forked from ChanglongJiangGit/A2J-Transformer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
random_erasing.py
56 lines (46 loc) · 2 KB
/
random_erasing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
from __future__ import absolute_import
#from torchvision.transforms import *
#from PIL import Image
import random
import math
#import numpy as np
import torch
class RandomErasing(object):
""" Randomly selects a rectangle region in an image and erases its pixels.
'Random Erasing Data Augmentation' by Zhong et al.
See https://arxiv.org/pdf/1708.04896.pdf
Args:
probability: The probability that the Random Erasing operation will be performed.
sl: Minimum proportion of erased area against input image.
sh: Maximum proportion of erased area against input image.
r1: Minimum aspect ratio of erased area.
mean: Erasing value.
"""
def __init__(self, probability = 0.5, sl = 0.02, sh = 0.4, r1 = 0.3, mean=[3.44405131],scale=1):
self.probability = probability
self.mean = mean
self.sl = sl
self.sh = sh
self.r1 = r1
self.scale = scale
def __call__(self, img):
if random.uniform(0, 1) > self.probability:
return img
for attempt in range(100):
area = img.size()[1] * img.size()[2]
target_area = random.uniform(self.sl, self.sh) * area
aspect_ratio = random.uniform(self.r1, 1/self.r1)
h = int(round(math.sqrt(target_area * aspect_ratio)))
w = int(round(math.sqrt(target_area / aspect_ratio)))
if w < img.size()[2] and h < img.size()[1]:
rand_patch = self.scale*torch.randn(h,w)
x1 = random.randint(0, img.size()[1] - h)
y1 = random.randint(0, img.size()[2] - w)
if img.size()[0] == 3:
img[0, x1:x1+h, y1:y1+w] += rand_patch#self.mean[0]
img[1, x1:x1+h, y1:y1+w] += rand_patch#self.mean[1]
img[2, x1:x1+h, y1:y1+w] += rand_patch#self.mean[2]
else:
img[0, x1:x1+h, y1:y1+w] += rand_patch#self.mean[0]
return img
return img