-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathkernelmatrix.m
61 lines (53 loc) · 1.43 KB
/
kernelmatrix.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
% With Fast Computation of the RBF kernel matrix
% To speed up the computation, we exploit a decomposition of the Euclidean distance (norm)
%
% Inputs:
% ker: 'lin','poly','rbf','sam'
% X: data matrix with training samples in rows and features in columns
% X2: data matrix with test samples in rows and features in columns
% sigma: width of the RBF kernel
% b: bias in the linear and polinomial kernel
% d: degree in the polynomial kernel
%
% Output:
% K: kernel matrix
%
% Gustavo Camps-Valls
% 2006(c)
% Jordi (jordi@uv.es), 2007
% 2007-11: if/then -> switch, and fixed RBF kernel
function K = kernelmatrix(ker,X,X2,sigma)
switch ker
case 'lin'
if exist('X2','var')
K = X' * X2;
else
K = X' * X;
end
case 'poly'
if exist('X2','var')
K = (X' * X2 + b).^d;
else
K = (X' * X + b).^d;
end
case 'rbf'
n1sq = sum(X.^2,1);
n1 = size(X,2);
if isempty(X2);
D = (ones(n1,1)*n1sq)' + ones(n1,1)*n1sq -2*X'*X;
else
n2sq = sum(X2.^2,1);
n2 = size(X2,2);
D = (ones(n2,1)*n1sq)' + ones(n1,1)*n2sq -2*X'*X2;
end;
K = exp(-D/(2*sigma^2));
case 'sam'
if exist('X2','var');
D = X'*X2;
else
D = X'*X;
end
K = exp(-acos(D).^2/(2*sigma^2));
otherwise
error(['Unsupported kernel ' ker])
end