-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain.py
196 lines (147 loc) · 7.35 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import os
import pickle
import argparse
import torch
from tqdm import tqdm
from model import *
from utils import TrajectoryDataset, data_sampler
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
# To avoid contiguous problem.
torch.backends.cudnn.enabled = False
torch.backends.cudnn.benchmark = False
# Argument parsing
parser = argparse.ArgumentParser()
# Model specific parameters
parser.add_argument('--input_size', type=int, default=2)
parser.add_argument('--output_size', type=int, default=5)
parser.add_argument('--n_stgcn', type=int, default=1, help='Number of GCN layers')
parser.add_argument('--n_tpcnn', type=int, default=4, help='Number of CNN layers')
parser.add_argument('--kernel_size', type=int, default=3)
# Data specific parameters
parser.add_argument('--obs_seq_len', type=int, default=8)
parser.add_argument('--pred_seq_len', type=int, default=12)
parser.add_argument('--dataset', default='eth', help='Dataset name(eth,hotel,univ,zara1,zara2)')
# Training specific parameters
parser.add_argument('--batch_size', type=int, default=128, help='Mini batch size')
parser.add_argument('--num_epochs', type=int, default=128, help='Number of epochs')
parser.add_argument('--clip_grad', type=float, default=None, help='Gradient clipping')
parser.add_argument('--lr', type=float, default=0.0001, help='Learning rate')
parser.add_argument('--lr_sh_rate', type=int, default=32, help='Number of steps to drop the lr')
parser.add_argument('--use_lrschd', action="store_true", default=False, help='Use lr rate scheduler')
parser.add_argument('--tag', default='tag', help='Personal tag for the model')
parser.add_argument('--visualize', action="store_true", default=False, help='Visualize trajectories')
args = parser.parse_args()
# Data preparation
# Batch size set to 1 because vertices vary by humans in each scene sequence.
# Use mini batch working like batch.
dataset_path = './datasets/' + args.dataset + '/'
checkpoint_dir = './checkpoints/' + args.tag + '/'
train_dataset = TrajectoryDataset(dataset_path + 'train/', obs_len=args.obs_seq_len, pred_len=args.pred_seq_len, skip=1)
train_loader = DataLoader(train_dataset, batch_size=1, shuffle=True, num_workers=0, pin_memory=True)
val_dataset = TrajectoryDataset(dataset_path + 'val/', obs_len=args.obs_seq_len, pred_len=args.pred_seq_len, skip=1)
val_loader = DataLoader(val_dataset, batch_size=1, shuffle=False, num_workers=0, pin_memory=True)
# Model preparation
model = social_dmrgcn(n_stgcn=args.n_stgcn, n_tpcnn=args.n_tpcnn,
output_feat=args.output_size, kernel_size=args.kernel_size,
seq_len=args.obs_seq_len, pred_seq_len=args.pred_seq_len)
model = model.cuda()
optimizer = torch.optim.SGD(model.parameters(), lr=args.lr)
if args.use_lrschd:
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_sh_rate, gamma=0.8)
# Train logging
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
with open(checkpoint_dir + 'args.pkl', 'wb') as f:
pickle.dump(args, f)
writer = SummaryWriter(checkpoint_dir)
if args.visualize:
from utils import data_visualizer
metrics = {'train_loss': [], 'val_loss': []}
constant_metrics = {'min_val_epoch': -1, 'min_val_loss': 1e10}
def train(epoch):
global metrics
model.train()
loss_batch = 0.
loader_len = len(train_loader)
progressbar = tqdm(range(loader_len))
progressbar.set_description('Train Epoch: {0} Loss: {1:.8f}'.format(epoch, 0))
for batch_idx, batch in enumerate(train_loader):
# Sum gradients till idx reach to batch_size
if batch_idx % args.batch_size == 0:
optimizer.zero_grad()
V_obs, A_obs, V_tr, A_tr = [tensor.cuda() for tensor in batch[-4:]]
# Try augmentation to generate a batch.
aug = True
if aug:
V_obs, A_obs, V_tr, A_tr = data_sampler(V_obs, A_obs, V_tr, A_tr, batch=4)
V_obs_ = V_obs.permute(0, 3, 1, 2)
V_pred, _ = model(V_obs_, A_obs)
V_pred = V_pred.permute(0, 2, 3, 1)
loss = multivariate_loss(V_pred, V_tr, training=True)
loss.backward()
loss_batch += loss.item()
if batch_idx % args.batch_size + 1 == args.batch_size or batch_idx + 1 == loader_len:
if args.clip_grad is not None:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip_grad)
optimizer.step()
iter_idx = epoch * loader_len + batch_idx
writer.add_scalar('Loss/Train_V', (loss_batch / batch_idx), iter_idx)
progressbar.set_description('Train Epoch: {0} Loss: {1:.8f}'.format(epoch, loss.item() / args.batch_size))
progressbar.update(1)
progressbar.close()
metrics['train_loss'].append(loss_batch / loader_len)
def valid(epoch):
global metrics, constant_metrics
model.eval()
loss_batch = 0.
loader_len = len(val_loader)
progressbar = tqdm(range(loader_len))
progressbar.set_description('Valid Epoch: {0} Loss: {1:.8f}'.format(epoch, 0))
for batch_idx, batch in enumerate(val_loader):
# sum gradients till idx reach to batch_size
if batch_idx % args.batch_size == 0:
optimizer.zero_grad()
V_obs, A_obs, V_tr, A_tr = [tensor.cuda() for tensor in batch[-4:]]
obs_traj, pred_traj_gt = [tensor.cuda() for tensor in batch[:2]]
V_obs_ = V_obs.permute(0, 3, 1, 2)
V_pred, _ = model(V_obs_, A_obs)
V_pred = V_pred.permute(0, 2, 3, 1)
loss = multivariate_loss(V_pred, V_tr)
loss_batch += loss.item()
if batch_idx % args.batch_size + 1 == args.batch_size or batch_idx + 1 == loader_len:
# Visualize trajectories
if args.visualize:
fig_img = data_visualizer(V_pred, obs_traj, pred_traj_gt, samples=100)
writer.add_image('Valid_{0:04d}'.format(batch_idx), fig_img[:, :, :], epoch, dataformats='HWC')
iter_idx = epoch * loader_len + batch_idx
writer.add_scalar('Loss/Valid_V', (loss_batch / batch_idx), iter_idx)
progressbar.set_description('Valid Epoch: {0} Loss: {1:.8f}'.format(epoch, loss.item() / args.batch_size))
progressbar.update(1)
progressbar.close()
metrics['val_loss'].append(loss_batch / loader_len)
# Save model
torch.save(model.state_dict(), checkpoint_dir + args.dataset + '.pth')
if metrics['val_loss'][-1] < constant_metrics['min_val_loss']:
constant_metrics['min_val_loss'] = metrics['val_loss'][-1]
constant_metrics['min_val_epoch'] = epoch
torch.save(model.state_dict(), checkpoint_dir + args.dataset + '_best.pth')
def main():
for epoch in range(args.num_epochs):
train(epoch)
valid(epoch)
if args.use_lrschd:
scheduler.step()
print(" ")
print("Dataset: {0}, Epoch: {1}".format(args.tag, epoch))
print("Train_loss: {0}, Val_los: {1}".format(metrics['train_loss'][-1], metrics['val_loss'][-1]))
print("Min_val_epoch: {0}, Min_val_loss: {1}".format(constant_metrics['min_val_epoch'],
constant_metrics['min_val_loss']))
print(" ")
with open(checkpoint_dir + 'metrics.pkl', 'wb') as f:
pickle.dump(metrics, f)
with open(checkpoint_dir + 'constant_metrics.pkl', 'wb') as f:
pickle.dump(constant_metrics, f)
if __name__ == "__main__":
main()
writer.close()