The dataset used for the Hotel Revenue Analysis project was extracted from the Hotel management system and stored in an Excel (.xlsx) file. The data was then utilized for analysis using SQL and Power BI to answer various business questions and create visualizations.
Below is a preview of the dataset:
hotel is_canceled lead_time arrival_date_year arrival_date_month ... reservation_status reservation_status_date
Resort Hotel 1 85 2018 July ... Canceled 06/05/2018
Resort Hotel 1 75 2018 July ... Canceled 22/04/2018
Resort Hotel 1 23 2018 July ... Canceled 23/06/2018
Resort Hotel 1 60 2018 July ... Canceled 11/05/2018
Resort Hotel 1 96 2018 July ... Canceled 29/05/2018
Resort Hotel 1 45 2018 July ... Canceled 19/05/2018
Resort Hotel 1 40 2018 July ... Canceled 19/06/2018
Resort Hotel 1 43 2018 July ... Canceled 23/05/2018
Resort Hotel 1 45 2018 July ... Canceled 18/05/2018
Resort Hotel 1 47 2018 July ... Canceled 02/06/2018
... (more data rows)
The Excel workbook contains the following sheets:
- Transaction for 2018: 32 columns, 21,997 rows
- Transaction for 2019: 32 columns, 79,265 rows
- Transaction for 2020: 32 columns, 40,688 rows
- Meal_Cost: 2 columns, 6 rows
- Market_Segment: 2 columns, 9 rows
The dataset includes the following columns with their respective data types:
hotel
: Textis_canceled
: Integerlead_time
: Integerarrival_date_year
: Datearrival_date_month
: Datearrival_date_week_number
: Datearrival_date_day_of_month
: Datestays_in_weekend_nights
: Integerstays_in_week_nights
: Integeradults
: Integerchildren
: Integerbabies
: Integermeal
: Textcountry
: Textmarket_segment
: Textdistribution_channel
: Textis_repeated_guest
: Integerprevious_cancellations
: Integerprevious_bookings_not_canceled
: Integerreserved_room_type
: Textassigned_room_type
: Textbooking_changes
: Integerdeposit_type
: Textagent
: Integercompany
: Textdays_in_waiting_list
: Integercustomer_type
: Textadr
: Integerrequired_car_parking_spaces
: Integertotal_of_special_requests
: Integerreservation_status
: Textreservation_status_date
: Date
You can access the complete dataset in the hotel_revenue_historical_full.xlsx file.
Note: The dataset has undergone basic processing, such as replacing null values with random average values, removing duplicated values, and converting necessary data types.