-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexp4.py
92 lines (75 loc) · 3.5 KB
/
exp4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import copy
from collections import defaultdict
from pathlib import Path
import numpy as np
import exp
from plots import eval_multi_run
from matplotlib import pyplot as plt
import torch
from util import load_patch, load_position, load_dataset, load_quantized, get_transformation
from attacks import calc_eval_loss
class Experiment4:
def create_settings(self, base_settings, trials, modes, quantized):
all_settings = []
base_path = Path(base_settings['path'])
for i in range(trials):
for mode in modes:
s = copy.copy(base_settings)
s['mode'] = mode
s['path'] = str(base_path / (mode + str(i)))
s['quantized'] = quantized
all_settings.append(s)
return all_settings
def stats(self, all_settings):
# output statistics
print("Stats for patches calculated on quantized NN:")
result = defaultdict(list)
for settings in all_settings:
p = Path(settings['path'])
test_losses = np.load(p / 'losses_test.npy')
# print(settings['mode'], test_losses[-1])
result[settings['mode']].append(test_losses[-1])
for k, v in result.items():
all = np.stack(v)
print(k, "mean", np.mean(all), "std", np.std(all))
# change settings to match latex
plt.rcParams.update({
"text.usetex": True,
"font.family": "sans-serif",
"font.sans-serif": "Helvetica",
"font.size": 12,
"figure.figsize": (5, 2),
"mathtext.fontset": 'stix'
})
eval_multi_run(p.parent, list(result.keys()))
print("Stats for patches calculated on full-precision NN:")
model_path = 'misc/Frontnet.onnx'
model = load_quantized(path=model_path, device='cpu')
dataset_path = 'pulp-frontnet/PyTorch/Data/160x96StrangersTestset.pickle'
test_set = load_dataset(path=dataset_path, batch_size=settings['batch_size'], shuffle=True, drop_last=False, train=False, num_workers=0)
p = Path('eval/exp1/') # change path to experiment calculated on full-precision network!
# calc loss for each mode
for mode in ['fixed', 'joint', 'split', 'hybrid']:
# load all best patches for current mode
patches = torch.tensor(load_patch(p, mode)).unsqueeze(1).unsqueeze(1)
# load all optimized positions for all targets
positions = torch.tensor(load_position(p, mode))
# get target values in correct shape and move tensor to device
targets = [values for _, values in settings['targets'].items()]
targets = np.array(targets, dtype=float).T
targets = torch.tensor(targets)
target_loss = []
# for each target
for target_idx, target in enumerate(targets):
# get best patch and best positon
for position, patch in zip(positions[target_idx], patches):
# translate saved position into full transformation
transformation_matrix = get_transformation(*position)
# calculate loss on whole training set
target_loss.append(calc_eval_loss(test_set, patch, transformation_matrix, model, target).detach().cpu().numpy())
print(mode, "mean", np.mean(target_loss), "std", np.std(target_loss))
def main():
e = Experiment4()
exp.exp(e)
if __name__ == '__main__':
main()