-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_test_prediction.py
218 lines (190 loc) · 5.7 KB
/
generate_test_prediction.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
r"""Generate prediction result file of testing set.
"""
# built-in modules
import argparse
import logging
import os
# 3rd-party modules
import torch
import torch.utils
import torch.utils.data
from tqdm import tqdm
# my own modules
import fine_tune
def gen_predictions(args, best_ckpt):
# Get main logger.
logger = logging.getLogger('fine_tune.gen_test_predict')
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%Y/%m/%d %H:%M:%S',
level=logging.INFO
)
# Filter out message not begin with name 'fine_tune'.
for handler in logging.getLogger().handlers:
handler.addFilter(logging.Filter('fine_tune'))
try:
config = fine_tune.config.TeacherConfig.load(
experiment=args.experiment,
model=args.model,
task=args.task,
device_id=args.device_id
)
# Load fine-tune distillation student model configuration.
except TypeError:
config = fine_tune.config.StudentConfig.load(
experiment=args.experiment,
model=args.model,
task=args.task,
device_id=args.device_id
)
# Change batch size for faster evaluation.
if args.batch_size:
config.batch_size = args.batch_size
# Set prediction dataset.
config.dataset = 'test'
# Log configuration.
logger.info(config)
# Control random seed for reproducibility.
fine_tune.util.set_seed_by_config(
config=config
)
# Load validation/development dataset.
dataset = fine_tune.util.load_dataset_by_config(
config=config
)
# Load teacher tokenizer and model.
if isinstance(config, fine_tune.config.TeacherConfig):
tokenizer = fine_tune.util.load_teacher_tokenizer_by_config(
config=config
)
model = fine_tune.util.load_teacher_model_by_config(
config=config
)
# Load student tokenizer and model.
else:
tokenizer = fine_tune.util.load_student_tokenizer_by_config(
config=config
)
model = fine_tune.util.load_student_model_by_config(
config=config,
tokenizer=tokenizer
)
# Get experiment name and path.
experiment_name = fine_tune.config.BaseConfig.experiment_name(
experiment=config.experiment,
model=config.model,
task=config.task
)
experiment_dir = os.path.join(
fine_tune.path.FINE_TUNE_EXPERIMENT,
experiment_name
)
# Load model state dict.
logger.info("Load model from ckpt: %s", best_ckpt)
model.load_state_dict(
torch.load(
os.path.join(experiment_dir, f'model-{best_ckpt}.pt'),
map_location=config.device
)
)
logger.info("Start to make prediction")
if args.task == 'stsb':
all_pred = fine_tune.util.predict_stsb_testing_set(
config=config,
dataset=dataset,
model=model,
tokenizer=tokenizer
)
else:
all_pred = fine_tune.util.predict_testing_set(
config=config,
dataset=dataset,
model=model,
tokenizer=tokenizer
)
if args.task.lower() != 'mnli':
if args.task.lower() == 'stsb':
filename = os.path.join(
experiment_dir,
f'STS-B_{best_ckpt}.tsv'
)
elif args.task.lower() != 'sst2':
filename = os.path.join(
experiment_dir,
f'{args.task.upper()}_{best_ckpt}.tsv'
)
else:
filename = os.path.join(
experiment_dir,
'SST-2.tsv'
)
else:
if "mismatched" in args.dataset.lower():
filename = os.path.join(
experiment_dir,
f'{args.task.upper()}-mm.tsv'
)
else:
filename = os.path.join(
experiment_dir,
f'{args.task.upper()}-m.tsv'
)
logger.info("Write result to %s", filename)
if args.task == 'stsb':
with open(filename, 'w') as f:
f.write("index\tprediction\n")
for idx, pred in enumerate(tqdm(all_pred)):
if pred > 5:
pred = 5
f.write(f"{idx}\t{pred}\n")
else:
with open(filename, 'w') as f:
f.write("index\tprediction\n")
for idx, pred in enumerate(tqdm(all_pred)):
f.write(f"{idx}\t{pred}\n")
if __name__ == '__main__':
# Parse arguments from STDIN.
parser = argparse.ArgumentParser()
# Required parameters.
parser.add_argument(
'--experiment',
help='Name of the previous experiment to evalutate.',
required=True,
type=str,
)
parser.add_argument(
'--task',
help='Name of the fine-tune task.',
required=True,
type=str,
)
parser.add_argument(
'--ckpt',
help='Start generate prediction from specified checkpoint',
required=True,
type=int
)
# Optional parameters.
parser.add_argument(
'--batch_size',
default=32,
help='Evaluation batch size.',
type=int,
)
parser.add_argument(
'--device_id',
default=None,
help='Run evaluation on dedicated device.',
type=int,
)
parser.add_argument(
'--model',
help='Name of the model to distill.',
default='bert',
type=str,
)
# Parse arguments.
args = parser.parse_args()
if args.device_id is not None:
logger.info("Use device: %s to run evaluation", args.device_id)
gen_predictions(args, args.ckpt)