Skip to content

ITRoselloSignoris/Data-Science-Model-Deployment-MLflow

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Model Deployment

Project description

Methods used

  • Data preparation
  • Model training
  • Model evaluation
  • Model deployment

Technologies

  • Data Preparation: funpymodeling and pandas.
  • Model Training: sklearn.
  • Deployment: FastAPI, requests, mlflow and json.
  • Others: numpy and pickles.

Installation

  1. Clone the repository:
    git clone https://github.com/ITRoselloSignoris/Data-Science-Model-Deployment-MLflow

  2. Install the necessary libraries inside the requirements.txt:
    pip install -r requirements.txt

To-Do list

  • Write project description