-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
376 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
[run] | ||
omit = | ||
*/tests* |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,279 @@ | ||
# Copyright 2024 Sergio Nava Muñoz and Mario Graff Guerrero | ||
|
||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
|
||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
from typing import Callable | ||
from joblib import delayed, Parallel | ||
import numpy as np | ||
|
||
|
||
class StatisticSamples(object): | ||
"""Apply the statistic to `num_samples` samples taken with replacement from the population (arguments). | ||
:param statistic: Statistic. | ||
:type statistic: Callable | ||
:param num_samples: Number of bootstrap samples, default=500. | ||
:type num_samples: int | ||
:param n_jobs: Number of jobs to run in parallel, default=1. | ||
:type n_jobs: int | ||
>>> from IngeoML import StatisticSamples | ||
>>> from sklearn.metrics import accuracy_score | ||
>>> import numpy as np | ||
>>> statistic = StatisticSamples(num_samples=10, statistic=np.mean) | ||
>>> empirical_distribution = np.r_[[3, 4, 5, 2, 4]] | ||
>>> statistic(empirical_distribution) | ||
array([2.8, 3.6, 3.6, 3.6, 2.6, 4. , 2.8, 3. , 3.8, 3.6]) | ||
>>> labels = np.r_[[0, 0, 0, 0, 0, 1, 1, 1, 1, 1]] | ||
>>> pred = np.r_[[0, 0, 1, 0, 0, 1, 1, 1, 0, 1]] | ||
>>> acc = StatisticSamples(num_samples=15, statistic=accuracy_score) | ||
>>> acc(labels, pred) | ||
array([0.9, 0.8, 0.7, 1. , 0.6, 1. , 0.7, 0.9, 0.9, 0.8, 0.9, 0.8, 0.8, 0.8, 0.8]) | ||
""" | ||
|
||
def __init__(self, | ||
statistic: Callable[[np.ndarray], float]=np.mean, | ||
num_samples: int=500, | ||
n_jobs: int=1): | ||
self.statistic = statistic | ||
self.num_samples = num_samples | ||
self.n_jobs = n_jobs | ||
self._samples = None | ||
|
||
@property | ||
def n_jobs(self): | ||
"""Number of jobs to do in parallel""" | ||
return self._n_jobs | ||
|
||
@n_jobs.setter | ||
def n_jobs(self, value): | ||
self._n_jobs = value | ||
|
||
@property | ||
def statistic(self): | ||
"""Statistic function.""" | ||
return self._statistic | ||
|
||
@statistic.setter | ||
def statistic(self, value): | ||
self._statistic = value | ||
|
||
@property | ||
def num_samples(self): | ||
"""Number of bootstrap samples.""" | ||
return self._num_samples | ||
|
||
@num_samples.setter | ||
def num_samples(self, value): | ||
self._num_samples = value | ||
|
||
@property | ||
def statistic_samples(self): | ||
"""It contains the statistic samples of the latest call.""" | ||
assert hasattr(self, '_statistic_samples') | ||
return self._statistic_samples | ||
|
||
@statistic_samples.setter | ||
def statistic_samples(self, value): | ||
self._statistic_samples = value | ||
|
||
def samples(self, N): | ||
"""Samples. | ||
:param N: Population size. | ||
:type N: int | ||
""" | ||
def inner(N): | ||
_ = np.random.randint(N, size=(self.num_samples, N)) | ||
self._samples = _ | ||
return self._samples | ||
try: | ||
if self._samples.shape[1] == N: | ||
return self._samples | ||
else: | ||
return inner(N) | ||
except AttributeError: | ||
return inner(N) | ||
|
||
def __call__(self, *args: np.ndarray) -> np.ndarray: | ||
"""Population where the bootstrap process will be performed. | ||
:param *args: Population | ||
:type *args: np.ndarray | ||
""" | ||
def inner(s): | ||
_ = [arg[s] for arg in args] | ||
return self.statistic(*_) | ||
|
||
B = [] | ||
# statistic = self.statistic | ||
B = Parallel(n_jobs=self.n_jobs)(delayed(inner)(s) | ||
for s in self.samples(args[0].shape[0])) | ||
# for s in self.samples(args[0].shape[0]): | ||
# _ = [arg[s] for arg in args] | ||
# B.append(statistic(*_)) | ||
self.statistic_samples = np.array(B) | ||
return self.statistic_samples | ||
|
||
|
||
class CI(StatisticSamples): | ||
"""Compute the Confidence Interval of a statistic using bootstrap. | ||
:param alpha: :math:`[\\frac{\\alpha}{2}, 1 - \\frac{\\alpha}{2}]`. | ||
:type alpha: float | ||
>>> from IngeoML import CI | ||
>>> from sklearn.metrics import accuracy_score | ||
>>> import numpy as np | ||
>>> labels = np.r_[[0, 0, 0, 0, 0, 1, 1, 1, 1, 1]] | ||
>>> pred = np.r_[[0, 0, 1, 0, 0, 1, 1, 1, 0, 1]] | ||
>>> acc = CI(statistic=accuracy_score) | ||
>>> acc(labels, pred) | ||
(0.7, 1.0) | ||
""" | ||
def __init__(self, alpha: float=0.05, | ||
**kwargs): | ||
super().__init__(**kwargs) | ||
self.alpha = alpha | ||
|
||
@property | ||
def alpha(self): | ||
"""The interval is computed for :math:`[\\frac{\\alpha}{2}, 1 - \\frac{\\alpha}{2}]`. | ||
""" | ||
return self._alpha | ||
|
||
@alpha.setter | ||
def alpha(self, value): | ||
self._alpha = value / 2 | ||
|
||
def __call__(self, *args: np.ndarray) -> np.ndarray: | ||
B = super().__call__(*args) | ||
alpha = self.alpha | ||
return (np.percentile(B, alpha * 100, axis=0), | ||
np.percentile(B, (1 - alpha) * 100, axis=0)) | ||
|
||
|
||
# class SE(StatisticSamples): | ||
# """Compute the Standard Error of a statistic using bootstrap. | ||
|
||
# >>> from IngeoML import SE | ||
# >>> from sklearn.metrics import accuracy_score | ||
# >>> import numpy as np | ||
# >>> labels = np.r_[[0, 0, 0, 0, 0, 1, 1, 1, 1, 1]] | ||
# >>> pred = np.r_[[0, 0, 1, 0, 0, 1, 1, 1, 0, 1]] | ||
# >>> se = SE(statistic=accuracy_score) | ||
# >>> se(labels, pred) | ||
# 0.11949493713124419 | ||
# """ | ||
|
||
# def __call__(self, *args: np.ndarray) -> float: | ||
# B = super().__call__(*args) | ||
# return np.std(B, axis=0) | ||
|
||
|
||
# class Difference(CI): | ||
# def __init__(self, y: np.ndarray, | ||
# algorithms: dict={}, | ||
# performance: Callable[[np.ndarray, np.ndarray], float]=lambda y, hy: f1_score(y, hy, average='macro'), | ||
# **kwargs) -> None: | ||
# super(Difference, self).__init__(populations=algorithms, statistic=performance) | ||
# self.y = y | ||
# self._dist = dict() | ||
# self._delta = dict() | ||
# self._pvalue_r = dict() | ||
# self._pvalue_l = dict() | ||
|
||
# @property | ||
# def y(self): | ||
# return self._y | ||
|
||
# @y.setter | ||
# def y(self, value): | ||
# self._y = value | ||
|
||
# @property | ||
# def best(self): | ||
# try: | ||
# return self._best | ||
# except AttributeError: | ||
# y = self.y | ||
# best = (None, -np.inf) | ||
# for k, v in self.populations.items(): | ||
# perf = self.statistic(y, v) | ||
# if perf > best[1]: | ||
# best = (k, perf) | ||
# self._best = best[0] | ||
# return self._best | ||
|
||
# def delta(self, key): | ||
# assert key != self.best | ||
# if key in self._delta: | ||
# return self._delta[key] | ||
# y = self.y | ||
# algs = self.populations | ||
# perf = self.statistic | ||
# delta = perf(y, algs[self.best]) - perf(y, algs[key]) | ||
# self._delta[key] = delta | ||
# return delta | ||
|
||
# def samples(self, key): | ||
# if key in self.statistic_samples: | ||
# return self.statistic_samples[key] | ||
# data = self.populations[key] | ||
# y = self.y | ||
# output = np.array([self.statistic(y[s], data[s]) | ||
# for s in self.bootstrap]) | ||
# self.statistic_samples[key] = output | ||
# return output | ||
|
||
# @property | ||
# def best_performance(self): | ||
# return self.samples(self.best) | ||
|
||
# def distribution(self, key): | ||
# best = self.best | ||
# assert key != best | ||
# if key in self._dist: | ||
# return self._dist[key] | ||
# output = self.best_performance - self.samples(key) | ||
# self._dist[key] = output | ||
# return output | ||
|
||
# def pvalue(self, key, side='right'): | ||
# assert side in ['left', 'right'] | ||
# assert key != self.best | ||
# if side == 'right': | ||
# if key in self._pvalue_r: | ||
# return self._pvalue_r[key] | ||
# elif key in self._pvalue_l: | ||
# return self._pvalue_l[key] | ||
# c = 0 | ||
# delta_2 = 2 * self.delta(key) | ||
# delta_i = self.distribution(key) | ||
# if side == 'right': | ||
# c = (delta_i >= delta_2).mean() | ||
# else: | ||
# c = (delta_i < 0).mean() | ||
# if side == 'right': | ||
# self._pvalue_r[key] = c | ||
# else: | ||
# self._pvalue_l[key] = c | ||
# return c | ||
|
||
# def sort(self, side='right'): | ||
# best = self.best | ||
# algs = [(k, self.pvalue(k, side=side)) | ||
# for k in self.populations if k != best] | ||
# algs.sort(key=lambda x: x[1], reverse=True) | ||
# return [k for k, _ in algs] | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,94 @@ | ||
# Copyright 2023 Mario Graff Guerrero | ||
|
||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
|
||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
|
||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
import numpy as np | ||
from CompStats.bootstrap import StatisticSamples, CI | ||
|
||
|
||
def problem_algorithms(): | ||
labels = [0, 0, 0, 0, 0, | ||
1, 1, 1, 1, 1] | ||
a = [0, 0, 0, 0, 0, | ||
1, 1, 1, 1, 0] | ||
b = [0, 0, 1, 0, 0, | ||
1, 1, 1, 1, 0] | ||
c = [0, 0, 0, 1, 0, | ||
1, 1, 0, 1, 0] | ||
return (np.array(labels), | ||
dict(a=np.array(a), | ||
b=np.array(b), | ||
c=np.array(c))) | ||
|
||
|
||
def test_StatisticSample(): | ||
"""Test StatisticSamples""" | ||
statistic = StatisticSamples(num_samples=26, n_jobs=-1) | ||
samples = statistic(np.r_[[3, 4, 5, 2, 4]]) | ||
assert samples.shape[0] == 26 | ||
|
||
|
||
def test_CI(): | ||
"""Test CI""" | ||
statistic = CI() | ||
ci = statistic(np.r_[[3, 4, 5, 2, 4]]) | ||
assert len(ci) == 2 | ||
|
||
|
||
def test_CI2D(): | ||
"""Test CI with two values""" | ||
from sklearn.metrics import f1_score | ||
labels = np.r_[[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0]] | ||
pred = np.r_[[0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0]] | ||
ci = CI(statistic=lambda y, hy: f1_score(y, hy, average=None)) | ||
a = ci(labels, pred) | ||
assert a[0].shape[0] == 2 and a[1].shape[0] == 2 | ||
|
||
|
||
# def test_se(): | ||
# labels = np.r_[[0, 0, 0, 0, 0, 1, 1, 1, 1, 1]] | ||
# pred = np.r_[[0, 0, 1, 0, 0, 1, 1, 1, 0, 1]] | ||
# se = SE(statistic=accuracy_score) | ||
# res = se(labels, pred) | ||
# assert res > 0 and isinstance(res, float) | ||
|
||
# def test_Difference_ci(): | ||
# labels, algs = problem_algorithms() | ||
# diff = Difference(labels, algs) | ||
# a = diff.confidence_interval('a') | ||
# assert a[0] > 0.6 and a[1] <= 1.0 | ||
|
||
|
||
# def test_Difference_best(): | ||
# labels, algs = problem_algorithms() | ||
# diff = Difference(labels, algs) | ||
# assert diff.best == 'a' | ||
|
||
|
||
# def test_Difference_delta(): | ||
# labels, algs = problem_algorithms() | ||
# diff = Difference(labels, algs) | ||
# assert diff.delta('b') > 0 and diff.delta('c') > 0 | ||
|
||
|
||
# def test_Difference(): | ||
# labels, algs = problem_algorithms() | ||
# diff = Difference(labels, algs) | ||
# assert diff.best == 'a' | ||
# assert diff.pvalue('b') > diff.pvalue('c') | ||
|
||
|
||
# def test_Difference_sort(): | ||
# labels, algs = problem_algorithms() | ||
# diff = Difference(labels, algs) | ||
# for x, r in zip(diff.sort(), ['b', 'c']): | ||
# assert x == r |