-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathcombine_datasets.py
249 lines (220 loc) · 10.2 KB
/
combine_datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import os
import sys
import shutil
import pandas as pd
from Bio import SeqIO
import getopt
sys.path.append("py/ig_evolution")
import dataset
class DivanConfig:
seq_fasta = "cleaned_sequences.fasta"
cdr_df_fname = "cdr_details.txt"
shm_df_fname = "shm_details.txt"
v_alignment_fasta = "v_alignment.fasta"
class InputConfig:
config_fname = ""
output_dir = ""
parse_mult = False
class DivanOutput:
def __init__(self, divan_dir, parse_mult):
self.divan_dir = divan_dir
self.parse_mult = parse_mult
self.seq_fasta = os.path.join(self.divan_dir, DivanConfig.seq_fasta)
self.cdr_df_fname = os.path.join(self.divan_dir, DivanConfig.cdr_df_fname)
self.shm_df_fname = os.path.join(self.divan_dir, DivanConfig.shm_df_fname)
self.v_alignments = os.path.join(self.divan_dir, DivanConfig.v_alignment_fasta)
self._ReadFasta()
self._ReadCDRDetails()
self._ReadSHMDetails()
self._ReadVAlignmentFasta()
def _ReadFasta(self):
self.cleaned_seqs = []
for r in SeqIO.parse(self.seq_fasta, 'fasta'):
r.seq = str(r.seq)
self.cleaned_seqs.append(r)
print(str(len(self.cleaned_seqs)) + ' sequences were extracted from ' + self.seq_fasta)
self._CollapseIdenticalSequences()
def _ReadCDRDetails(self):
self.cdr_df = dataset.AnnotationDF(self.cdr_df_fname)
def _ReadSHMDetails(self):
self.shm_df = dataset.SHMDF(self.shm_df_fname)
def _ReadVAlignmentFasta(self):
self.index_alignment_dict = dict()
pair_index = 0
record_index = 0
for r in SeqIO.parse(self.v_alignments, 'fasta'):
if record_index % 2 == 0:
pair_index = record_index / 2
self.index_alignment_dict[pair_index] = [] # read alignment, gene alignment
self.index_alignment_dict[pair_index].append((r.id, str(r.seq)))
else:
self.index_alignment_dict[pair_index].append((r.id, str(r.seq)))
record_index += 1
def _GetMultByHeader(self, header):
if not self.parse_mult:
return 1
return int(header.split('|')[1][len('MULT:') : ])
def _CollapseIdenticalSequences(self):
self.seq_ind_dict = dict() # seq -> list of indices of seqs in self.cleaned_seqs
self.seq_mult_dict = dict() # seq -> seq multiplicity
for i in range(len(self.cleaned_seqs)):
seq = self.cleaned_seqs[i].seq
if seq not in self.seq_ind_dict:
self.seq_ind_dict[seq] = []
self.seq_mult_dict[seq] = 0
self.seq_mult_dict[seq] += self._GetMultByHeader(self.cleaned_seqs[i].id)
self.seq_ind_dict[seq].append(i)
print(str(len(self.seq_ind_dict)) + ' distinct sequences were computed from ' + str(len(self.cleaned_seqs)) + ' original sequences')
def Id(self):
return self.divan_dir
def DistinctSeqIter(self):
for seq in self.seq_mult_dict:
yield seq
def GetMultiplicityBySeq(self, seq):
return self.seq_mult_dict[seq]
def GetRecordsBySeq(self, seq):
return [self.cleaned_seqs[ind] for ind in self.seq_ind_dict[seq]]
def GetVAlignmentBySeq(self, seq):
seq_index = self.seq_ind_dict[seq][0]
return self.index_alignment_dict[seq_index]
def PrepareOutputDir(output_dir):
if os.path.exists(output_dir):
shutil.rmtree(output_dir)
os.mkdir(output_dir)
def ParseOptions(sys_args):
input_config = InputConfig()
try:
options, remainder = getopt.getopt(sys_args[1:], 'i:o:', ["parse-mult"])
except getopt.GetoptError as err:
print(str(err)) # will print something like "option -a not recognized"
sys.exit(2)
print(options, remainder)
for opt, arg in options:
if opt == "-i":
input_config.config_fname = arg
elif opt == '-o':
input_config.output_dir = arg
elif opt == '--parse-mult':
input_config.parse_mult = True
else:
assert False, "unhandled option"
return input_config
def ComputeDistinctSequences(divan_dirs):
seq_dict = dict() # seq -> list of divan_dir IDs
for d in divan_dirs:
for seq in d.DistinctSeqIter():
if seq not in seq_dict:
seq_dict[seq] = []
seq_dict[seq].append(d.Id())
print(str(len(seq_dict)) + ' distinct sequences were extracted from ' + str(len(divan_dirs)) + ' datasets')
return seq_dict
class CombinedDataWriter:
def __init__(self, divan_dirs, divan_df, output_dir):
self.divan_dirs = divan_dirs
self.divan_df = divan_df
self.output_dir = output_dir
self._ComputeDistinctSequences()
def _ComputeDistinctSequences(self):
self.seq_dict = dict() # seq -> list of divan_dir IDs
self.seq_order = []
for i in range(len(self.divan_dirs)):
d = self.divan_dirs[i]
for seq in d.DistinctSeqIter():
if seq not in self.seq_dict:
self.seq_dict[seq] = []
self.seq_order.append(seq)
self.seq_dict[seq].append(i)
print(str(len(self.seq_dict)) + ' distinct sequences were extracted from ' + str(len(self.divan_dirs)) + ' datasets')
def _GetFirstSeqRecordID(self, seq):
divan_ind = self.seq_dict[seq][0]
return divan_ind, self.divan_dirs[divan_ind].GetRecordsBySeq(seq)[0].id
def OutputCombinedSequences(self):
output_fname = os.path.join(self.output_dir, DivanConfig.seq_fasta)
fh = open(output_fname, 'w')
index = 1
self.seq_id_dict = dict()
for seq in self.seq_order: #self.seq_dict:
mult_list = [self.divan_dirs[ind].GetMultiplicityBySeq(seq) for ind in self.seq_dict[seq]]
labels = [self.divan_df['Label'][ind] for ind in self.seq_dict[seq]]
header = 'INDEX:' + str(index) + '|MULT:' + str(sum(mult_list)) + '|IND_MULTS:' + ','.join([str(m) for m in mult_list]) + '|LABELS:' + ','.join([str(l) for l in labels])
fh.write('>' + header + '\n')
fh.write(seq + '\n')
index += 1
self.seq_id_dict[self._GetFirstSeqRecordID(seq)] = header
fh.close()
def OutputCombinedCDRs(self):
output_fname = os.path.join(self.output_dir, DivanConfig.cdr_df_fname)
fh = open(output_fname, 'w')
columns = self.divan_dirs[0].cdr_df.df.columns
fh.write('\t'.join(columns) + '\n')
for seq in self.seq_order: #self.seq_dict:
divan_ind, seq_id = self._GetFirstSeqRecordID(seq)
divan_dir = self.divan_dirs[divan_ind]
df_index = divan_dir.cdr_df.GetIndexBySeqId(seq_id)
for col in columns:
if col == 'Read_name':
fh.write(self.seq_id_dict[(divan_ind, seq_id)] + '\t')
else:
fh.write(str(divan_dir.cdr_df.df[col][df_index]) + '\t')
fh.write('\n')
fh.close()
def OutputCombinedSHMs(self):
output_fname = os.path.join(self.output_dir, DivanConfig.shm_df_fname)
fh = open(output_fname, 'w')
columns = ['SHM_type', 'Read_pos', 'Gene_pos', 'Read_nucl', 'Gene_nucl', 'Read_aa', 'Gene_aa', 'Is_synonymous', 'To_stop_codon']
read_columns = ['Read_name', 'Read_length', 'Gene_name', 'Gene_length', 'Segment', 'Chain_type']
fh.write('\t'.join(columns) + '\n')
for seq in self.seq_order: #self.seq_dict:
divan_ind, old_seq_id = self._GetFirstSeqRecordID(seq)
divan_dir = self.divan_dirs[divan_ind]
new_seq_id = self.seq_id_dict[(divan_ind, old_seq_id)]
for gene_type in dataset.AnnotatedGene:
fh.write(read_columns[0] + ':' + new_seq_id + '\t')
for i in range(1, len(read_columns)):
value = 'NA'
if read_columns[i] == 'Segment':
value = gene_type.name
fh.write(read_columns[i] + ':' + value + '\t')
fh.write('\n')
shms = divan_dir.shm_df.GetSHMsBySeqName(old_seq_id, gene_type)
for shm in shms:
fh.write(shm.Type() + '\t' + str(shm.read_pos) + '\t' + str(shm.pos) + '\t' + shm.dst_n + '\t' + shm.src_n + '\tNA\tNA\tNA\tNA\n')
fh.close()
def OutputCombinedVAlignments(self):
output_fname = os.path.join(self.output_dir, DivanConfig.v_alignment_fasta)
fh = open(output_fname, 'w')
record_index = 1
for seq in self.seq_order:
divan_ind, old_seq_id = self._GetFirstSeqRecordID(seq)
divan_dir = self.divan_dirs[divan_ind]
new_seq_id = self.seq_id_dict[(divan_ind, old_seq_id)]
v_alignment = divan_dir.GetVAlignmentBySeq(seq)
read_id_splits = v_alignment[0][0].split('|')
# if len(read_id_splits) != 4:
# print("Unexpected format: " + str(read_id_splits))
# sys.exit(1)
fh.write('>INDEX:' + str(record_index) + '|READ:' + new_seq_id + '|' + read_id_splits[-2] + '|' + read_id_splits[-1] + '\n')
fh.write(v_alignment[0][1] + '\n')
gene_splits = v_alignment[1][0].split('|')
fh.write('>INDEX:' + str(record_index) + '|' + gene_splits[1] + '|' + gene_splits[2] + '|' + gene_splits[3] + '\n')
fh.write(v_alignment[1][1] + '\n')
record_index += 1
fh.close()
def main(args):
config = ParseOptions(args)
config_df = pd.read_csv(config.config_fname, delim_whitespace = True)
PrepareOutputDir(config.output_dir)
divan_dirs = []
for i in range(len(config_df)):
divan_dir = config_df['Directory'][i]
# config_df['Label'][i] = str(config_df['Label'][i])
print("== Reading " + divan_dir + ', label ' + str(config_df['Label'][i]))
divan_dirs.append(DivanOutput(divan_dir, config.parse_mult))
print(str(len(divan_dirs)) + ' datasets were processed')
writer = CombinedDataWriter(divan_dirs, config_df, config.output_dir)
writer.OutputCombinedSequences()
writer.OutputCombinedCDRs()
writer.OutputCombinedSHMs()
writer.OutputCombinedVAlignments()
if __name__ == '__main__':
main(sys.argv)