-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_without_trainer.py
185 lines (158 loc) · 6.09 KB
/
train_without_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import importlib
import argparse
import os
from os.path import join, isdir
from itertools import chain
import torch as pt
import torch.nn as nn
from torch.nn import init
from torch.utils.data import DataLoader
import numpy as np
from optimizer import OptimizerCollection
def load_config(file):
"""
initialize module from .py config file
:param file: filename of the config .py file
:return: config as module
"""
spec = importlib.util.spec_from_file_location("config", file)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module)
return module
def set_seed(seed):
pt.backends.cudnn.deterministic = True
pt.backends.cudnn.benchmark = False
np.random.seed(seed)
pt.manual_seed(seed)
pt.cuda.manual_seed_all(seed)
def weight_init(m):
"""
Usage:
model = Model()
model.apply(weight_init)
"""
if isinstance(m, nn.Conv1d):
init.normal_(m.weight.data)
if m.bias is not None:
init.normal_(m.bias.data)
elif isinstance(m, nn.Conv2d):
init.xavier_normal_(m.weight.data)
if m.bias is not None:
init.normal_(m.bias.data)
elif isinstance(m, nn.Conv3d):
init.xavier_normal_(m.weight.data)
if m.bias is not None:
init.normal_(m.bias.data)
elif isinstance(m, nn.ConvTranspose1d):
init.normal_(m.weight.data)
if m.bias is not None:
init.normal_(m.bias.data)
elif isinstance(m, nn.ConvTranspose2d):
init.xavier_normal_(m.weight.data)
if m.bias is not None:
init.normal_(m.bias.data)
elif isinstance(m, nn.ConvTranspose3d):
init.xavier_normal_(m.weight.data)
if m.bias is not None:
init.normal_(m.bias.data)
elif isinstance(m, nn.BatchNorm1d):
init.normal_(m.weight.data, mean=1, std=0.02)
init.constant_(m.bias.data, 0)
elif isinstance(m, nn.BatchNorm2d):
init.normal_(m.weight.data, mean=1, std=0.02)
init.constant_(m.bias.data, 0)
elif isinstance(m, nn.BatchNorm3d):
init.normal_(m.weight.data, mean=1, std=0.02)
init.constant_(m.bias.data, 0)
elif isinstance(m, nn.Linear):
init.xavier_normal_(m.weight.data)
init.normal_(m.bias.data)
elif isinstance(m, nn.LSTM):
for param in m.parameters():
if len(param.shape) >= 2:
init.orthogonal_(param.data)
else:
init.normal_(param.data)
elif isinstance(m, nn.LSTMCell):
for param in m.parameters():
if len(param.shape) >= 2:
init.orthogonal_(param.data)
else:
init.normal_(param.data)
elif isinstance(m, nn.GRU):
for param in m.parameters():
if len(param.shape) >= 2:
init.orthogonal_(param.data)
else:
init.normal_(param.data)
elif isinstance(m, nn.GRUCell):
for param in m.parameters():
if len(param.shape) >= 2:
init.orthogonal_(param.data)
else:
init.normal_(param.data)
def backward(loss):
loss.backward()
# cmd arguments
parser = argparse.ArgumentParser()
parser.add_argument('--config', '-c', required=True, dest='config')
parser.add_argument('--n_epochs', '-n', default=50, type=int, dest='n_epochs')
parser.add_argument('--logdir', '-l', default='./', dest='logdir')
parser.add_argument('--seed', '-s', default=0, type=int, dest='seed')
args = parser.parse_args()
# fix seed and load config
set_seed(args.seed)
config = load_config(args.config)
# use fp16 if possible
dtype = pt.float16 if hasattr(config, 'APEX') else pt.float32
# initialize components
model = config.MODEL(**config.model).cuda().to(dtype)
model.apply(weight_init)
dataset = config.DATASET(**config.dataset)
criterion = config.LOSS(**config.loss)
gen_optimizer = config.OPTIMIZER(chain(model.generator['hn'].parameters(),
model.generator['ln'].parameters()) , **config.optimizer)
disc_optimizer = config.OPTIMIZER(model.discriminator.parameters(), **config.optimizer)
optimizers = []
for optimizer in (disc_optimizer, gen_optimizer):
if hasattr(config, 'APEX'):
optimizer = config.APEX(optimizer, **config.apex)
optimizers.append(optimizer)
optimizer = OptimizerCollection(*optimizers)
dataloader = DataLoader(dataset, **config.dataloader)
# convert optimizer and unify backward call
if dtype == pt.float16:
optimizer = config.APEX(optimizer, **config.apex)
if not hasattr(optimizer, 'backward'):
setattr(optimizer, 'backward', backward)
# init log directory
if not isdir(args.logdir):
os.makedirs(args.logdir)
# training loop
steps_in_epoch = len(dataloader)
try:
for epoch in range(args.n_epochs):
for step, (images, labels) in enumerate(dataloader):
# convert data to match network
images = [i.cuda().to(dtype) for i in images]
labels = [l.cuda().long() for l in labels]
# forward pass
result = model(images)
loss = criterion(result, ([i.float() for i in images], labels))
# backward pass
optimizer.zero_grad()
optimizer.backward(loss)
optimizer.step()
# reporting
progress = (epoch*steps_in_epoch+step) / (args.n_epochs*steps_in_epoch)
progress = round(100*progress, 2)
print(f'\repoch: {epoch} of {args.n_epochs}, step: {step}, progress: {progress}%,'
f' loss: {round(loss.item(), 4)}', end='')
# write loss
with open(join(args.logdir, 'losses.csv'), 'a') as file:
print(epoch, step, loss, sep=',', file=file)
# always save model and optimizer before exiting
finally:
pt.save(model.state_dict(), join(args.logdir, f'{model.__class__.__name__}_epoch-{epoch}_step-{step}.pt'))
for name, opt in zip(['gen', 'disc'], optimizer.optimizers):
pt.save(opt.state_dict(), join(args.logdir, f'{optimizer.__class__.__name__}_{name}_epoch-{epoch}_step-{step}.pt'))