-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
176 lines (132 loc) · 6.06 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import os
import pickle
import argparse
import torch
from tqdm import tqdm
from model import MCDLNet
from dataloader import SceneFlowDataloader
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
# Argument parsing
parser = argparse.ArgumentParser()
# Model specific parameters
parser.add_argument('--dataset', default='./SceneFlow/', help='Dataset folder')
parser.add_argument('--input_h', type=int, default=256)
parser.add_argument('--input_w', type=int, default=512)
# Training specific parameters
parser.add_argument('--batch_size', type=int, default=1, help='Batch size')
parser.add_argument('--num_epochs', type=int, default=1024, help='Number of epochs')
parser.add_argument('--lr', type=float, default=0.001, help='Learning rate')
parser.add_argument('--lr_sh_rate', type=int, default=128, help='Number of steps to drop the lr')
parser.add_argument('--use_lrschd', action="store_true", default=False, help='Use lr rate scheduler')
parser.add_argument('--tag', default='tag', help='Personal tag for the model')
args = parser.parse_args()
# Dataloader
train_dataset = SceneFlowDataloader(dataset_dir=args.dataset, training=True, size=(512, 256))
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=0)
valid_dataset = SceneFlowDataloader(dataset_dir=args.dataset, training=False, size=(512, 256))
valid_loader = torch.utils.data.DataLoader(valid_dataset, batch_size=args.batch_size, shuffle=False, num_workers=0)
# Model preparation
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = MCDLNet(n=32, d=160)
model = model.to(device)
model = torch.nn.DataParallel(model)
optimizer = torch.optim.RMSprop(model.parameters(), lr=args.lr)
if args.use_lrschd:
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=args.lr_sh_rate, gamma=0.8)
# Loss function
criterion = torch.nn.MSELoss()
# Train logging
checkpoint_dir = './checkpoint/' + args.tag + '/'
if not os.path.exists(checkpoint_dir):
os.makedirs(checkpoint_dir)
with open(checkpoint_dir + 'args.pkl', 'wb') as f:
pickle.dump(args, f)
writer = SummaryWriter(checkpoint_dir)
metrics = {'train_loss': [], 'val_loss': []}
constant_metrics = {'min_val_epoch': -1, 'min_val_loss': 1e10}
test_metrics = {'min_test_epoch': -1, 'min_test_loss': 1e10}
def train(epoch):
global metrics, model
model.train()
loss_all = 0.
#loader_len = len(train_loader)
loader_len = 100
progressbar = tqdm(range(loader_len))
progressbar.set_description('Train Epoch: {0} Loss: {1:.8f}'.format(epoch, 0))
for batch_idx, batch in enumerate(train_loader):
m_img, c_img, gt_img = [tensor.to(device) for tensor in batch]
optimizer.zero_grad()
Cb = model(m_img, c_img[:, 0:1], c_img[:, 1:2])
Cb_loss = criterion(Cb, gt_img[:, 1:2])
Cb_loss.backward()
Cb_loss = Cb_loss.item()
Cr = model(m_img, c_img[:, 0:1], c_img[:, 2:3])
Cr_loss = criterion(Cr, gt_img[:, 2:3])
Cr_loss.backward()
Cr_loss = Cr_loss.item()
# replaced with gradient accumulation method because of memory efficiency
optimizer.step()
loss = Cb_loss + Cr_loss
loss_all += loss
iter_idx = epoch * loader_len + batch_idx
writer.add_scalar('Loss/Train', loss, iter_idx)
writer.add_scalar('Loss_Components/Train_Cb', Cb_loss, iter_idx)
writer.add_scalar('Loss_Components/Train_Cr', Cr_loss, iter_idx)
progressbar.set_description('Train Epoch: {0} Loss: {1:.8f}'.format(epoch, loss))
progressbar.update(1)
if batch_idx == loader_len - 1:
break
progressbar.close()
metrics['train_loss'].append(loss_all / loader_len)
def valid(epoch):
global metrics, constant_metrics, model
model.eval()
loss_all = 0.
#loader_len = len(valid_loader)
loader_len = 10
progressbar = tqdm(range(loader_len))
progressbar.set_description('Valid Epoch: {0} Loss: {1:.8f}'.format(epoch, 0))
for batch_idx, batch in enumerate(valid_loader):
m_img, c_img, gt_img = [tensor.to(device) for tensor in batch]
Cb = model(m_img, c_img[:, 0:1], c_img[:, 1:2]).detach()
Cb_loss = criterion(Cb, gt_img[:, 1:2]).item()
Cr = model(m_img, c_img[:, 0:1], c_img[:, 2:3]).detach()
Cr_loss = criterion(Cr, gt_img[:, 2:3]).item()
loss = Cb_loss + Cr_loss
loss_all += loss
iter_idx = epoch * loader_len + batch_idx
writer.add_scalar('Loss/Valid', loss, iter_idx)
writer.add_scalar('Loss_Components/Valid_Cb', Cb_loss, iter_idx)
writer.add_scalar('Loss_Components/Valid_Cr', Cr_loss, iter_idx)
progressbar.set_description('Valid Epoch: {0} Loss: {1:.8f}'.format(epoch, loss))
progressbar.update(1)
if batch_idx == loader_len - 1:
break
progressbar.close()
metrics['val_loss'].append(loss_all / loader_len)
# Save model
torch.save(model.state_dict(), checkpoint_dir + 'MCDLNet_' + str(epoch) + '.pth')
if metrics['val_loss'][-1] < constant_metrics['min_val_loss']:
constant_metrics['min_val_loss'] = metrics['val_loss'][-1]
constant_metrics['min_val_epoch'] = epoch
torch.save(model.state_dict(), checkpoint_dir + 'MCDLNet_best.pth')
def main():
for epoch in range(args.num_epochs):
train(epoch)
valid(epoch)
if args.use_lrschd:
scheduler.step()
print(" ")
print("Dataset: {0}, Epoch: {1}".format(args.tag, epoch))
print("Train_loss: {0}, Val_los: {1}".format(metrics['train_loss'][-1], metrics['val_loss'][-1]))
print("Min_val_epoch: {0}, Min_val_loss: {1}".format(constant_metrics['min_val_epoch'],
constant_metrics['min_val_loss']))
print(" ")
with open(checkpoint_dir + 'metrics.pkl', 'wb') as f:
pickle.dump(metrics, f)
with open(checkpoint_dir + 'constant_metrics.pkl', 'wb') as f:
pickle.dump(constant_metrics, f)
if __name__ == "__main__":
main()
writer.close()