Skip to content

EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

License

Notifications You must be signed in to change notification settings

IndigoPurple/EFENet

Repository files navigation

EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

In this repository we provide code of the paper:

EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

Yaping Zhao, Mengqi Ji, Ruqi Huang, Bin Wang, Shengjin Wang

arxiv link: http://arxiv.org/abs/2110.07797

Usage

  1. For pre-requisites, run:
conda env create -f environment.yml
conda activate efenet
  1. Pretrained model is currently available at OneDrive and Baidu Netdisk (password: efen), download the CP10000.pth and put it in the pretrained folder. This pretrained model only uses one training sample for demo purpose. If you want to train your own model, please prepare your own training set.

  2. For EFENet training, run:

sh train.sh

or

python train_efenet_vimeo.py  \
--dataset demo   \
--display 100 \
--batch_size 1  \
--step_size 50000 \
--gamma 0.1 \
--loss CharbonnierLoss \
--optim Adam \
--lr 0.00001  \
--checkpoints_dir ./checkpoints/ \
--frame_num 7 \
--checkpoint_file ./pretrained/CP10000.pth \
--with_GAN_loss 0 \
--img_save_path result/ \
--net_type multiflowfusion5 \
--pretrained 1 \
--gpu_id 0 
  1. For EFENet testing, run:
sh test.sh

or

python train_efenet_vimeo.py  \
--dataset demo   \
--mode test \
--display 100 \
--batch_size 1  \
--step_size 50000 \
--gamma 0.1 \
--loss CharbonnierLoss \
--optim Adam \
--lr 0.00001  \
--checkpoints_dir ./checkpoints/ \
--frame_num 7 \
--checkpoint_file ./pretrained/CP10000.pth \
--with_GAN_loss 0 \
--img_save_path result/ \
--net_type multiflowfusion5 \
--pretrained 0 \
--gpu_id 0
  1. If positive, you will get models in the checkpoints/ folder when training and results in the result/ folder when testing.

Dataset

Dataset is stored in the folder dataset/, where subfolders clean/, corrupted/, SISR/ contain ground truth HR images, corrupted LR images, upsampled LR images by interpolation (e.g., bicubic) or SISR methods. Images in SISR/ could be as same as in corrupted/, though preprocessing by advanced SISR methods (e.g., MDSR) brings a small performance boost.

testlist.txt and trainlist.txt could be modified for your experiment on other datasets.

This repo only provides a sample for demo purposes.

Citation

Cite our paper if you find it interesting!

@misc{zhao2021efenet,
      title={EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation}, 
      author={Yaping Zhao and Mengqi Ji and Ruqi Huang and Bin Wang and Shengjin Wang},
      year={2021},
      eprint={2110.07797},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

About

EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published