In this repository we provide code of the paper:
EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation
Yaping Zhao, Mengqi Ji, Ruqi Huang, Bin Wang, Shengjin Wang
arxiv link: http://arxiv.org/abs/2110.07797
- For pre-requisites, run:
conda env create -f environment.yml
conda activate efenet
-
Pretrained model is currently available at OneDrive and Baidu Netdisk (password: efen), download the
CP10000.pth
and put it in thepretrained
folder. This pretrained model only uses one training sample for demo purpose. If you want to train your own model, please prepare your own training set. -
For EFENet training, run:
sh train.sh
or
python train_efenet_vimeo.py \
--dataset demo \
--display 100 \
--batch_size 1 \
--step_size 50000 \
--gamma 0.1 \
--loss CharbonnierLoss \
--optim Adam \
--lr 0.00001 \
--checkpoints_dir ./checkpoints/ \
--frame_num 7 \
--checkpoint_file ./pretrained/CP10000.pth \
--with_GAN_loss 0 \
--img_save_path result/ \
--net_type multiflowfusion5 \
--pretrained 1 \
--gpu_id 0
- For EFENet testing, run:
sh test.sh
or
python train_efenet_vimeo.py \
--dataset demo \
--mode test \
--display 100 \
--batch_size 1 \
--step_size 50000 \
--gamma 0.1 \
--loss CharbonnierLoss \
--optim Adam \
--lr 0.00001 \
--checkpoints_dir ./checkpoints/ \
--frame_num 7 \
--checkpoint_file ./pretrained/CP10000.pth \
--with_GAN_loss 0 \
--img_save_path result/ \
--net_type multiflowfusion5 \
--pretrained 0 \
--gpu_id 0
- If positive, you will get models in the
checkpoints/
folder when training and results in theresult/
folder when testing.
Dataset is stored in the folder dataset/
, where subfolders clean/
, corrupted/
, SISR/
contain ground truth HR images, corrupted LR images, upsampled LR images by interpolation (e.g., bicubic) or SISR methods.
Images in SISR/
could be as same as in corrupted/
, though preprocessing by advanced SISR methods (e.g., MDSR) brings a small performance boost.
testlist.txt
and trainlist.txt
could be modified for your experiment on other datasets.
This repo only provides a sample for demo purposes.
Cite our paper if you find it interesting!
@misc{zhao2021efenet,
title={EFENet: Reference-based Video Super-Resolution with Enhanced Flow Estimation},
author={Yaping Zhao and Mengqi Ji and Ruqi Huang and Bin Wang and Shengjin Wang},
year={2021},
eprint={2110.07797},
archivePrefix={arXiv},
primaryClass={cs.CV}
}