-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
194 lines (163 loc) · 5.67 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#!/usr/bin/env python
import sys
import json
import numpy as np
from docx import Document
import matplotlib.pyplot as plt
from risk_score_chartjs import generate_risk_score_chartjs
path = sys.argv[1]
def read_file(file_path):
with open(file_path, 'r') as file:
return file.read()
# Function to calculate the sum of field_a.value and field_b.value
def calculate_sum(input_json):
field_a_value = input_json["field_a"]["value"]
field_b_value = input_json["field_b"]["value"]
sum_value = field_a_value + field_b_value
return sum_value
def generate_line_chart_data(num_points, lang):
num_points = int(num_points)
if num_points < 0:
num_points = 1
x_values = np.linspace(0, 10, num_points)
y_values1 = np.sin(x_values)
y_values2 = np.cos(x_values)
if lang == 'lv':
label = 'Līnijas grafiks no HPC'
else:
label = 'Line chart from HPC'
line_chart_data = {
'type': 'line',
'data': {
'labels': list(x_values),
'datasets': [
{
'label': 'Sin',
'data': list(y_values1),
},
{
'label': 'Cos',
'data': list(y_values2),
}
]
},
'options': {
"plugins": {
"legend": {
"position": 'top',
},
"title": {
"display": "true",
"text": label
}
},
"scales": {
"x": {
"type": "linear",
"position": "bottom"
},
"y": {
"type": "linear"
}
}
}
}
return line_chart_data
def generate_test_msword(input_json, value, lang):
text = read_file(path + input_json["field_user_text"]["filename"])
a = input_json["field_a"]["value"]
b = input_json["field_b"]["value"]
doc = Document()
# Add a paragraph with the sample text
if lang == "lv":
doc.add_paragraph("Mēs veicāc summas aprēķiņu: " + str(a) + "+" + str(b) + "=" + str(value))
doc.add_paragraph("Jūs iesniedzāt šādu teksta dokumentu: ")
doc.add_paragraph(text)
doc.save(path + "/output/files/my_word_lv.docx")
return "/output/files/my_word_lv.docx"
else:
doc.add_paragraph("We calculated a sum: " + str(a) + "+" + str(b) + "=" + str(value))
doc.add_paragraph("You have provided the text document below: ")
doc.add_paragraph(text)
doc.save(path + "/output/files/my_word_en.docx")
return "/output/files/my_word_en.docx"
def generate_test_dt(input_json, lang):
if lang == 'lv':
oper_label = "Operācija"
res_label = 'Rezultāts'
caption = "Aprēķini"
else:
oper_label = "Operation"
res_label = "Result"
caption = "Calculations"
dt = {
'caption': caption,
'columns': [
{'title': 'A'},
{'title': oper_label},
{'title': 'B'},
{'title': res_label}
],
'data': [
[input_json["field_a"]["value"], '+', input_json["field_b"]["value"],
input_json["field_a"]["value"] + input_json["field_b"]["value"]],
[input_json["field_a"]["value"], '-', input_json["field_b"]["value"],
input_json["field_a"]["value"] - input_json["field_b"]["value"]],
[input_json["field_a"]["value"], '*', input_json["field_b"]["value"],
input_json["field_a"]["value"] * input_json["field_b"]["value"]],
[input_json["field_a"]["value"], '/', input_json["field_b"]["value"],
round(input_json["field_a"]["value"] / input_json["field_b"]["value"] * 100) / 100],
]
}
return dt
def generate_test_chart(input_json, sum, lang):
a = input_json["field_a"]["value"]
b = input_json["field_b"]["value"]
# Data for the bars
categories = ['a', 'b', 'y=a+b']
values = [a, b, sum]
# Create a bar chart
plt.bar(categories, values)
if lang == 'lv':
# Add title and labels
plt.title('Joslu diagrammas piemērs')
plt.xlabel('Mainīgie')
plt.ylabel('Vērtības')
else:
# Add title and labels
lang = 'en'
plt.title('A bar chart example')
plt.xlabel('Variables')
plt.ylabel('Values')
# Save the chart as a PNG file
plt.savefig(path + "/output/files/" + lang + "_chart.png")
return "/output/files/" + lang + "_chart.png"
# Read input JSON file
with open(path + "/input/input.json", "r") as f:
input_data = json.load(f)
# Calculate sum
sum_value = calculate_sum(input_data)
# Create output JSON object
output_data = {
"values": {
"sum": sum_value
},
"datatables": {
"tableLv": generate_test_dt(input_data, 'lv'),
"tableEn": generate_test_dt(input_data, 'en')
},
"chartjs": {
"myLine_lv": generate_line_chart_data(sum_value, 'lv'),
"myLine_en": generate_line_chart_data(sum_value, 'en'),
"risk_lv": generate_risk_score_chartjs(score=input_data["field_a"]["value"], lang='lv'),
"risk_en": generate_risk_score_chartjs(score=input_data["field_a"]["value"], lang='en'),
},
"files": {
"MyWord_lv": generate_test_msword(input_data, sum_value, 'lv'),
"MyWord_en": generate_test_msword(input_data, sum_value, 'en'),
"MyChart_lv": generate_test_chart(input_data, sum_value, 'lv'),
"MyChart_en": generate_test_chart(input_data, sum_value, 'en')
}
}
# Write output JSON to STDOUT
print(json.dumps(output_data))