penalty / 2.:
new_weight_i = (ro_i - (l1_penalty / 2))
else:
new_weight_i = 0.
return new_weight_i
def lasso_cyclical_coordinate_descent(feature_matrix, output, initial_weights,
l1_penalty, tolerance):
condition = True
while condition:
max_change = 0
for i in range(len(initial_weights)):
# max_change=0
old_weight_i = initial_weights[i]
initial_weights[i] = lasso_coordinate_descent_step(i,
feature_matrix, output,
initial_weights, l1_penalty)
coordinate_change = abs(old_weight_i - initial_weights[i])
if coordinate_change > max_change:
max_change = coordinate_change
# print(max_change)
if max_change < tolerance:
# print("out: ", max_change)
condition = False
return initial_weights
l1_penalty = 0.01
tolerance = 0.01
X, norms = normalize_features(X)
penalties = [1e-10, 1e-5, 0.001, 0.01, 0.1, 1, 10, 100]
# weights = lasso_cyclical_coordinate_descent(X, Y, weights, l1_penalty, tolerance)
weights = from_file("weights.txt")
print(weights)
plt.scatter(x, Y)
plt.plot(x, predict_output(X, weights))
plt.show()
# fig, axes = plt.subplots(2, 4)
# for idx in range(len(penalties)):
# print(idx)
# l1 = penalties[idx]
# weights = lasso_cyclical_coordinate_descent(X, Y,
# weights, l1, tolerance)
#
# i, j = divmod(idx, 4)
# print((i, j))
# axes[i, j].set_title("lasso with alpha = %.3g" % l1)
# axes[i, j].scatter(x, Y)
# axes[i, j].plot(x, predict_output(X, weights))
#
# print(weights)
# plt.show()