diff --git a/.github/workflows/ci.yml b/.github/workflows/ci.yml index a016b6e5d..f3fb62908 100644 --- a/.github/workflows/ci.yml +++ b/.github/workflows/ci.yml @@ -172,7 +172,7 @@ jobs: run: .github/workflows/install_deps.sh - name: Install PEtabJL dependencies - run: julia -e 'using Pkg; Pkg.add(name="PEtab", version="1.4.2"); Pkg.add("OrdinaryDiffEq"), Pkg.add("Sundials")' + run: julia -e 'using Pkg; Pkg.add("PEtab"); Pkg.add("OrdinaryDiffEq"), Pkg.add("Sundials")' - name: Run tests timeout-minutes: 25 diff --git a/CHANGELOG.rst b/CHANGELOG.rst index c69ec6607..e65d84e6d 100644 --- a/CHANGELOG.rst +++ b/CHANGELOG.rst @@ -6,6 +6,25 @@ Release notes .......... +0.3.3 (2023-10-19) +------------------- + +* Visualize: + * Get optimization result by id (#1116) +* Storage: + * allow "{id}" in history storage filename (#1118) +* Objective: + * adjusted PEtab.jl syntax to new release (#1128, #1131) + * Documentation on PEtab importer updated (#1126) +* Ensembles + * Additional option for cutoff calculation (#1124) + * Ensembles from optimization endpoints now only takes free parameters (#1130) +* General + * Added How to Cite (#1125) + * Additional summary option (#1134) + * Speed up base tests (#1127) + + 0.3.2 (2023-10-02) ------------------- diff --git a/README.md b/README.md index 58ef9ca52..e6f00ba30 100644 --- a/README.md +++ b/README.md @@ -59,8 +59,29 @@ We are happy about any contributions. For more information on how to contribute to pyPESTO check out +## Publications + +**Citeable DOI for the latest pyPESTO release:** +[![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.2553546.svg)](https://doi.org/10.5281/zenodo.2553546) + +There is a list of [publications using pyPESTO](https://pypesto.readthedocs.io/en/latest/references.html). +If you used pyPESTO in your work, we are happy to include +your project, please let us know via a GitHub issue. + +When using pyPESTO in your project, please cite +* Schälte, Y., Fröhlich, F., Jost, P. J., Vanhoefer, J., Pathirana, D., Stapor, P., + Lakrisenko, P., Wang, D., Raimúndez, E., Merkt, S., Schmiester, L., Städter, P., + Grein, S., Dudkin, E., Doresic, D., Weindl, D., & Hasenauer, J. (2023). pyPESTO: A + modular and scalable tool for parameter estimation for dynamic models [(arXiv:2305.01821)](https://doi.org/10.48550/arXiv.2305.01821). + +When presenting work that employs pyPESTO, feel free to use one of the icons in +[doc/logo/](https://github.com/ICB-DCM/pyPESTO/tree/main/doc/logo): + +

+ AMICI Logo +

+ ## References -[**PESTO**](https://github.com/ICB-DCM/PESTO/): -Parameter estimation toolbox for MATLAB. Development is discontinued, but PESTO -comes with additional features waiting to be ported to pyPESTO. +pyPESTO supersedes [**PESTO**](https://github.com/ICB-DCM/PESTO/) a parameter estimation +toolbox for MATLAB, whose development is discontinued. diff --git a/doc/api.rst b/doc/api.rst index 470318cd0..92a36ffe8 100644 --- a/doc/api.rst +++ b/doc/api.rst @@ -20,9 +20,11 @@ API reference pypesto.predict pypesto.problem pypesto.profile + pypesto.profile.profile_next_guess pypesto.result pypesto.sample pypesto.select + pypesto.select.postprocessors pypesto.startpoint pypesto.store pypesto.visualize diff --git a/doc/conf.py b/doc/conf.py index a1e480d70..1da2676f5 100644 --- a/doc/conf.py +++ b/doc/conf.py @@ -81,6 +81,7 @@ None, ), 'amici': ('https://amici.readthedocs.io/en/latest/', None), + 'fides': ('https://fides-optimizer.readthedocs.io/en/latest/', None), } bibtex_bibfiles = ["using_pypesto.bib"] diff --git a/doc/example/conversion_reaction/PEtabJl_module.jl b/doc/example/conversion_reaction/PEtabJl_module.jl index 155ba776b..f1bac1935 100644 --- a/doc/example/conversion_reaction/PEtabJl_module.jl +++ b/doc/example/conversion_reaction/PEtabJl_module.jl @@ -5,15 +5,15 @@ using Sundials using PEtab pathYaml = "/Users/pauljonasjost/Documents/GitHub_Folders/pyPESTO/test/julia/../../doc/example/conversion_reaction/conversion_reaction.yaml" -petabModel = readPEtabModel(pathYaml, verbose=true) +petabModel = PEtabModel(pathYaml, verbose=true) -# A full list of options for createPEtabODEProblem can be found at https://sebapersson.github.io/PEtab.jl/dev/API_choosen/#PEtab.setupPEtabODEProblem -petabProblem = createPEtabODEProblem( +# A full list of options for PEtabODEProblem can be found at https://sebapersson.github.io/PEtab.jl/stable/API_choosen/ +petabProblem = PEtabODEProblem( petabModel, - odeSolverOptions=ODESolverOptions(Rodas5P(), abstol=1e-08, reltol=1e-08, maxiters=Int64(1e4)), - gradientMethod=:ForwardDiff, - hessianMethod=:ForwardDiff, - sparseJacobian=nothing, + ode_solver=ODESolver(Rodas5P(), abstol=1e-08, reltol=1e-08, maxiters=Int64(1e4)), + gradient_method=:ForwardDiff, + hessian_method=:ForwardDiff, + sparse_jacobian=nothing, verbose=true ) diff --git a/doc/example/model_selection.ipynb b/doc/example/model_selection.ipynb index 306fc6d41..968a77221 100644 --- a/doc/example/model_selection.ipynb +++ b/doc/example/model_selection.ipynb @@ -57,7 +57,7 @@ "\n", "| model_subspace_id | petab_yaml | $\\theta_1$ | $\\theta_2$ | $\\theta_3$ |\n", "|:---------|:----------------------------------|:----|:----|:----|\n", - "| M1_0\t| example_modelSelection.yaml\t| 0\t | 0 |\t0 | \n", + "| M1_0\t| example_modelSelection.yaml\t| 0\t | 0 |\t0 |\n", "| M1_1\t| example_modelSelection.yaml\t| 0\t | 0\t| estimate |\n", "| M1_2\t| example_modelSelection.yaml\t| 0\t | estimate |\t0 |\n", "| M1_3\t| example_modelSelection.yaml\t| estimate |\t0\t| 0 |\n", @@ -249,7 +249,6 @@ "import pypesto.logging\n", "\n", "pypesto.logging.log(level=logging.WARNING, name=\"pypesto.petab\", console=True)\n", - "import petab\n", "\n", "pypesto_select_problem_1 = pypesto.select.Problem(\n", " petab_select_problem=petab_select_problem\n", @@ -260,7 +259,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Models can be selected with a model selection algorithm (here: [forward](https://en.wikipedia.org/wiki/Stepwise_regression)) and a comparison criterion (here: [AIC](https://en.wikipedia.org/wiki/Akaike_information_criterion)). The forward method start with the smallest model. Within each following iteration it tests all models with one additional estimated parameter.\n", + "Models can be selected with a model selection algorithm (here: [forward](https://en.wikipedia.org/wiki/Stepwise_regression)) and a comparison criterion (here: [AIC](https://en.wikipedia.org/wiki/Akaike_information_criterion)). The forward method starts with the smallest model. Within each following iteration it tests all models with one additional estimated parameter.\n", "\n", "To perform a single iteration, use `select` as shown below. Later in the notebook, `select_to_completion` is demonstrated, which performs multiple consecutive iterations automatically.\n", "\n", @@ -303,7 +302,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "To search more of the model space, hence modls with more parameters, the algorithm can be repeated. As models with no estimated parameters have already been tested, subsequent `select` calls will begin with the next simplest model (in this case, models with exactly 1 estimated parameter, if they exist in the model space), and move on to more complex models.\n", + "To search more of the model space, hence models with more parameters, the algorithm can be repeated. As models with no estimated parameters have already been tested, subsequent `select` calls will begin with the next simplest model (in this case, models with exactly 1 estimated parameter, if they exist in the model space), and move on to more complex models.\n", "\n", "The best model from the first iteration is supplied as the predecessor (initial) model here." ] @@ -443,8 +442,6 @@ } ], "source": [ - "from pprint import pprint\n", - "\n", "import numpy as np\n", "from petab_select import Model\n", "\n", diff --git a/doc/example/petab_import.ipynb b/doc/example/petab_import.ipynb index f179eaf24..9039dc094 100644 --- a/doc/example/petab_import.ipynb +++ b/doc/example/petab_import.ipynb @@ -17,9 +17,24 @@ }, { "cell_type": "code", - "execution_count": 1, - "metadata": {}, - "outputs": [], + "execution_count": 2, + "metadata": { + "ExecuteTime": { + "end_time": "2023-10-19T09:12:27.344220Z", + "start_time": "2023-10-19T09:12:11.884260Z" + } + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\r\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m A new release of pip available: \u001b[0m\u001b[31;49m22.3.1\u001b[0m\u001b[39;49m -> \u001b[0m\u001b[32;49m23.3\u001b[0m\r\n", + "\u001b[1m[\u001b[0m\u001b[34;49mnotice\u001b[0m\u001b[1;39;49m]\u001b[0m\u001b[39;49m To update, run: \u001b[0m\u001b[32;49mpip install --upgrade pip\u001b[0m\r\n" + ] + } + ], "source": [ "# install if not done yet\n", "# !apt install libatlas-base-dev swig\n", @@ -29,8 +44,13 @@ }, { "cell_type": "code", - "execution_count": 2, - "metadata": {}, + "execution_count": 3, + "metadata": { + "ExecuteTime": { + "end_time": "2023-10-19T09:12:33.778201Z", + "start_time": "2023-10-19T09:12:33.768998Z" + } + }, "outputs": [], "source": [ "import os\n", @@ -70,8 +90,12 @@ }, { "cell_type": "code", - "execution_count": 3, + "execution_count": 4, "metadata": { + "ExecuteTime": { + "end_time": "2023-10-19T09:12:37.201025Z", + "start_time": "2023-10-19T09:12:37.152409Z" + }, "scrolled": true }, "outputs": [], @@ -112,8 +136,12 @@ }, { "cell_type": "code", - "execution_count": 4, + "execution_count": 5, "metadata": { + "ExecuteTime": { + "end_time": "2023-10-19T10:40:50.415797Z", + "start_time": "2023-10-19T10:40:50.328796Z" + }, "scrolled": true }, "outputs": [ @@ -121,14 +149,13 @@ "name": "stdout", "output_type": "stream", "text": [ - "Model parameters: ['Epo_degradation_BaF3', 'k_exp_hetero', 'k_exp_homo', 'k_imp_hetero', 'k_imp_homo', 'k_phos', 'ratio', 'specC17', 'noiseParameter1_pSTAT5A_rel', 'noiseParameter1_pSTAT5B_rel', 'noiseParameter1_rSTAT5A_rel'] \n", + "Model parameters: ['Epo_degradation_BaF3', 'k_exp_hetero', 'k_exp_homo', 'k_imp_hetero', 'k_imp_homo', 'k_phos', 'noiseParameter1_pSTAT5A_rel', 'noiseParameter1_pSTAT5B_rel', 'noiseParameter1_rSTAT5A_rel'] \n", "\n", - "Model const parameters: [] \n", + "Model const parameters: ['ratio', 'specC17'] \n", "\n", "Model outputs: ['pSTAT5A_rel', 'pSTAT5B_rel', 'rSTAT5A_rel'] \n", "\n", - "Model states: ['STAT5A', 'STAT5B', 'pApB', 'pApA', 'pBpB', 'nucpApA', 'nucpApB', 'nucpBpB'] \n", - "\n" + "Model states: ['STAT5A', 'STAT5B', 'pApB', 'pApA', 'pBpB', 'nucpApA', 'nucpApB', 'nucpBpB'] \n" ] } ], @@ -158,9 +185,42 @@ "To perform parameter estimation, we need to define an objective function, which integrates the model, data, and noise model defined in the PEtab problem." ] }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Creating the objective from PEtab with default settings can be done in as little as two lines." + ] + }, { "cell_type": "code", - "execution_count": 5, + "execution_count": 6, + "metadata": { + "ExecuteTime": { + "end_time": "2023-10-19T10:40:55.952163Z", + "start_time": "2023-10-19T10:40:55.713478Z" + } + }, + "outputs": [], + "source": [ + "importer = pypesto.petab.PetabImporter.from_yaml(\n", + " yaml_config\n", + ") # creating an importer\n", + "problem = (\n", + " importer.create_problem()\n", + ") # creating the problem from the importer. The objective can be found at problem.objective" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If you need more flexibility, e.g., to define whether you need residuals of the objective function, what sensitivities you want to use, or fix certain parameters, you can also create the problem from a customized objective:" + ] + }, + { + "cell_type": "code", + "execution_count": 7, "metadata": { "scrolled": true }, @@ -188,16 +248,16 @@ }, { "cell_type": "code", - "execution_count": 6, + "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "{'fval': 138.2219980294295, 'grad': array([ 2.20274530e-02, 5.53227528e-02, 5.78847162e-03, 5.39469425e-03,\n", - " -4.51595808e-05, 7.91355271e-03, -1.08227697e+02, 1.07805861e-02,\n", - " 2.40364922e-02, 1.91910805e-02, -1.87147661e+02]), 'rdatas': []}\n" + "{'fval': 138.22199566457704, 'grad': array([ 2.20546436e-02, 5.53227499e-02, 5.78876640e-03, 5.42272184e-03,\n", + " -4.51595808e-05, 7.91009669e-03, 0.00000000e+00, 1.07876837e-02,\n", + " 2.40388572e-02, 1.91925085e-02, 0.00000000e+00]), 'rdatas': [ >)>]}\n" ] } ], @@ -220,7 +280,7 @@ }, { "cell_type": "code", - "execution_count": 7, + "execution_count": 9, "metadata": {}, "outputs": [], "source": [ @@ -236,7 +296,7 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": 10, "metadata": {}, "outputs": [ { @@ -260,16 +320,16 @@ }, { "cell_type": "code", - "execution_count": 9, + "execution_count": 11, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "(138.2219980294295, array([ 2.20274530e-02, 5.53227528e-02, 5.78847162e-03, 5.39469425e-03,\n", - " -4.51595808e-05, 7.91355271e-03, 1.07805861e-02, 2.40364922e-02,\n", - " 1.91910805e-02]))\n" + "(138.22199566457704, array([ 2.20546436e-02, 5.53227499e-02, 5.78876640e-03, 5.42272184e-03,\n", + " -4.51595808e-05, 7.91009669e-03, 1.07876837e-02, 2.40388572e-02,\n", + " 1.91925085e-02]))\n" ] } ], @@ -281,16 +341,16 @@ }, { "cell_type": "code", - "execution_count": 10, + "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - "fd: [0.01251672 0.05435043 0.01127778 0.00407248 0.00251655 0.0048468\n", - " 0.01077928 0.02403519 0.01918978]\n", - "l2 difference: 0.011800321299268538\n" + "fd: [ 0.02993985 0.05897443 -0.00149735 -0.00281785 -0.00925273 0.01197046\n", + " 0.01078638 0.02403756 0.01919121]\n", + "l2 difference: 0.017256061672716528\n" ] } ], @@ -316,30 +376,6 @@ "print(\"l2 difference: \", np.linalg.norm(ret[1] - fdval))" ] }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "### In short" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "All of the previous steps can be shortened by directly creating an importer object and then a problem:" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": {}, - "outputs": [], - "source": [ - "importer = pypesto.petab.PetabImporter.from_yaml(yaml_config)\n", - "problem = importer.create_problem()" - ] - }, { "cell_type": "markdown", "metadata": {}, @@ -356,7 +392,7 @@ }, { "cell_type": "code", - "execution_count": 12, + "execution_count": 13, "metadata": { "scrolled": true }, @@ -365,33 +401,10 @@ "name": "stderr", "output_type": "stream", "text": [ - "Engine set up to use up to 8 processes in total. The number was automatically determined and might not be appropriate on some systems.\n", - "Performing parallel task execution on 8 processes.\n", - "100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 10/10 [00:00<00:00, 297.75it/s]\n", - "[Warning] AMICI:CVODES:CVode:ERR_FAILURE: AMICI ERROR: in module CVODES in function CVode : At t = 207.888 and h = 9.53144e-06, the error test failed repeatedly or with |h| = hmin. \n", - "[Warning] AMICI:simulation: AMICI forward simulation failed at t = 207.888429:\n", - "AMICI failed to integrate the forward problem\n", - "\n", - "[Warning] AMICI:CVODES:CVode:ERR_FAILURE: AMICI ERROR: in module CVODES in function CVode : At t = 207.888 and h = 9.53144e-06, the error test failed repeatedly or with |h| = hmin. \n", - "[Warning] AMICI:simulation: AMICI forward simulation failed at t = 207.888429:\n", - "AMICI failed to integrate the forward problem\n", - "\n", - "[Warning] AMICI:CVODES:CVode:ERR_FAILURE: AMICI ERROR: in module CVODES in function CVode : At t = 207.888 and h = 9.53144e-06, the error test failed repeatedly or with |h| = hmin. \n", - "[Warning] AMICI:simulation: AMICI forward simulation failed at t = 207.888429:\n", - "AMICI failed to integrate the forward problem\n", - "\n", - "[Warning] AMICI:CVODES:CVode:ERR_FAILURE: AMICI ERROR: in module CVODES in function CVode : At t = 159.567 and h = 5.63894e-06, the error test failed repeatedly or with |h| = hmin. \n", - "[Warning] AMICI:simulation: AMICI forward simulation failed at t = 159.566902:\n", - "AMICI failed to integrate the forward problem\n", - "\n", - "[Warning] AMICI:CVODES:CVode:ERR_FAILURE: AMICI ERROR: in module CVODES in function CVode : At t = 159.567 and h = 5.63894e-06, the error test failed repeatedly or with |h| = hmin. \n", - "[Warning] AMICI:simulation: AMICI forward simulation failed at t = 159.566902:\n", - "AMICI failed to integrate the forward problem\n", - "\n", - "[Warning] AMICI:CVODES:CVode:ERR_FAILURE: AMICI ERROR: in module CVODES in function CVode : At t = 159.567 and h = 5.63894e-06, the error test failed repeatedly or with |h| = hmin. \n", - "[Warning] AMICI:simulation: AMICI forward simulation failed at t = 159.566902:\n", - "AMICI failed to integrate the forward problem\n", - "\n" + "Engine will use up to 8 processes (= CPU count).\n", + " 0%| | 0/10 [00:00" + "" ] }, - "execution_count": 14, + "execution_count": 15, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABD4AAAJ4CAYAAACNhiOeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABD0ElEQVR4nO3de5jceV0n+vcn3ekk3Z3MMJPMjcyN27DAquAs3l3vKx4F1/W4Kl5A1zm64FFxveEeb+dBd3FXd9k94kFlkRVRENTxyHpERQUPoDMIBJiZZQAZwkwmwwyQ6qRz6e7v+aOrMp1Od9JJurqqq1+v5+mnq371q+pPpzI9yTu/7/ddrbUAAAAAjKJtgx4AAAAAoF8EHwAAAMDIEnwAAAAAI0vwAQAAAIwswQcAAAAwsgQfAAAAwMgSfAAAm05V/fOq+lhVzVTV089z7vOq6m1L7reqesJFfM2bus8dv5iZAYDBEHwAAOdUVT9RVf9j2bEPrnLsm8/zWl9SVQfXYaz/kOSFrbXp1trfr8Prrauq+pmq+q1BzwEACD4AgPP76ySfX1VjSVJV1ybZnuTpy449oXtu3yy52uLGJO/v59cCAEaD4AMAOJ+/y2LQ8Vnd+1+U5C1J7ll27EOttfur6vlVdVdVdarqw1X1vyVJVU0l+R9JrusuUZmpquuqaltV/XhVfaiqHq6q11XVFd3n9JaXfHdV3ZfkrVU1k2QsyXuq6kPd83rP71TVB6rqn1/MN1pVf1lVv1BVf1tVR6rqD3uzrHDudVV1e1U9UlX3VtX3dI9/dZIXJ/mX3e/xPRczCwCwPgQfAMA5tdZOJnlnki/uHvriJG9N8rZlx3pXexxO8rVJ9iR5fpJfrqpntNaOJnlWkvu7S1SmW2v3J/n+JF+f5J8muS7JJ5P8X8vG+KdJ/lGSL2utTXePfWZr7fHd2x/KYvhyWZKfTfJb3atQLsZ3JPmuJNcmmUvyslXO+50kB7szf2OSn6+qL2ut/UmSn0/yu93v8TMvcg4AYB0IPgCAtfirPBpyfFEWg4+3Ljv2V0nSWvvj1tqH2qK/SvKn3cdX871JfrK1drC1diLJzyT5xmWbiP5Ma+1oa212pRdorb2+tXZ/a22htfa7ST6Y5JkX9Z0m/7219r5uUPN/JPmm3pKenqq6PskXJPmx1trx1tq7k/x6FkMTAGCICD4AgLX46yRf2F32sa+19sEk/18W9/64IsnTuuekqp5VVe/oLgH5VJKvSbL3HK99Y5Lfr6pPdc+/K8l8kquXnPOxcw1XVd9RVe9e8hpPO8/XPJelX+ujWVzms/y1rkvySGuts+zcx17k1wQA+kTwAQCsxduzuIzke5L8TZK01o4kub977P7W2keqakeSN2SxdeXq1trlSd6UpLqv01Z47Y8leVZr7fIlHztbax9fcs5Kz0uSVNWNSX4tyQuTXNn9mu9b8jUv1PVLbt+Q5FSSTyw75/4kV1TV7mXn9mZedV4AYGMJPgCA8+ouMbkjyYuyuMSl523dY739PSaS7EjyUJK5qnpWkq9acv6DSa6sqsuWHPvVJC/pBhipqn1V9ZwLGG8qi0HDQ93nPz+LV3xcrG+rqqdU1WSSn0vye621+aUntNY+lsUrXn6hqnZW1Wck+e4kvQrbB5PcVFX+rAUAA+Z/xgDAWv1VkquyGHb0vLV77K+TpLv0439P8rosblL6rUlu753cWrs7yWuTfLi7LOW6JP+5e86fVlUnyTuSfM5ah2qtfSDJf8ziVSkPJvnH6V6VcpH+e5JXJTmUZGf3+1nJtyS5KYtXf/x+kp9urf1Z97HXdz8/XFXvuoRZAIBLVK25EhMAIFmss03yW621Xx/0LADA+nDFBwAAADCyBB8AAADAyLLUBQAAABhZrvgAAAAARpbgAwAAABhZ44Me4FLs3bu33XTTTYMeAwAAABiwO++88xOttX3Lj2/q4OOmm27KHXfcMegxAAAAgAGrqo+udNxSFwAAAGBkCT4AAACAkSX4AAAAAEaW4AMAAAAYWYIPAAAAYGQJPgAAAICRJfgAAAAARpbgAwAAABhZgg8AAABgZAk+AAAAgJEl+AAAAABGluADAAAAGFmCDwAAAGBkCT4AAACAkSX4AAAAAEaW4AMAAAAYWYIPAAAAYGQJPgAAAICRJfgAAAAARpbgAwAAABhZgg8AAABgZAk+AACATW/h2O1ZOPwlWTh0y+LnY7cPeiSW8P4Mv1F+j8YHPQAAAMClWDh2e3Lk3yY53j1wf3Lk32YhybbJZw9yNOL92QxG/T0SfAAAAJvbzC/l9F/YTjueU596aT52/1MGMRFLXD/50mzf5v0ZZqu9R5n5pUTwAQAAMGALD6x4eLweytjY2AYPw3Lj9dCqx70/w2G192i1/7Y2G8EHAACwuW27dvHS/GVq7NrcfPPNAxiIpRYOe3+G3WrvUbZdu/HD9IHNTQEAgM1t+kVp2bHs4M5k+kUDGYdlpl+UZOeyg96foTLi75ErPgAAgE1t2+Szc+jwg3nMxKuyfdsnFv+VevpFI7Ep4yjYNvnsLCSL+0UsPOD9GUKj/h4JPgAAgE1tfn4+D3U+N9n3dbnmmmsGPQ4r2Db57JHYJHOUjfJ7ZKkLAACwqc3MzKS1lt27dw96FGAICT4AAIBNrdPpZGxsLJOTk4MeBRhCgg8AAGDTaq2l0+lkeno6VTXocYAhJPgAAAA2rePHj+fUqVOWuQCrEnwAAACbVqfTSRLBB7AqwQcAALBpdTqd7Nq1K9u3bx/0KMCQEnwAAACb0vz8fI4dO+ZqD+CcBB8AAMCm1KuxnZ6eHvQowBATfAAAAJtSr8Z2ampq0KMAQ0zwAQAAbDpqbIG1EnwAAACbjhpbYK0EHwAAwKajxhZYK8EHAACw6XQ6nezcuVONLXBegg8AAGBTUWMLXAjBBwAAsKn0amwFH8BaCD4AAIBNpdPpZNu2bWpsgTURfAAAAJtGr8Z29+7damyBNRF8AAAAm4YaW+BCCT4AAIBNQ40tcKEEHwAAwKahxha4UIIPAABgU1BjC1wMwQcAALApqLEFLobgAwAA2BTU2AIXQ/ABAAAMPTW2wMUSfAAAAEPvxIkTamyBiyL4AAAAhl6vxnZ6enrAkwCbjeADAAAYer0a24mJiUGPAmwygg8AAGCozc/P5+jRo5a5ABdF8AEAAAw1NbbApRB8AAAAQ02NLXApBB8AAMDQUmMLXCrBBwAAMLR6NbbaXICLJfgAAACGVq/G1v4ewMUSfAAAAENLjS1wqQQfAADAUFJjC6wHwQcAADCUjh49qsYWuGR9Cz6q6vqqektVfaCq3l9VP7Ds8R+uqlZVe7v3q6peVlX3VtV7q+oZ/ZoNAAAYfkeOHMm2bdsyOTk56FGATWy8j689l+SHW2vvqqrdSe6sqje31j5QVdcn+aok9y05/1lJntj9+JwkL+9+BgAAtpjWWmZmZjI9PZ1t21yoDly8vv0Eaa090Fp7V/d2J8ldSR7bffiXk/xokrbkKc9J8uq26B1JLq+qa/s1HwAAMLxOnDiRkydPWuYCXLINiU6r6qYkT0/yzqp6TpKPt9bes+y0xyb52JL7B/NoUAIAAGwhamyB9dLPpS5JkqqaTvKGJD+YxeUvL87iMpeLfb3bktyWJDfccMM6TAgAAAwbNbbAeunrFR9VtT2LocdrWmtvTPL4JDcneU9V/UOS/UneVVXXJPl4kuuXPH1/99gZWmuvaK3d2lq7dd++ff0cHwAAGIBeje309PSgRwFGQD9bXSrJbyS5q7X2S0nSWjvQWruqtXZTa+2mLC5neUZr7VCS25N8R7fd5XOTfLq19kC/5gMAAIZTr8Z2z549gx4FGAH9XOryBUm+PcmBqnp399iLW2tvWuX8NyX5miT3JjmW5Pl9nA0AABhSnU5HjS2wbvoWfLTW3pakznPOTUtutyQv6Nc8AADA8GutpdPpqLEF1o2fJAAAwNBQYwusN8EHAAAwNNTYAutN8AEAAAyNTqeTHTt2qLEF1o3gAwAAGAq9GltXewDrSfABAAAMhV6NreADWE+CDwAAYCj0amynpqYGPQowQgQfAADAwKmxBfrFTxQAAGDgTp48qcYW6AvBBwAAMHBqbIF+EXwAAAADd+TIETW2QF8IPgAAgIFaWFhQYwv0jeADAAAYqJmZGTW2QN8IPgAAgIFSYwv0k+ADAAAYGDW2QL/5yQIAAAxMr8Z2enp60KMAI0rwAQAADEyvxnbPnj0DngQYVYIPAABgYDqdjhpboK8EHwAAwEAsLCxkZmZGmwvQV4IPAABgINTYAhtB8AEAAAyEGltgIwg+AACAgeh0OpmamlJjC/SVnzAAAMCGO3HiRE6ePGmZC9B3gg8AAGDDqbEFNorgAwAA2HBqbIGNIvgAAAA2lBpbYCMJPgAAgA2lxhbYSIIPAABgQ3U6nVSVGltgQwg+AACADTUzM5Pp6Wk1tsCG8JMGAADYMCdOnMiJEycscwE2jOADAADYML0aW8EHsFEEHwAAwIbp1dju2LFj0KMAW4TgAwAA2BBqbIFBEHwAAAAb4ujRo2psgQ0n+AAAADaEGltgEAQfAADAhuh0OmpsgQ3nJw4AANB3amyBQRF8AAAAfafGFhgUwQcAANB3amyBQRF8AAAAfdWrsZ2enh70KMAWJPgAAAD6So0tMEiCDwAAoK96Nbau+AAGQfABAAD0lRpbYJD85AEAAPrm5MmTamyBgRJ8AAAAfXPkyJEkamyBwRF8AAAAfdPpdDIxMaHGFhgYwQcAANAXvRpbV3sAgyT4AAAA+kKNLTAMBB8AAEBfqLEFhoHgAwAA6As1tsAw8BMIAABYd2psgWEh+AAAANZdp9NJosYWGDzBBwAAsO56NbYTExODHgXY4gQfAADAulpaY1tVgx4H2OIEHwAAwLo6evRoFhYWLHMBhoLgAwAAWFe9GtupqalBjwIg+AAAANZXp9PJ1NRUxsbGBj0KgOADAABYP2psgWEj+AAAANaNGltg2Ag+AACAddOrsd2xY8egRwFIIvgAAADWiRpbYBgJPgAAgHVx7NgxNbbA0BF8AAAA6+LIkSNqbIGhI/gAAADWhRpbYBgJPgAAgEumxhYYVoIPAADgkqmxBYaV4AMAALhkamyBYSX4AAAALkmvxnZ6elqNLTB0BB8AAMAl6dXY7tmzZ9CjAJxF8AEAAFySTqejxhYYWoIPAADgkqixBYaZ4AMAALhoJ0+ezPHjx7W5AENL8AEAAFw0NbbAsBN8AAAAF63T6WT79u1qbIGhJfgAAAAuSq/Gdvfu3WpsgaEl+AAAAC6KGltgMxB8AAAAF0WNLbAZCD4AAICLosYW2AwEHwAAwAVTYwtsFoIPAADggqmxBTYLwQcAAHDBZmZm1NgCm4LgAwAAuCALCwvpdDpqbIFNQfABAABckF6NrWUuwGYg+AAAAC5Ir8Z2enp60KMAnJfgAwAAuCBqbIHNRPABAACsmRpbYLPpW/BRVddX1Vuq6gNV9f6q+oHu8V+sqrur6r1V9ftVdfmS5/xEVd1bVfdU1T/r12wAAMDFmZmZSaLGFtg8+nnFx1ySH26tPSXJ5yZ5QVU9JcmbkzyttfYZSf5nkp9Iku5j35zkqUm+OsmvVJVr5wAAYIh0Oh01tsCm0rfgo7X2QGvtXd3bnSR3JXlsa+1PW2tz3dPekWR/9/ZzkvxOa+1Ea+0jSe5N8sx+zQcAAFyY1poaW2DT2ZA9PqrqpiRPT/LOZQ99V5L/0b392CQfW/LYwe6x5a91W1XdUVV3PPTQQ32YFgAAWMnRo0fV2AKbTt+Dj6qaTvKGJD/YWjuy5PhPZnE5zGsu5PVaa69ord3aWrt137596zssAACwKjW2wGY03s8Xr6rtWQw9XtNae+OS489L8rVJvry11rqHP57k+iVP3989BgAADIFOp5PJyUk1tsCm0s9Wl0ryG0nuaq390pLjX53kR5M8u7V2bMlTbk/yzVW1o6puTvLEJH/br/kAAIC1O3XqlBpbYFPq5xUfX5Dk25McqKp3d4+9OMnLkuxI8ubuhkjvaK19b2vt/VX1uiQfyOISmBe01ub7OB8AALBGnU4niRpbYPPpW/DRWntbkpW2en7TOZ7zkiQv6ddMAADAxenV2O7cuXPQowBckA1pdQEAADYvNbbAZib4AAAAzkmNLbCZCT4AAIBzUmMLbGaCDwAA4JzU2AKbmeADAABYlRpbYLMTfAAAAKtSYwtsdoIPAABgVWpsgc1O8AEAAKyotZaZmRk1tsCmJvgAAABWdPTo0czPz1vmAmxqgg8AAGBFMzMzamyBTU/wAQAArEiNLTAKBB8AAMBZTp06ldnZWctcgE1P8AEAAJxFjS0wKgQfAADAWTqdTsbHx9XYApue4AMAADiDGltglAg+AACAMxw7dkyNLTAyBB8AAMAZOp1OqkrwAYwEwQcAAHAGNbbAKBF8AAAAp6mxBUaN4AMAADhtZmYmiRpbYHQIPgAAgNOOHDmixhYYKYIPAAAgiRpbYDQJPgAAgCRqbIHRJPgAAACSLLa5JPb3AEaL4AMAAEiixhYYTYIPAABAjS0wsgQfAADA6RrbPXv2DHgSgPUl+AAAANLpdNTYAiNJ8AEAAFtcay2dTkeNLTCSBB8AALDFqbEFRpngAwAAtrheje309PSAJwFYf4IPAADY4no1tuPj44MeBWDdCT4AAGALm5ubU2MLjDTBBwAAbGG9ZS6CD2BUCT4AAGAL69XY7tq1a9CjAPSF4AMAALYoNbbAViD4AACALUqNLbAVCD4AAGCLmpmZSaLGFhhtgg8AANii1NgCW4HgAwAAtqC5ubkcO3bMMhdg5Ak+AABgC1JjC2wVgg8AANiC1NgCW4XgAwAAthg1tsBWIvgAAIAtZnZ2Vo0tsGUIPgAAYIvp7e+hxhbYCgQfAACwxaixBbYSwQcAAGwhamyBrUbwAQAAW4gaW2CrEXwAAMAWosYW2GoEHwAAsEW01jIzM5Pp6Wk1tsCWIfgAAIAtYnZ2NnNzc5a5AFuK4AMAALYI+3sAW5HgAwAAtgg1tsBWJPgAAIAtQI0tsFUJPgAAYAuwzAXYqgQfAACwBaixBbYqwQcAAIw4NbbAVib4AACAEafGFtjKBB8AADDi7O8BbGWCDwAAGHFqbIGtTPABAAAjTI0tsNUJPgAAYITNzMwkscwF2LoEHwAAMMI6nU7GxsbU2AJbluADAABGVGstnU4nu3fvVmMLbFmCDwAAGFFqbAEEHwAAMLLU2AIIPgAAYGR1Op3s2rVLjS2wpQk+AABgBKmxBVgk+AAAgBGkxhZgkeADAABGUK/GdnJyctCjAAyU4AMAAEaMGluARwk+AABgxBw/flyNLUCX4AMAAEbMkSNHkiTT09MDngRg8AQfAAAwYno1ttu3bx/0KAADJ/gAAIARMj8/r8YWYAnBBwAAjJBOp5NEjS1Aj+ADAABGiBpbgDMJPgAAYET0amynp6fV2AJ0CT4AAGBE9Gps9+zZM+hRAIaG4AMAAEZEb38PNbYAjzpv8FGLvq2qfqp7/4aqemb/RwMAAC6EGluAs63lio9fSfJ5Sb6le7+T5P/q20QAAMAFU2MLsLLxNZzzOa21Z1TV3ydJa+2TVTXR57kAAIAL0Ol00loTfAAss5YrPk5V1ViSliRVtS/JQl+nAgAALogaW4CVrSX4eFmS309yVVW9JMnbkvz8+Z5UVddX1Vuq6gNV9f6q+oHu8Suq6s1V9cHu58d0j1dVvayq7q2q91bVMy7h+wIAgC1DjS3A6s671KW19pqqujPJlyepJF/fWrtrDa89l+SHW2vvqqrdSe6sqjcneV6SP2+t/buq+vEkP57kx5I8K8kTux+fk+Tl3c8AAMA59GpsLXMBONtaWl1uSHIsyR8luT3J0e6xc2qtPdBae1f3difJXUkem+Q5SX6ze9pvJvn67u3nJHl1W/SOJJdX1bUX9u0AAMDW06uxFXwAnG0tm5v+cRb396gkO5PcnOSeJE9d6xepqpuSPD3JO5Nc3Vp7oPvQoSRXd28/NsnHljztYPfYA0uOpapuS3Jbktxww3nzFwAAGHlqbAFWd94rPlpr/7i19hndz09M8swkb1/rF6iq6SRvSPKDrbUjy167pbtp6lq11l7RWru1tXbrvn37LuSpAAAwctTYApzbWjY3PUN3+cqa9t6oqu1ZDD1e01p7Y/fwg70lLN3Ph7vHP57k+iVP3989BgAArGJmZkaNLcA5nHepS1W9aMndbUmekeT+NTyvkvxGkrtaa7+05KHbk3xnkn/X/fyHS46/sKp+J4vByqeXLIkBAABWoMYW4NzWssfH0uh4Lot7frxhDc/7giTfnuRAVb27e+zFWQw8XldV353ko0m+qfvYm5J8TZJ7s7iZ6vPX8DUAAGDLUmMLcH5rqbP92Yt54dba27K4IepKvnyF81uSF1zM1wIAgK3o+PHjOXXqlGUuAOewavBRVX+Uc2w82lp7dl8mAgAA1kSNLcD5neuKj/+wYVMAAAAXTI0twPmtGny01v5qIwcBAADWrldju2/fvkGPAjDU1tLq8sQkv5DkKUl29o631h7Xx7kAAIBz6NXYTk9PD3oUgKG2bQ3n/LckL89io8uXJnl1kt/q51AAAMC59Wpsp6amBj0KwFBbS/Cxq7X250mqtfbR1trPJPlf+jsWAACwGjW2AGt33qUuSU5U1bYkH6yqFyb5eBLX0wEAwICosQVYu7Vc8fEDSSaT/O9JPjvJtyX5zn4OBQAArE6NLcDareWKj/nW2kySmSTP7/M8AADAeXQ6nezcuVONLcAarOWKj/9YVXdV1f9ZVU/r+0QAAMCqejW2rvYAWJvzBh+ttS/NYpvLQ0n+76o6UFX/tu+TAQAAZ+nV2Ao+ANZmLVd8pLV2qLX2siTfm+TdSX6qn0MBAAAr63Q62bZtmxpbgDU6b/BRVf+oqn6mqg4k+S9J/r8k+/s+GQAAcIZeje3u3bvV2AKs0Vo2N31lkt9J8s9aa/f3eR4AAGAVamwBLtx5g4/W2udtxCAAAMC5qbEFuHBr2uMDAAAYPDW2ABdO8AEAAJuAGluAiyP4AACATUCNLcDFOe8eH1X1pCQ/kuTGpee31r6sj3MBAABLqLEFuDhraXV5fZJfTfJrSeb7Ow4AALCcGluAi7eW4GOutfbyvk8CAACs6MSJE2psAS7SWvb4+KOq+tdVdW1VXdH76PtkAABAkkdrbKenpwc8CcDms5YrPr6z+/lHlhxrSR63/uMAAADL9WpsJyYmBj0KwKZz3uCjtXbzRgwCAACcbX5+PkePHs3evXsHPQrAprSWVpftSb4vyRd3D/1lkv+7tXaqj3MBAABRYwtwqday1OXlSbYn+ZXu/W/vHvtX/RoKAABYpMYW4NKsJfj4J621z1xy/y+q6j39GggAAFikxhbg0q2l1WW+qh7fu1NVj0sy37+RAACA5NEaW20uABdvLVd8/EiSt1TVh5NUkhuTPL+vUwEAAKdrbO3vAXDx1tLq8udV9cQkt3QP3dNaO9HfsQAAADW2AJdu1eCjqr6stfYXVfUNyx56QlWltfbGPs8GAABblhpbgPVxris+/mmSv0jydSs81pIIPgAAoE+OHj2qxhZgHawafLTWfrp78+daax9Z+lhV3dzXqQAAYIs7cuRItm3blsnJyUGPArCpraXV5Q0rHPu99R4EAABY1FrLzMxMpqens23bWv7IDsBqzrXHx5OTPDXJZcv2+diTZGe/BwMAgK3qxIkTOXnyZPbt2zfoUQA2vXPt8XFLkq9NcnnO3Oejk+R7+jgTAABsaWpsAdbPufb4+MMkf1hVn9dae/sGzgQAAFtap9PJjh071NgCrIO1LBj83qq6vHenqh5TVa/s30gAALB19WpsXe0BsD7WEnx8RmvtU707rbVPJnl63yYCAIAtrFdju2fPnkGPAjAS1hJ8bKuqx/TuVNUVOffeIAAAwEXqdDpqbAHW0VoCjP+Y5O1V9fokleQbk7ykr1MBAMAW1FpLp9NRYwuwjs4bfLTWXl1Vdyb50u6hb2itfaC/YwEAwNajxhZg/a11ycrdST7ZO7+qbmit3de3qQAAYAtSYwuw/s4bfFTV9yf56SQPJpnP4nKXluQz+jsaAABsLWpsAdbfWq74+IEkt7TWHu73MAAAsFX1amyvvPLKQY8CMFLWsmPSx5J8ut+DAADAVtarsbXMBWB9reWKjw8n+cuq+uMkJ3oHW2u/1LepAABgi+nV2E5NTQ16FICRspbg477ux0T3AwAAWEdqbAH6Zy11tj+7EYMAAMBWdfLkSTW2AH2yllaXt2SxxeUMrbUv68tEAACwxaixBeiftSx1+TdLbu9M8i+SzPVnHAAA2HqOHDmixhagT9ay1OXOZYf+pqr+tk/zAADAlrKwsKDGFqCP1rLU5Yold7cl+ewkl/VtIgAA2EJmZmbU2AL00VqWuiy94mMuyUeSfHd/xgEAgK1FjS1Af60afFTVDa21+1prN2/kQAAAsFWosQXov3P9dP2D3o2qekP/RwEAgK2lV2M7PT096FEARta5go9acvtx/R4EAAC2ml6N7Z49ewY8CcDoOlfw0Va5DQAArINOp6PGFqDPzrW56WdW1ZEsXvmxq3s73futtSaWBgCAi7SwsJCZmRk1tgB9tmrw0Vob28hBAABgK1FjC7AxbB0NAAADoMYWYGMIPgAAYAA6nU6mpqbU2AL0mZ+yAACwwU6cOJGTJ09a5gKwAQQfAACwwdTYAmwcwQcAAGwwNbYAG0fwAQAAG6hXY2uZC8DGEHwAAMAGUmMLsLEEHwAAsIE6nU6qSo0twAYRfAAAwAaamZnJ9PS0GluADeKnLQAAbJATJ07kxIkTlrkAbCDBBwAAbJBeja3gA2DjCD4AAGCD9Gpsd+zYMehRALYMwQcAAGwANbYAgyH4AACADXD06FE1tgADIPgAAIANoMYWYDAEHwAAsAE6nY4aW4AB8FMXAAD6TI0twOAIPgAAoM/U2AIMjuADAAD6TI0twOAIPgAAoI96NbbT09ODHgVgSxJ8AABAH6mxBRgswQcAAPRRr8bWFR8AgyH4AACAPlJjCzBYfvoCAECfnDx5Uo0twID1LfioqldW1eGqet+SY59VVe+oqndX1R1V9czu8aqql1XVvVX13qp6Rr/mAgCAjXLkyJEkamwBBqmfV3y8KslXLzv20iQ/21r7rCQ/1b2fJM9K8sTux21JXt7HuQAAYEN0Op1MTExkYmJi0KMAbFl9Cz5aa3+d5JHlh5Ps6d6+LMn93dvPSfLqtugdSS6vqmv7NRsAAPRbr8Z29+7dqapBjwOwZY1v8Nf7wST/b1X9hyyGLp/fPf7YJB9bct7B7rEHlr9AVd2WxatCcsMNN/RzVgAAuGhqbAGGw0Zvbvp9SX6otXZ9kh9K8hsX+gKttVe01m5trd26b9++dR8QAADWgxpbgOGw0cHHdyZ5Y/f265M8s3v740muX3Le/u4xAADYlDqdTqamptTYAgzYRv8Uvj/JP+3e/rIkH+zevj3Jd3TbXT43yadba2ctcwEAgM2gV2O7Z8+e858MQF/1bY+Pqnptki9JsreqDib56STfk+Q/V9V4kuPp7tWR5E1JvibJvUmOJXl+v+YCAIB+63Q6SdTYAgyDvgUfrbVvWeWhz17h3JbkBf2aBQAANpIaW4DhYcEhAACsIzW2AMNF8AEAAOvo6NGjWVhYsMwFYEgIPgAAYB31amynpqYGPQoAEXwAAMC66tXYjo2NDXoUACL4AACAddOrsbXMBWB4CD4AAGCdqLEFGD6CDwAAWCe9GtsdO3YMehQAugQfAACwDtTYAgwnwQcAAKyDY8eOqbEFGEKCDwAAWAdHjhxRYwswhAQfAACwDtTYAgwnwQcAAFwiNbYAw0vwAQAAl0iNLcDwEnwAAMAlUmMLMLwEHwAAcAl6NbbT09NqbAGGkOADAAAuQa/Gds+ePYMeBYAVCD4AAOASdDodNbYAQ0zwAQAAl0CNLcBwE3wAAMBFOnnyZI4fP67NBWCICT4AAOAiqbEFGH6CDwAAuEidTifbt29XYwswxAQfAABwEXo1trt371ZjCzDEBB8AAHAR1NgCbA6CDwAAuAhqbAE2B8EHAABcBDW2AJuD4AMAAC6QGluAzUPwAQAAF0iNLcDmIfgAAIALNDMzo8YWYJMQfAAAwAVYWFhIp9NRYwuwSQg+AADgAvRqbC1zAdgcBB8AAHABejW209PTgx4FgDUQfAAAwAVQYwuwuQg+AABgjdTYAmw+44MeAAAANoODBw/mrrvuyokTJ3L48OE8+clPzv79+wc9FgDnIfgAAIDzOHjwYA4cOJD5+fkkyfHjx3PgwIEkEX4ADDlLXQAA4Dzuvvvu06FHz/z8fO65554BTQTAWrniAwAAVtFay6c+9akcP358xcdnZ2c3eCIALpTgAwAAlmmtpdPp5NChQzl+/HjGx8czNzd31nm7du0awHQAXAjBBwAALHH06NEcOnQoR48ezY4dO3LjjTfmiiuuOGOPjyQZGxvLLbfcMsBJAVgLwQcAAGRxw9IHH3wwn/70pzM+Pp7HPvaxueKKK1JVueyyy5Ik99xzT2ZnZ7Nr167ccsstNjYF2AQEHwAAbGmnTp3Kgw8+mE9+8pOpqlx99dXZu3dvxsbGzjhv//79gg6ATUjwAQDAljQ/P5+HHnooDz30UJLkyiuvzFVXXZXxcX9EBhglfqoDALClLCws5OGHH87hw4czPz+fyy+/PNdcc00mJiYGPRoAfSD4AABgS+hV0x46dCinTp3K7t27c80112hmARhxgg8AAEba8mraXbt25frrr8/09PSgRwNgAwg+AAAYWceOHcsDDzyQo0ePZmJiIjfccEMuu+yyVNWgRwNggwg+AAAYOSdOnMihQ4dOV9Ned911ueKKK7Jt27ZBjwbABhN8AAAwMtZaTQvA1iH4AABg0+tV037iE59Iay1XXHFFrr76atW0AAg+AADYvBYWFvLII4/kwQcfPF1Ne/XVV2fHjh2DHg2AISH4AABg0+lV0z744IM5efJkpqenc80112RycnLQowEwZAQfAABsGq21zMzM5IEHHjhdTXvzzTdn9+7dgx4NgCEl+AAAYFM4duxYDh06lJmZGdW0AKyZ4AMAgKGmmhaASyH4AABgKJ06dSqHDx/OI488opoWgIsm+AAAYKisVE171VVXZfv27YMeDYBNSPABAMBQ6FXTHj58OHNzc7nssstyzTXXqKYF4JIIPgAAGKjWWj796U/n0KFDqmkBWHeCDwAABqbT6eTQoUOZnZ3Nzp07c/PNN2d6elpTCwDrRvABAMCGW15Ne/311+fyyy8XeACw7gQfAABsmKXVtGNjY6ppAeg7wQcAAH23vJr2qquuyr59+1TTAtB3gg8AAPpmfn4+n/jEJ/LQQw+ltZbHPOYxufrqq1XTArBhBB8AAKw71bQADAvBBwAA62Z5Ne3U1FRuuukm1bQADIzgAwCAdbG8mvamm27K7t27NbUAMFCCDwAALsns7GweeOCBzMzMZPv27appARgqgg8AAC7KyZMnc+jQoXzqU5/K2NhYrr322lx55ZWqaQEYKoIPAAAuyNzcXA4fPpyHH344SVTTAjDUBB8AAKyJaloANiPBBwAA59Ray8MPP3xGNe3VV1+dnTt3Dno0ADgvwQcAACvqVdM++OCDOXHiRKampnLjjTdmampq0KMBwJoJPgAAOMvMzEweeOAB1bQAbHqCDwAATpudnc2hQ4fS6XRU0wIwEgQfAACopgVgZAk+AAC2sOXVtPv27ctVV12lmhaAkSH4AADYgpZW0y4sLOSKK67IVVddlYmJiUGPBgDrSvABALCFtNbyyCOP5MEHH8zc3Fz27NmTa665RjUtACNL8AEAsAW01nLkyJEcOnQoJ06cyOTkpGpaALYEwQcAwIibmZnJoUOHcuzYsezYsUM1LQBbiuADAGBELa+m3b9/fx7zmMcIPADYUgQfAAAj5uTJk3nwwQfzyU9+MmNjY7nmmmuyd+9e1bQAbEmCDwCAEaGaFgDOJvgAANjk5ufn8/DDD+fw4cOqaQFgmb5d71hVr6yqw1X1vmXHv7+q7q6q91fVS5cc/4mqureq7qmqf9avuQAARkVrLQ8//HDuueeeHDp0KNPT03nSk56U/fv3Cz0AoKufV3y8Ksl/TfLq3oGq+tIkz0nyma21E1V1Vff4U5J8c5KnJrkuyZ9V1ZNaa/N9nA8AYFNSTQsAa9e34KO19tdVddOyw9+X5N+11k50zzncPf6cJL/TPf6Rqro3yTOTvL1f8wEAbEaqaQHgwmz0Hh9PSvJFVfWSJMeT/JvW2t8leWySdyw572D3GAAAUU0LABdro4OP8SRXJPncJP8kyeuq6nEX8gJVdVuS25LkhhtuWPcBAQCGiWpaALg0Gx18HEzyxtZaS/K3VbWQZG+Sjye5fsl5+7vHztJae0WSVyTJrbfe2vo7LgDAxjh48GDuueeezM7OZteuXXniE5+Y8fHx09W0e/fuzVVXXZXxcaV8AHAhNvqfCv4gyZcmSVU9KclEkk8kuT3JN1fVjqq6OckTk/ztBs8GADAQBw8ezIEDBzI7O5tkcVnLgQMH8g//8A+5/PLLc8stt+S6664TegDARejb/z2r6rVJviTJ3qo6mOSnk7wyySu7Fbcnk3xn9+qP91fV65J8IMlckhdodAEARlVrLXNzczl58mROnTqVD3zgA5mfnz/rnGPHjuX6669f5VUAgLXoZ6vLt6zy0Letcv5LkrykX/MAAGyUhYWF08FGL9xY/nnx334WnTx5csXXOX78+EaNDAAjy/WSAAAXaH5+fsUwo/f51KlTZz1nfHw8ExMT2bVrVy677LJs3749ExMTmZiYyOHDh1cMOXbt2rUR3w4AjDTBBwDAEq21cwYbJ0+ePGtZSlVl+/bt2b59e6anpzMxMXE62OgdP1cLy5Of/OQcOHDgjNcdGxvLLbfc0rfvEwC2CsEHALCltNZOX5Wx2hUbCwsLZzxn27Ztp4OMXbt2rRhsVNVFz7R///4kOaPV5ZZbbjl9HAC4eIIPAGCkLCwsrBhsLF2GsnR/jWTx6oqJiYns2LEju3fvPiPUmJiYyNjY2CUFG2uxf/9+QQcA9IHgAwDYVJYuQ1npio25ubmzntO7KmNycvKsUGP79u0ZGxsbwHcCAGwEwQcAMDR6+2ustgTlXPtrTExMZPfu3WeEGhMTExkfHz/n/hoAwGgTfAAAG+Zi99fohRkrXbExPj7e92UoAMDmJfgAANZNb3+Nc9W8Lt9fY3x8PNu3b8/OnTvPumKjtwxFsAEAXCzBBwCwZudbhnK+/TVWakOxvwYA0E+CDwDYIg4ePHjOutTWWubm5s55xcZK+2v0Qow9e/asuHGoqzUAgEESfADAFnDw4MG8973vPb1/xuzsbN773vfmkUceyfT09OlwY/kylKX7a0xNTdlfAwDYdAQfALCJ9FpP5ufnMzc3d/r28mPLH7vvvvvO2jR0YWEh999/f57whCecsb/G0mDDMhQAYLMTfADAALTWsrCwsGpQca775zI2NpaxsbGMj49nfHw8O3bsyNjYWD7ykY+seP7c3Fye8IQn9ONbBAAYCoIPALgEvQBjeTix2u2l98+lF2D0PiYnJ08HGssfW3pstWUnd999d2ZnZ886vmvXrnX5dQAAGFaCDwDI2gKM1ZaXLN8XY6lt27adEUxs37799P3lIcZaAoyLdcstt+TAgQNnBC5jY2O55ZZb1vXrAAAMG8EHACNlaYBxoSHGhQYYy8OKlW4Py8afvfaWc7W6AACMIsEHAOvmfHWpF2J5gHEhIcb5AoylwcT5Aozex7Zt2y72l2Vo7N+/X9ABAGw5gg8A1sXBgwfPWEoxOzubAwcOJEmuu+66C9q8s3f7XAFGVZ2xZGTnzp2rBhdL749CgAEAwNoJPgC4ZK213H333Wdt2Dk/P58DBw7kkUceWfW5SwOMsbGx7Nix4/RGnucKMQQYAACsheADgAs2Pz+f2dnZHD16NMeOHcuxY8dy/PjxVc+95pprVg0xBBgAAPST4AOA8zp16tTpkOPo0aM5fvz46WUoO3bsyGWXXZYdO3bkxIkTZz13165dueqqqzZ6ZAAASCL4AGCZ1lqOHz9+xtUcJ0+eTLK4LGVycjL79u3L5ORkJicnMz7+6P9K1KUCADBsBB8AW9z8/PzpgKMXdiwsLCRJxsfHMzU1lb1792ZycjK7du1atZ5VXSoAAMNI8AGwhbTWzli2cuzYsczOzp5+fOfOnXnMYx6TycnJTE1NZfv27asGHStRlwoAwLARfACMsNZaZmdnz7ia49SpU0mSbdu2ZXJyMldfffXpZStjY2MDnhgAANaX4ANghMzPz5+xCens7OzpZSvbt2/P1NTU6as5du7ceUFXcwAAwGYk+ADYpFprOXny5BlXc/QqZavq9LKVXtgxMTEx4IkBAGDjCT4ANomFhYXTy1Z6Ycfc3FySxfaUycnJXHbZZZmamsquXbssWwEAgAg+AIbW3NzcGVdzHDt2LK21JMnExER27959em8Oy1YAAGBlgg+AIdBay4kTJ864muPEiRNJFpet7Nq1K1deeeXpZSvbt28f8MQAALA5CD4ABmBhYeF0yNELOubn55MsLluZmpo6XSs7OTmZbdu2DXhiAADYnAQfABvg1KlTZyxbmZ2dPb1sZceOHdmzZ8/pqzl27Nhh2QoAAKwTwQfAOustW1laK3vy5Mkkjy5b2bt37+mgY3zcj2IAAOgXf9oGuETz8/OZnZ09YxPS3rKV8fHxTE5O5sorr8zk5GR27dpl2QoAAGwgwQfABTp16tQZV3McP3789LKVnTt3nq6UnZyczMTEhGUrAAAwQIIPgHNoreX48eNnXM2xdNnK5ORk9u3bl8nJyUxNTWVsbGzAEwMAAEsJPgCWmJ+fP6Np5dixY1lYWEiSbN++PZOTk9m7d+/pZSuu5gAAgOEm+AC2rNbaistWenbu3Hm6UnZqairbt28XdAAAwCYj+AC2jNZaZmdnz7ia49SpU0mSbdu2ZXJyMldffXUmJyczOTlp2QoAAIwAwQcwsubn58+4mmN2dvaMZSu9DUinpqayc+dOV3MAAMAIEnzAEn/+22/NK1/823noYw9n3/VX5rt+/lvz5d/6RYMeiyVWe49aazl58uQZV3P0lq1UVXbu3Jkrrrji9NUcExMTA/5OAACAjSD4gK4//+235pdv+9WcOLbY2HH4vk/kl2/71SQRfgyJld6jX/qeX80nHnoo//grn5y5ubkkydjYWCYnJ0/Xyu7atcuyFQAA2KIEH2w5rbUsLCxkbm4up06dytzcXObm5vJrP/bfT/+FuufEsZN5xY++Ojc+89oBTctSr/jRV5/1Hp2cPZk3vPRN+fxv+Cenl63s2LHDshUAACCJ4IMRsVqYsfyj91hr7azXePj+T6742o888Kls27at398Ca/DIA59a8finDh3J9ddfv7HDAAAAm4Lgg6G1PMyYn59fMdQ4V5hRVRkbG8v27dszPj6eHTt2ZHx8/PRH7/j4+Hiuun5vDt/3ibNe46rr9+Zxj3vcRnzLnMdq79G+668cwDQAAMBmIPhgQy0NM5YHFysFGiuFGUnOCC+mp6fPuL801BgbG1vzkofv+vlvPWP/iCTZMTmR7/r5b12X751L5z0CAAAulOCDS9aPMGNqampdwowL0dvAVKvL8PIeAQAAF6pW+0voZnDrrbe2O+64Y9BjjKz5+flz7pOx9GNhYWHF11gtvFjpuM0oAQAAuFhVdWdr7dblx13xscXMz8+vuFfGxYYZk5OTwgwAAACGluBjo73mNclP/mRy333JDTckL3lJ8tznXtJLnq/NZOnxCwkzVgs0hBkAAABsFoKPjfSa1yS33ZYcO7Z4/6MfXbyfnBV+CDMAAADg0gk+NtJP/uSjoUfPsWOZ+7Efy8e/8AvPCDVWCzPGxsZOhxdLw4yVQg1hBgAAAFud4GMj3XffiofH7r8/x48fz/bt27Nr167s3r1bmAEAAADrQPCxkW64YXF5yzJ1ww255ZZbBjAQAAAAjLZtgx5gS3nJS5LJyTOPTU4uHgcAAADWneBjIz33uckrXpHceGNStfj5Fa+45FYXAAAAYGWWumy05z5X0AEAAAAbxBUfAAAAwMgSfAAAAAAjS/ABAAAAjCzBBwAAADCyBB8AAADAyBJ8AAAAACNL8AEAAACMLMEHAAAAMLIEHwAAAMDIEnwAAAAAI0vwAQAAAIwswQcAAAAwsgQfAAAAwMgSfAAAAAAjS/ABAAAAjCzBBwAAADCyBB8AAADAyBJ8AAAAACNL8AEAAACMLMEHAAAAMLIEHwAAAMDIEnwAAAAAI0vwAQAAAIwswQcAAAAwsgQfAAAAwMgSfAAAAAAjS/ABAAAAjKy+BR9V9cqqOlxV71vhsR+uqlZVe7v3q6peVlX3VtV7q+oZ/ZoLAAAA2Dr6ecXHq5J89fKDVXV9kq9Kct+Sw89K8sTux21JXt7HuQAAAIAtom/BR2vtr5M8ssJDv5zkR5O0Jceek+TVbdE7klxeVdf2azYAAABga9jQPT6q6jlJPt5ae8+yhx6b5GNL7h/sHgMAAAC4aOMb9YWqajLJi7O4zOVSXue2LC6HyQ033LAOkwEAAACjaiOv+Hh8kpuTvKeq/iHJ/iTvqqprknw8yfVLzt3fPXaW1torWmu3ttZu3bdvX59HBgAAADazDQs+WmsHWmtXtdZuaq3dlMXlLM9orR1KcnuS7+i2u3xukk+31h7YqNkAAACA0dTPOtvXJnl7kluq6mBVffc5Tn9Tkg8nuTfJryX51/2aCwAAANg6+rbHR2vtW87z+E1LbrckL+jXLAAAAMDWtKGtLgAAAAAbSfABAAAAjKwNq7PlTP/idf/irGNf96Svy/M+63mZPTWbb/v9bzvr8W96yjflXz7tX+aR2UfyPX/0PWc9/p2f+Z159i3Pzv2d+/P9/+P7z3r8ez/7e/OVj//KfOiRD+VH/+xHz3r8Bz/nB/NFN35R3n/4/fmpv/ypsx7/iS/8idx63a254/478gtv+4WzHv+5L/m5PPWqp+atH31r/tM7/9NZj7/0K16ax1/x+Lz5Q2/Or975q2c9/l+e9V9y3e7rcvs9t+c33/ObZz3+a1/3a7li1xX53ff9bl73gded9fhv/fPfyq7tu/Kqd78qf/Q//+isx9/wTW9Ikrz8716eP/vIn53x2M7xnXnNN7wmSfLLb//lvO1jbzvj8cfsfEx+/dm/niT5+bf+fO584M4zHr92+tr816/5r0mSn3rLT+X9D73/jMcfd/nj8otf9YtJkh/50x/Jhz/14TMef+q+p+bnvvTnkiQvfNML88DMmXv7fva1n50Xf9GLkyT/6vZ/lU8e/+QZj3/h9V+YH/q8H0qSPPeNz83xueNnPP4VN39Fvu+ffF8Sv/f83vN7bym/9/ze83vP7z2/987k957fe37v+b3Xm2WUuOIDAAAAGFm1uK/o5nTrrbe2O+64Y9BjAAAAAANWVXe21m5dftwVHwAAAMDIEnwAAAAAI0vwAQAAAIwswQcAAAAwsgQfAAAAwMgSfAAAAAAjS/ABAAAAjCzBBwAAADCyBB8AAADAyBJ8AAAAACNL8AEAAACMLMEHAAAAMLIEHwAAAMDIEnwAAAAAI0vwAQAAAIwswQcAAAAwsgQfAAAAwMgSfAAAAAAjS/ABAAAAjCzBBwAAADCyBB8AAADAyBJ8AAAAACNL8AEAAACMLMEHAAAAMLKqtTboGS5aVT2U5KODnuMi7U3yiUEPwaq8P8PPezTcvD/Dzfsz3Lw/w897NNy8P8PN+zP8NvN7dGNrbd/yg5s6+NjMquqO1tqtg56DlXl/hp/3aLh5f4ab92e4eX+Gn/douHl/hpv3Z/iN4ntkqQsAAAAwsgQfAAAAwMgSfAzOKwY9AOfk/Rl+3qPh5v0Zbt6f4eb9GX7eo+Hm/Rlu3p/hN3LvkT0+AAAAgJHlig8AAABgZAk+BqCqvrqq7qmqe6vqxwc9D4+qqldW1eGqet+gZ+FsVXV9Vb2lqj5QVe+vqh8Y9Eycqap2VtXfVtV7uu/Rzw56Js5WVWNV9fdV9f8MehbOVFX/UFUHqurdVXXHoOfhTFV1eVX9XlXdXVV3VdXnDXomHlVVt3T/2+l9HKmqHxz0XDyqqn6o++eD91XVa6tq56Bn4lFV9QPd9+b9o/bfjqUuG6yqxpL8zyRfmeRgkr9L8i2ttQ8MdDCSJFX1xUlmkry6tfa0Qc/Dmarq2iTXttbeVVW7k9yZ5Ov99zM8qqqSTLXWZqpqe5K3JfmB1to7BjwaS1TVi5LcmmRPa+1rBz0Pj6qqf0hya2vtE4OehbNV1W8meWtr7deraiLJZGvtUwMeixV0/8z98SSf01r76KDnIamqx2bxzwVPaa3NVtXrkryptfaqwU5GklTV05L8TpJnJjmZ5E+SfG9r7d6BDrZOXPGx8Z6Z5N7W2odbayez+JvrOQOeia7W2l8neWTQc7Cy1toDrbV3dW93ktyV5LGDnYql2qKZ7t3t3Q8J+xCpqv1J/pckvz7oWWAzqarLknxxkt9IktbaSaHHUPvyJB8Segyd8SS7qmo8yWSS+wc8D4/6R0ne2Vo71lqbS/JXSb5hwDOtG8HHxntsko8tuX8w/uIGF6yqbkry9CTvHPAoLNNdRvHuJIeTvLm15j0aLv8pyY8mWRjwHKysJfnTqrqzqm4b9DCc4eYkDyX5b92lYr9eVVODHopVfXOS1w56CB7VWvt4kv+Q5L4kDyT5dGvtTwc7FUu8L8kXVdWVVTWZ5GuSXD/gmdaN4APYdKpqOskbkvxga+3IoOfhTK21+dbaZyXZn+SZ3UsnGQJV9bVJDrfW7hz0LKzqC1trz0jyrCQv6C7BZDiMJ3lGkpe31p6e5GgSe7UNoe4ypGcnef2gZ+FRVfWYLF7pfnOS65JMVdW3DXYqelprdyX590n+NIvLXN6dZH6QM60nwcfG+3jOTM72d48Ba9DdN+INSV7TWnvjoOdhdd1LwN+S5KsHPAqP+oIkz+7uI/E7Sb6sqn5rsCOxVPdfRNNaO5zk97O4RJbhcDDJwSVXsf1eFoMQhs+zkryrtfbgoAfhDF+R5COttYdaa6eSvDHJ5w94JpZorf1Ga+2zW2tfnOSTWdybciQIPjbe3yV5YlXd3E2jvznJ7QOeCTaF7saZv5HkrtbaLw16Hs5WVfuq6vLu7V1Z3Mj57oEOxWmttZ9ore1vrd2Uxf///EVrzb+2DYmqmupu3JzuEoqvyuKlxwyB1tqhJB+rqlu6h748ic21h9O3xDKXYXRfks+tqsnun+m+PIv7tTEkquqq7ucbsri/x28PdqL1Mz7oAbaa1tpcVb0wyf+bZCzJK1tr7x/wWHRV1WuTfEmSvVV1MMlPt9Z+Y7BTscQXJPn2JAe6e0gkyYtba28a3Egsc22S3+zupr8tyetaaypTYW2uTvL7i38fyHiS326t/clgR2KZ70/ymu4/Xn04yfMHPA/LdEPDr0zyvw16Fs7UWntnVf1eknclmUvy90leMdipWOYNVXVlklNJXjBKGzirswUAAABGlqUuAAAAwMgSfAAAAAAjS/ABAAAAjCzBBwAAADCyBB8AAADAyBJ8AMAWUVX7q+oPq+qDVfWhqvrP3VrOtTz3L6vq1j7M9CVVdcmVx1V1eVX96yX3r+vWJl7Ia/xcVX3Fpc4CAAwXwQcAbAFVVUnemOQPWmtPTPKkJNNJXrLCuePr8PXGLvU1LtDlSU4HH621+1tr33ghL9Ba+6nW2p9dyhDn+rVbj19XAODCCT4AYGv4siTHW2v/LUlaa/NJfijJd1XVZFU9r6pur6q/SPLnVbWrqn6nqu6qqt9Psqv3QlX1VVX19qp6V1W9vqqmu8f/oar+fVW9K8n/eo7zvrqq7u6e9w0rDVtVO6vqv1XVgar6+6r60u7x53WvWvnL7pUrP919yr9L8viqendV/WJV3VRV71vynD+oqjd3Z3xhVb2o+7rvqKoruue9qqq+sapu7b7Ou7tfv3Uff3xV/UlV3VlVb62qJy953q9W1TuTvHTZ97H81/WMK1yq6r9W1fOW/Pr9bPfX60Dv9QGAS+NfHgBga3hqkjuXHmitHamq+5I8oXvoGUk+o7X2SFW9KMmx1to/qqrPSPKuJKmqvUn+bZKvaK0draofS/KiJD/XfY2HW2vP6J73xuXnVdVLk/xaFoOYe5P87irzvmBxxPaPuwHAn1bVk7qPPTPJ05IcS/J3VfXHSX48ydNaa5/VnfOmZa/3tCRPT7Kz+3V/rLX29Kr65STfkeQ/Lfl1uSNJ73V+McmfdB96RZLvba19sKo+J8mvdL+PJNmf5PO7gdJyS39dv2SV77fnE91fv3+d5N8k+VfnOR8AOA/BBwDQ8+bW2iPd21+c5GVJ0lp7b1W9t3v8c5M8JcnfLK6eyUSSty95jd89z3lPTvKR1toHk6SqfivJbSvM8oVJ/kv3699dVR/N4vKc3pwPd5//xu65f3Ce7+0trbVOkk5VfTrJH3WPH0jyGSs9oar+ZRZDi6/qXq3y+Ule3/1+kmTHktNfv0ro0Zv3kVUeW+6N3c93ZpWrYQCACyP4AICt4QNJztjzoqr2JLkhi1dAPCPJ0TW8TmXxL/LfssrjR891XlV91gXMvJp2nvsrObHk9sKS+wtZ4c9DVfW0JD+T5Itba/NVtS3Jp3pXlKzgXL92Sx+by5lLjXeuMuf8SnMBABfOHh8AsDX8eZLJqvqO5PTmo/8xyataa8dWOP+vk3xr99yn5dGrIt6R5Auq6gndx6aWLEFZarXz7k5yU1U9vnveagHKW5M8t/vcJ2UxoLmn+9hXVtUVVbUrydcn+ZsknSS7z/ursAZVdXmS1yb5jtbaQ8nisqAkH6mq/7V7TlXVZ17Ey380yVOqakf363z5eswMAKxO8AEAW0BrrSX551ncdPSDSf5nkuNJXrzKU16eZLqq7sri/h13dl/noSTPS/La7vKX3vKV5V9vxfNaa8ezuLTlj7ubmx5e5ev/SpJtVXUgi8tnntda610N8bdJ3pDkvUne0Fq7o7v05W+q6n3dfTkuxXOS3Jjk13qbnHaPPzfJd1fVe5K8v3veBWmtfSzJ65K8r/v57y9xVgDgPGrxz0EAAMOv24Bya2vthYOeBQDYHFzxAQAAAIwsV3wAAAAAI8sVHwAAAMDIEnwAAAAAI0vwAQAAAIwswQcAAAAwsgQfAAAAwMgSfAAAAAAj6/8Hhw3LHgZ9AbMAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABeEAAAN+CAYAAACSPMAzAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB4mklEQVR4nOzde3zcdZU//tfkNiFAK9dSoEiVO3L3Qotyk8uisnT96rL8VgERV1lRES9f8Qroii4irDdAXQEvrBe+gqsiiEVApLKCoIBX5Cq0RcA20DC5zfz+6CY2NoGmncnMZJ7Px2MeMJ95fyYnySeT9JV3zilUKpVKAAAAAACAqmurdwEAAAAAADBdCeEBAAAAAKBGhPAAAAAAAFAjQngAAAAAAKgRITwAAAAAANSIEB4AAAAAAGpECA8AAAAAADUihAcAAAAAgBoRwgMAAAAAQI0I4QEAoMUtXbo0r3rVq7LJJpukUCjkvPPOW+Nz77vvvhQKhVx88cWjx04//fQUCoWq1Tfe2wAAgGYhhAcAgLXwzW9+M4VCIZdffvlqj+2xxx4pFAr58Y9/vNpj22yzTebPnz+pt/W5z32upgH029/+9lx99dU57bTT8pWvfCV/93d/V7O3NdVuuummnH766Vm2bFm9SwEAoEUJ4QEAYC28+MUvTpLceOONY4739vbmzjvvTEdHR37605+OeezBBx/Mgw8+OHrumqp1CH/ttdfmqKOOyjvf+c685jWvyU477VSztzXVbrrpppxxxhlCeAAA6kYIDwAAa2HLLbfM3LlzVwvhFy1alEqlkle/+tWrPTZyf7IhfC0MDQ1lYGAgSfLII4/kWc96Vn0LAgCAaUoIDwAAa+nFL35xbrvttjz11FOjx376059m1113zRFHHJGf/exnKZfLYx4rFArZb7/9kiQXXXRRDj744Gy++eYpFovZZZddcv755495G9tuu23uuuuuXH/99SkUCikUCjnwwANHH1+2bFlOOeWUzJkzJ8ViMdttt10+/vGPj3m7Iz3VP/GJT+S8887Lc5/73BSLxXzuc59LoVBIpVLJZz/72dHnT5LHH38873znO7Pbbrtlgw02yIwZM3LEEUfkl7/8ZdU+fgceeGCe97zn5dZbb838+fOz3nrrZe7cubngggvW6Pxrr702L3nJS7L++uvnWc96Vo466qj85je/GX389NNPz7ve9a4kydy5c0ffv/vuu69q7wMAADyTjnoXAAAAzerFL35xvvKVr+Tmm28eDcZ/+tOfZv78+Zk/f36WL1+eO++8M7vvvvvoYzvttFM22WSTJMn555+fXXfdNX//93+fjo6OfPe7382//uu/plwu581vfnOS5Lzzzstb3vKWbLDBBnnf+96XJJk1a1aSpK+vLwcccEAeeuihvPGNb8w222yTm266KaeddloWL1682oDViy66KKVSKf/yL/+SYrGYvffeO1/5ylfy2te+NoceemiOPfbY0bX33HNPrrjiirz61a/O3Llzs3Tp0lx44YU54IAD8utf/zpbbrllVT6Gf/nLX/Kyl70s//iP/5hjjjkm3/zmN3PSSSelq6srJ5xwwoTn/ehHP8oRRxyR5zznOTn99NPz1FNP5dOf/nT222+//OIXv8i2226bV77ylfn973+f//qv/8q5556bTTfdNEmy2WabVaV2AABYE0J4AABYS6v2hT/wwAMzNDSUm2++Occdd1ye+9znZtasWbnxxhuz++6754knnsgdd9wxJli+/vrrs956643eP/nkk/N3f/d3+eQnPzkawi9YsCDvf//7s+mmm+Y1r3nNmLf/yU9+Mn/84x9z2223Zfvtt0+SvPGNb8yWW26Zs88+O+94xzsyZ86c0fV/+tOfcvfdd68WQr/2ta/NDjvsMOb5d9ttt/z+979PW1vbmHU77bRT/vM//zMf+MAH1vXDlyR5+OGHc8455+TUU08drf9FL3pRTjvttLz2ta9NZ2fnuOe9613vysYbb5xFixZl4403TrLyY7XXXnvlQx/6UC655JLsvvvu2XvvvfNf//VfWbBgQbbddtuq1AwAAJOhHQ0AAKylnXfeOZtssslor/df/vKXWbFiRebPn58kmT9//uhw1kWLFmV4eHhMP/hVA/jly5fn0UcfzQEHHJB77rkny5cvf8a3/61vfSsveclLstFGG+XRRx8dvR1yyCEZHh7ODTfcMGb9//k//2eNd4EXi8XRAH54eDiPPfZYNthgg+y44475xS9+sUbPsSY6Ojryxje+cfR+V1dX3vjGN+aRRx7JrbfeOu45ixcvzu23357jjz9+NIBPkt133z2HHnporrzyyqrVBwAA66qlQ/gbbrghRx55ZLbccssUCoVcccUVkzq/VCrl+OOPz2677ZaOjo4sWLBg3HXXXXdd9t5779EenRdffPE61w4AQP0VCoXMnz9/tPf7T3/602y++ebZbrvtkowN4Uf+u2oI/9Of/jSHHHLIaE/zzTbbLO9973uTZI1C+D/84Q+56qqrstlmm425HXLIIUlWDlxd1dy5c9f4fSuXyzn33HOz/fbbp1gsZtNNN81mm22WX/3qV2tU25racssts/766485tsMOOyTJhL3b77///iTJjjvuuNpjO++8cx599NGsWLGiajUCAMC6aOl2NCtWrMgee+yRE044Ia985Ssnff7w8HDWW2+9vPWtb83/+3//b9w19957b17+8pfnTW96U772ta9l4cKFOfHEEzN79uwcfvjh6/ouAABQZy9+8Yvz3e9+N3fcccdoP/gR8+fPz7ve9a489NBDufHGG7PlllvmOc95TpLkj3/8Y1760pdmp512yic/+cnMmTMnXV1dufLKK3PuueeOGaw6kXK5nEMPPTTvfve7x318JMweserO+2fy0Y9+NB/4wAdywgkn5MMf/nA23njjtLW15ZRTTlmj2gAAgJVaOoQ/4ogjcsQRR0z4eH9/f973vvflv/7rv7Js2bI873nPy8c//vHRoVvrr79+zj///CQrdzEtW7Zstee44IILMnfu3JxzzjlJVu7MufHGG3PuuecK4QEApoFV+8L/9Kc/zSmnnDL62D777JNisZjrrrsuN998c172speNPvbd7343/f39+e///u9ss802o8d//OMfr/Y2CoXCuG/7uc99bp588snRne/VdNlll+Wggw7Kf/7nf445vmzZstEBp9Xw8MMPZ8WKFWN2w//+979Pkgl7uD/72c9Okvzud79b7bHf/va32XTTTUefb6KPHQAATJWWbkfzTE4++eQsWrQoX//61/OrX/0qr371q/N3f/d3+cMf/rDGz7Fo0aLV/lF0+OGHZ9GiRdUuFwCAOnj+85+f7u7ufO1rX8tDDz00Zid8sVjM3nvvnc9+9rNZsWLFmFY07e3tSZJKpTJ6bPny5bnoootWexvrr7/+uBs+/vEf/zGLFi3K1Vdfvdpjy5Yty9DQ0Fq/X+3t7WNqS1b2oH/ooYfW+jnHMzQ0lAsvvHD0/sDAQC688MJsttlm2WeffcY9Z/bs2dlzzz1zySWXjPm43HnnnfnhD3845pcdI2H8eB8/AACYCi29E/7pPPDAA7nooovywAMPZMstt0ySvPOd78xVV12Viy66KB/96EfX6HmWLFmSWbNmjTk2a9as9Pb25qmnnprUnwQDANB4urq68oIXvCA/+clPUiwWVwuO58+fP/pXkauG8Icddli6urpy5JFH5o1vfGOefPLJfOELX8jmm2+exYsXj3mOffbZJ+eff34+8pGPZLvttsvmm2+egw8+OO9617vy3//933nFK16R448/Pvvss09WrFiRO+64I5dddlnuu+++td61/opXvCJnnnlmXve612X+/Pm544478rWvfW20nU61bLnllvn4xz+e++67LzvssEO+8Y1v5Pbbb8/nP//5dHZ2Tnje2WefnSOOOCLz5s3L61//+jz11FP59Kc/nZkzZ+b0008fXTfy+Xjf+96Xf/qnf0pnZ2eOPPLI1frQAwBArQjhJ3DHHXdkeHh4tT6a/f392WSTTepUFQAAjejFL35xfvKTn4y2n1nVfvvtl3POOScbbrhh9thjj9HjO+64Yy677LK8//3vzzvf+c5sscUWOemkk7LZZpvlhBNOGPMcH/zgB3P//ffn3//93/PEE0/kgAMOyMEHH5yenp5cf/31+ehHP5pvfetb+fKXv5wZM2Zkhx12yBlnnJGZM2eu9fv03ve+NytWrMill16ab3zjG9l7773z/e9/P+95z3vW+jnHs9FGG+WSSy7JW97ylnzhC1/IrFmz8pnPfCZveMMbnva8Qw45JFdddVU+9KEP5YMf/GA6OztzwAEH5OMf//iYAbQveMEL8uEPfzgXXHBBrrrqqpTL5dx7771CeAAApkyh8rd/Y9qiCoVCLr/88ixYsCBJ8o1vfCP//M//nLvuumv0T4VHbLDBBtliiy3GHDv++OOzbNmyXHHFFWOO77///tl7771z3nnnjR676KKLcsopp2T58uW1eFcAAKApHHjggXn00Udz55131rsUAACoGTvhJ7DXXntleHg4jzzySF7ykpes9fPMmzcvV1555Zhj11xzTebNm7euJQIAAAAA0OBaOoR/8sknc/fdd4/ev/fee3P77bdn4403zg477JB//ud/zrHHHptzzjkne+21V/785z9n4cKF2X333fPyl788SfLrX/86AwMDefzxx/PEE0/k9ttvT5LsueeeSZI3velN+cxnPpN3v/vdOeGEE3Lttdfmm9/8Zr7//e9P9bsLAAAAAMAUa+l2NNddd10OOuig1Y4fd9xxufjiizM4OJiPfOQj+fKXv5yHHnoom266afbdd9+cccYZ2W233ZIk2267be6///7VnmPVD+t1112Xt7/97fn1r3+drbfeOh/4wAdy/PHH1+z9AgCAZqAdDQAAraClQ3gAAAAAAKiltnoXAAAAAAAA05UQHgAAAAAAaqTlBrOWy+U8/PDD2XDDDVMoFOpdDgAAAAAATaZSqeSJJ57Illtumba2p9/r3nIh/MMPP5w5c+bUuwwAAAAAAJrcgw8+mK233vpp17RcCL/hhhsmWfnBmTFjRp2rAQAAAACg2fT29mbOnDmjefPTabkQfqQFzYwZM4TwAAAAAACstTVpeW4wKwAAAAAA1IgQHgAAAAAAakQIDwAAAAAANSKEBwAAAACAGhHCAwAAAABAjQjhAQAAAACgRoTwAAAAAABQI0J4AAAAAACoESE8AAAAAADUiBAeAAAAAABqRAgPAAAAAAA1IoQHAAAAAIAaEcIDAAAAAECNCOEBAAAAAKBGhPAAAAAAAFAjQngAAAAAAKgRITwAAAAAANSIEB4AAAAAAGpECA8AAAAAADUihAcAAAAAgBoRwgMAAAAAQI0I4QEAAAAAoEaE8AAAAAAAUCNCeAAAAAAAqBEhPAAAAAAA1IgQHgAAAAAAaqSuIfz555+f3XffPTNmzMiMGTMyb968/OAHP5hw/cUXX5xCoTDm1t3dPYUVAwAAAADAmuuo5xvfeuut87GPfSzbb799KpVKLrnkkhx11FG57bbbsuuuu457zowZM/K73/1u9H6hUJiqcgEAAAAAYFLqGsIfeeSRY+7/27/9W84///z87Gc/mzCELxQK2WKLLaaiPAAAAAAAWCcN0xN+eHg4X//617NixYrMmzdvwnVPPvlknv3sZ2fOnDk56qijctdddz3t8/b396e3t3fMDQAAAACAyatUKnn00Ufz0EMP5dFHH02lUql3SQ2vrjvhk+SOO+7IvHnzUiqVssEGG+Tyyy/PLrvsMu7aHXfcMV/60pey++67Z/ny5fnEJz6R+fPn56677srWW2897jlnnXVWzjjjjFq+CwAAAAAA097ixYtz1113pVQqjR7r7u7OrrvumtmzZ9exssZWqNT5VxUDAwN54IEHsnz58lx22WX54he/mOuvv37CIH5Vg4OD2XnnnXPMMcfkwx/+8Lhr+vv709/fP3q/t7c3c+bMyfLlyzNjxoyqvR8AAAAAANPV4sWLc+utt074+D777NNSQXxvb29mzpy5Rjlz3XfCd3V1Zbvttkuy8hP185//PP/xH/+RCy+88BnP7ezszF577ZW77757wjXFYjHFYrFq9QIAAAAAtJJKpfKMbcHvuuuubLHFFikUClNUVfNomJ7wI8rl8pid609neHg4d9xxR0v9hgUAAAAAYCo99thjY1rQjKdUKuWxxx6booqaS113wp922mk54ogjss022+SJJ57IpZdemuuuuy5XX311kuTYY4/NVlttlbPOOitJcuaZZ2bffffNdtttl2XLluXss8/O/fffnxNPPLGe7wYAAAAAwLS1ppum13Rdq6lrCP/II4/k2GOPzeLFizNz5szsvvvuufrqq3PooYcmSR544IG0tf11s/5f/vKXvOENb8iSJUuy0UYbZZ999slNN920Rv3jAQAAAACYvDVt960t+PjqPph1qk2mYT4AAAAAQKurVCpZuHDh07ak6e7uzktf+tKW6Qk/mZy54XrCAwAAAADQOAqFQnbdddenXbPrrru2TAA/WUJ4AAAAAACe1uzZs7Pnnnumvb19zPHu7u7ss88+mT17dp0qa3x17QkPAAAAAEBzmDFjRrbccsuUy+VsvvnmKRaL2WSTTeyAfwZCeAAAAAAAntFTTz2VQqGQTTfdNFtttVW9y2ka2tEAAAAAAPCMnnrqqSTJeuutV+dKmosQHgAAAACAZzQSwnd3d9e5kuYihAcAAAAA4GkNDg5mcHAwiZ3wkyWEBwAAAADgaZVKpSRJsVhMe3t7natpLkJ4AAAAAACeVl9fXxK74NeGEB4AAAAAgKc1shNeCD95QngAAAAAAJ7WyFBWIfzkCeEBAAAAAJjQ0NBQBgYGkgjh14YQHgAAAACACY3sgu/q6jKUdS0I4QEAAAAAmJBWNOtGCA8AAAAAwISE8OtGCA8AAAAAwISE8OtGCA8AAAAAwLiGh4cNZV1HQngAAAAAAMa16lDWjo6OOlfTnITwAAAAAACMSyuadSeEBwAAAABgXCMhfHd3d50raV5CeAAAAAAAxmUn/LoTwgMAAAAAsJrh4eH09/cnEcKvCyE8AAAAAACrGdkF39nZmc7OzjpX07yE8AAAAAAArKZUKiWxC35dCeEBAAAAAFiNfvDVIYQHAAAAAGA1QvjqEMIDAAAAADDG8PCwdjRVIoQHAAAAAGCMkQC+o6PDUNZ1JIQHAAAAAGAMrWiqRwgPAAAAAMAYQvjqEcIDAAAAADCGEL56hPAAAAAAAIwql8vp7+9PIoSvBiE8AAAAAACjSqVSKpWKoaxVIoQHAAAAAGDUSCua7u7uFAqFOlfT/ITwAAAAAACMGgnhe3p66lzJ9CCEBwAAAABglKGs1SWEBwAAAAAgycqhrKVSKYkQvlqE8AAAAAAAJEn6+/tTqVTS3t5uKGuVCOEBAAAAAEgythWNoazVIYQHAAAAACBJ0tfXl0QrmmoSwgMAAAAAkCT6wdeAEB4AAAAAgFQqlTHtaKgOITwAAAAAACmVSqlUKmlra0tXV1e9y5k2hPAAAAAAABjKWiNCeAAAAAAAtKKpESE8AAAAAABC+BoRwgMAAAAAtLhKpZJSqZRECF9tQngAAAAAgBbX39+fcrmctra2FIvFepczrQjhAQAAAABa3Egrmu7ubkNZq0wIDwAAAADQ4vSDrx0hPAAAAABAixsJ4Xt6eupcyfQjhAcAAAAAaGGVSmVMOxqqSwgPAAAAANDCBgYGUi6XUygUhPA1IIQHAAAAAGhhq/aDN5S1+oTwAAAAAAAtzFDW2hLCAwAAAAC0MCF8bQnhAQAAAABa1KpDWYXwtSGEBwAAAABoUQMDAxkeHk6hUEixWKx3OdOSEB4AAAAAoEWN7ILv7u5OW5u4uBZ8VAEAAAAAWpRWNLUnhAcAAAAAaFFC+NoTwgMAAAAAtCBDWaeGEB4AAAAAoAUNDg6ODmXt7u6udznTlhAeAAAAAKAFjeyCLxaLhrLWkI8sAAAAAEALGgnhe3p66lzJ9CaEBwAAAABoQSMhvFY0tSWEBwAAAABoMYayTh0hPAAAAABAixkaGsrQ0FASIXytCeEBAAAAAFrMqq1oDGWtLR9dAAAAAIAWoxXN1BHCAwAAAAC0GCH81BHCAwAAAAC0GCH81BHCAwAAAAC0kMHBwQwODiZZ2ROe2hLCAwAAAAC0kJFd8MViMe3t7XWuZvoTwgMAAAAAtBCtaKaWEB4AAAAAoIWUSqUkQvipIoQHAAAAAGghfX19SYTwU0UIDwAAAADQIoaGhkaHsgrhp4YQHgAAAACgRRjKOvWE8AAAAAAALWIkhO/u7q5zJa1DCA8AAAAA0CJGQnitaKaOEB4AAAAAoEUI4aeeEB4AAAAAoAUMDw9nYGAgiRB+KgnhAQAAAABawMgu+K6urnR0dNS5mtYhhAcAAAAAaAFa0dSHEB4AAAAAoAUI4etDCA8AAAAA0AKE8PUhhAcAAAAAmOaGh4fT39+fRAg/1YTwAAAAAADT3Mgu+M7OTkNZp5gQHgAAAABgmtOKpn6E8AAAAAAA05wQvn6E8AAAAAAA05wQvn6E8AAAAAAA05ihrPUlhAcAAAAAmMZKpVKSpKOjI52dnXWupvUI4QEAAAAApjGtaOqrriH8+eefn9133z0zZszIjBkzMm/evPzgBz942nO+9a1vZaeddkp3d3d22223XHnllVNULQAAAABA8xkJ4Xt6eupcSWuqawi/9dZb52Mf+1huvfXW3HLLLTn44INz1FFH5a677hp3/U033ZRjjjkmr3/963PbbbdlwYIFWbBgQe68884prhwAAAAAoDnYCV9fhUqlUql3EavaeOONc/bZZ+f1r3/9ao8dffTRWbFiRb73ve+NHtt3332z55575oILLlij5+/t7c3MmTOzfPnyzJgxo2p1AwAAAAA0mnK5nLvuuiuVSiU77bRTurq66l3StDCZnLlhesIPDw/n61//elasWJF58+aNu2bRokU55JBDxhw7/PDDs2jRogmft7+/P729vWNuAAAAAACtoFQqpVKpGMpaR3UP4e+4445ssMEGKRaLedOb3pTLL788u+yyy7hrlyxZklmzZo05NmvWrCxZsmTC5z/rrLMyc+bM0ducOXOqWj8AAAAAQKNatRVNoVCoczWtqe4h/I477pjbb789N998c0466aQcd9xx+fWvf1215z/ttNOyfPny0duDDz5YtecGAAAAAGhk+sHXX0e9C+jq6sp2222XJNlnn33y85//PP/xH/+RCy+8cLW1W2yxRZYuXTrm2NKlS7PFFltM+PzFYjHFYrG6RQMAAAAANAEhfP3VfSf83yqXy+nv7x/3sXnz5mXhwoVjjl1zzTUT9pAHAAAAAGhV5XI5pVIpiRC+nuq6E/60007LEUcckW222SZPPPFELr300lx33XW5+uqrkyTHHntsttpqq5x11llJkre97W054IADcs455+TlL395vv71r+eWW27J5z//+Xq+GwAAAAAADWdkKGt7e7uhrHVU1xD+kUceybHHHpvFixdn5syZ2X333XP11Vfn0EMPTZI88MADaWv762b9+fPn59JLL8373//+vPe9783222+fK664Is973vPq9S4AAAAAADQkQ1kbQ6FSqVTqXcRU6u3tzcyZM7N8+fLMmDGj3uUAAAAAANTEn/70pzz++OPZbLPNMnv27HqXM61MJmduuJ7wAAAAAACsO/3gG4MQHgAAAABgmqlUKmPa0VA/QngAAAAAgGlmZChrW1tburq66l1OSxPCAwAAAABMM4ayNg4hPAAAAADANKMVTeMQwgMAAAAATDNC+MYhhAcAAAAAmEYMZW0sQngAAAAAgGmkv79/dChrsVisdzktTwgPAAAAADCNGMraWITwAAAAAADTiFY0jUUIDwAAAAAwjQjhG4sQHgAAAABgmjCUtfEI4QEAAAAApomBgYGUy+UUCgVDWRuEEB4AAAAAYJro6+tLYihrIxHCAwAAAABME1rRNB4hPAAAAADANCGEbzxCeAAAAACAacBQ1sYkhAcAAAAAmAZWHcra3d1d73L4X0J4AAAAAIBpYNVd8IayNg4hPAAAAADANDASwtsF31iE8AAAAAAA04B+8I1JCA8AAAAA0OQMZW1cQngAAAAAgCY3ODiY4eFhQ1kbkBAeAAAAAKDJrdoPvq1N7NtIfDYAAAAAAJqcVjSNSwgPAAAAANDkhPCNSwgPAAAAANDEDGVtbEJ4AAAAAIAmNjg4mKGhIUNZG5QQHgAAAACgiZVKpSRJsVg0lLUB+YwAAAAAADQxrWgamxAeAAAAAKCJCeEbmxAeAAAAAKCJ9fX1JRHCNyohPAAAAABAkxoZyprEUNYGJYQHAAAAAGhSI61oisVi2tvb61wN4xHCAwAAAAA0Kf3gG58QHgAAAACgSQnhG58QHgAAAACgSQnhG58QHgAAAACgCQ0NDWVwcDCJEL6RCeEBAAAAAJqQoazNQQgPAAAAANCEtKJpDkJ4AAAAAIAmJIRvDkJ4AAAAAIAmJIRvDkJ4AAAAAIAmMzQ0lIGBgSRC+EYnhAcAAAAAaDKlUilJ0tXVZShrgxPCAwAAAAA0mb6+viR2wTcDITwAAAAAQJPRD755COEBAAAAAJrMSDsaIXzjE8IDAAAAADSR4eHh9Pf3JxHCNwMhPAAAAABAExlpRdPZ2ZmOjo46V8MzEcIDAAAAADQR/eCbixAeAAAAAKCJCOGbixAeAAAAAKCJCOGbixAeAAAAAKBJGMrafITwAAAAAABNolQqJVk5lLWzs7PO1bAmhPAAAAAAAE1CK5rmI4QHAAAAAGgSQvjmI4QHAAAAAGgSQvjmI4QHAAAAAGgC5XJ5tCe8EL55COEBAAAAAJrAyC74jo6OdHR01Lka1pQQHgAAAACgCazaiqZQKNS5GtaUEB4AAAAAoAloRdOchPAAAAAAAE3AUNbmJIQHAAAAAGhwhrI2LyE8AAAAAECDK5VKqVQqaW9vT2dnZ73LYRKE8AAAAAAADc5Q1uYlhAcAAAAAaHD6wTcvITwAAAAAQIMTwjcvITwAAAAAQAMzlLW5CeEBAAAAABpYf3//6FDWrq6uepfDJAnhAQAAAAAamKGszU0IDwAAAADQwPSDb25CeAAAAACABiaEb25CeAAAAACABlWpVITwTU4IDwAAAADQoEaGsra1tRnK2qSE8AAAAAAADcpQ1uYnhAcAAAAAaFBa0TQ/ITwAAAAAQIPq6+tLIoRvZkJ4AAAAAIAGVKlUUiqVkgjhm5kQHgAAAACgAfX396dcLqetrS3FYrHe5bCWhPAAAAAAAA1opB98d3e3oaxNTAgPAAAAANCADGWdHoTwAAAAAAANSAg/PQjhAQAAAAAaTKVSEcJPE0J4AAAAAIAGMzAwkHK5nEKhkO7u7nqXwzoQwgMAAAAANJhVd8EbytrchPAAAAAAAA1mJIS3C775CeEBAAAAABrMSAjf09NT50pYV0J4AAAAAIAGYijr9CKEBwAAAABoIIODgxkeHk6hUEixWKx3OawjITwAAAAAQANZtR98W5sIt9n5DAIAAAAANBCtaKYXITwAAAAAQAMRwk8vQngAAAAAgAZhKOv0I4QHAAAAAGgQg4ODGRoaSqFQSHd3d73LoQrqGsKfddZZecELXpANN9wwm2++eRYsWJDf/e53T3vOxRdfnEKhMObmYgQAAAAApoORXfDFYtFQ1mmirp/F66+/Pm9+85vzs5/9LNdcc00GBwdz2GGHZcWKFU973owZM7J48eLR2/333z9FFQMAAAAA1I5WNNNPRz3f+FVXXTXm/sUXX5zNN988t956a/bff/8JzysUCtliiy1qXR4AAAAAwJQSwk8/DfX3DMuXL0+SbLzxxk+77sknn8yzn/3szJkzJ0cddVTuuuuuCdf29/ent7d3zA0AAAAAoBEJ4aefhgnhy+VyTjnllOy333553vOeN+G6HXfcMV/60pfyne98J1/96ldTLpczf/78/OlPfxp3/VlnnZWZM2eO3ubMmVOrdwEAAAAAYK2NDGVNYg7mNFKoVCqVeheRJCeddFJ+8IMf5MYbb8zWW2+9xucNDg5m5513zjHHHJMPf/jDqz3e39+f/v7+0fu9vb2ZM2dOli9fnhkzZlSldgAAAACAddXb25v77rsvxWIxO+64Y73L4Wn09vZm5syZa5Qz17Un/IiTTz453/ve93LDDTdMKoBPks7Ozuy11165++67x328WCymWCxWo0wAAAAAgJoZaUXT09NT50qoprq2o6lUKjn55JNz+eWX59prr83cuXMn/RzDw8O54447Mnv27BpUCAAAAAAwNfSDn57quhP+zW9+cy699NJ85zvfyYYbbpglS5YkSWbOnDl6oR177LHZaqutctZZZyVJzjzzzOy7777ZbrvtsmzZspx99tm5//77c+KJJ9bt/QAAAAAAWFcjIbx+8NNLXUP4888/P0ly4IEHjjl+0UUX5fjjj0+SPPDAA2lr++uG/b/85S95wxvekCVLlmSjjTbKPvvsk5tuuim77LLLVJUNAAAAAFBVQ0NDGRwcTGIn/HTTMINZp8pkGuYDAAAAAEyFJ554Ivfee6+hrE1iMjlzXXvCAwAAAACQ9PX1JbELfjoSwgMAAAAA1FmpVEoihJ+OhPAAAAAAAHU2MpRVCD/9COEBAAAAAOpoaGgoAwMDSYTw05EQHgAAAACgjkZ2wXd1daW9vb3O1VBtQngAAAAAgDrSimZ6E8IDAAAAANSREH56E8IDAAAAANSREH56E8IDAAAAANTJ8PCwoazTnBAeAAAAAKBOVh3K2tHRUedqqAUhPAAAAABAnWhFM/0J4QEAAAAA6mQkhO/u7q5zJdSKEB4AAAAAoE7shJ/+hPAAAAAAAHUwPDyc/v7+JEL46UwIDwAAAABQByO74Ds7O9PZ2VnnaqgVITwAAAAAQB2USqUkdsFPd0J4AAAAAIA60A++NQjhAQAAAADqQAjfGoTwAAAAAABTbHh4WDuaFiGEBwAAAACYYiMBfEdHRzo6OupcDbUkhAcAAAAAmGKrtqIpFAp1roZaEsIDAAAAAEwx/eBbhxAeAAAAAGCKCeFbhxAeAAAAAGAKlcvl9Pf3JxHCtwIhPAAAAADAFCqVSqlUKuno6EhnZ2e9y6HGhPAAAAAAAFNopBVNd3e3oawtQAgPAAAAADCFRkL4np6eOlfCVBDCAwAAAABMIUNZW4sQHgAAAABgipTL5ZRKpSRC+FYhhAcAAAAAmCL9/f2pVCppb283lLVFCOEBAAAAAKbIqq1oDGVtDUJ4AAAAAIApoh986xHCAwAAAABMESF86xHCAwAAAABMgUqlIoRvQUJ4AAAAAIApUCqVUqlU0tbWlq6urnqXwxQRwgMAAAAATAFDWVuTEB4AAAAAYApoRdOahPAAAAAAAFNACN+ahPAAAAAAADVWqVRSKpWSCOFbjRAeAAAAAKDG+vv7Uy6X09bWlmKxWO9ymEJCeAAAAACAGhtpRdPd3W0oa4sRwgMAAAAA1Jh+8K1LCA8AAAAAUGMjIXxPT0+dK2GqCeEBAAAAAGqoUqmMaUdDaxHCAwAAAADU0MDAQMrlcgqFghC+BQnhAQAAAABqaNV+8Iayth4hPAAAAABADRnK2tqE8AAAAAAANSSEb21CeAAAAACAGll1KKsQvjUJ4QEAAAAAamRwcDDDw8MpFAopFov1Loc6EMIDAAAAANRIX19fkqS7uzttbeLYVuSzDgAAAABQI1rRIIQHAAAAAKgRITxCeAAAAACAGjCUlUQIDwAAAABQE6sOZe3u7q53OdSJEB4AAAAAoAZGdsEXi0VDWVuYzzwAAAAAQA2MhPA9PT11roR6EsIDAAAAANTASAivFU1rE8IDAAAAAFSZoayMEMIDAAAAAFTZ0NBQhoaGkgjhW50QHgAAAACgylZtRWMoa2vz2QcAAAAAqDKtaBghhAcAAAAAqDIhPCOE8AAAAAAAVSaEZ4QQHgAAAACgigYHBzM4OJhkZU94WpsQHgAAAACgikZ2wReLxbS3t9e5GupNCA8AAAAAUEVa0bAqITwAAAAAQBWVSqUkQnhWEsIDAAAAAFRRX19fEiE8KwnhAQAAAACqZGhoaHQoqxCeRAgPAAAAAFA1hrLyt4TwAAAAAABVMhLCd3d317kSGoUQHgAAAACgSkZCeK1oGCGEBwAAAACoEiE8f0sIDwAAAABQBcPDwxkYGEgihOevhPAAAAAAAFUwsgu+q6srHR0dda6GRiGEBwAAAACoAq1oGI8QHgAAAACgCoTwjEcIDwAAAABQBUJ4xiOEBwAAAABYR8PDw+nv708ihGcsITwAAAAAwDoa2QXf2dlpKCtjCOEBAAAAANZRqVRKYhc8qxPCAwAAAACso76+viRCeFYnhAcAAAAAWEeGsjIRITwAAAAAwDowlJWnI4QHAAAAAFgHI/3gOzo60tnZWedqaDRCeAAAAACAdaAVDU9HCA8AAAAAsA5GQvienp46V0IjEsIDAAAAAKwDO+F5OkJ4AAAAAIC1VC6XR4eydnd317kaGpEQHgAAAABgLZVKpVQqFUNZmZAQHgAAAABgLa3aiqZQKNS5GhqREB4AAAAAYC3pB88zEcIDAAAAAKwlITzPRAgPAAAAALAWyuVySqVSEiE8E6trCH/WWWflBS94QTbccMNsvvnmWbBgQX73u98943nf+ta3stNOO6W7uzu77bZbrrzyyimoFgAAAADgr0aGsra3txvKyoTqGsJff/31efOb35yf/exnueaaazI4OJjDDjssK1asmPCcm266Kcccc0xe//rX57bbbsuCBQuyYMGC3HnnnVNYOQAAAADQ6gxlZU0UKpVKpd5FjPjzn/+czTffPNdff33233//cdccffTRWbFiRb73ve+NHtt3332z55575oILLnjGt9Hb25uZM2dm+fLlmTFjRtVqBwAAAABay5/+9Kc8/vjj2WyzzTJ79ux6l8MUmkzO3FA94ZcvX54k2XjjjSdcs2jRohxyyCFjjh1++OFZtGjRuOv7+/vT29s75gYAAAAAsK70g2dNNEwIXy6Xc8opp2S//fbL8573vAnXLVmyJLNmzRpzbNasWVmyZMm4688666zMnDlz9DZnzpyq1g0AAAAAtJ5KpTKmHQ1MpGFC+De/+c2588478/Wvf72qz3vaaadl+fLlo7cHH3ywqs8PAAAAALSekaGsbW1t6erqqnc5NLCOeheQJCeffHK+973v5YYbbsjWW2/9tGu32GKLLF26dMyxpUuXZostthh3fbFYTLFYrFqtAAAAAACGsrKm6roTvlKp5OSTT87ll1+ea6+9NnPnzn3Gc+bNm5eFCxeOOXbNNddk3rx5tSoTAAAAAGAMrWhYU3XdCf/mN785l156ab7zne9kww03HO3rPnPmzNGL99hjj81WW22Vs846K0nytre9LQcccEDOOeecvPzlL8/Xv/713HLLLfn85z9ft/cDAAAAAGgtQnjW1FrthP/jH/+Y97///TnmmGPyyCOPJEl+8IMf5K677prU85x//vlZvnx5DjzwwMyePXv09o1vfGN0zQMPPJDFixeP3p8/f34uvfTSfP7zn88ee+yRyy67LFdcccXTDnMFAAAAAKgWQ1mZjEKlUqlM5oTrr78+RxxxRPbbb7/ccMMN+c1vfpPnPOc5+djHPpZbbrkll112Wa1qrYre3t7MnDkzy5cvz4wZM+pdDgAAAADQZEqlUn7/+9+nra0tu+66q57wLWgyOfOkd8K/5z3vyUc+8pFcc801Y6b+HnzwwfnZz342+WoBAAAAAJqIoaxMxqRD+DvuuCP/8A//sNrxzTffPI8++mhVigIAAAAAaFRa0TAZkw7hn/WsZ43p0T7itttuy1ZbbVWVogAAAAAAGpUQnsmYdAj/T//0T/m///f/ZsmSJSkUCimXy/npT3+ad77znTn22GNrUSMAAAAAQEMwlJXJmnQI/9GPfjQ77bRT5syZkyeffDK77LJL9t9//8yfPz/vf//7a1EjAAAAAEBDGBgYSLlcTqFQSLFYrHc5NIFCpVKprM2JDzzwQO688848+eST2WuvvbL99ttXu7aamMzUWgAAAACAVf3lL3/Jgw8+mJ6enmy33Xb1Loc6mUzO3LG2b2SbbbbJNttss7anAwAAAAA0Ha1omKxJh/AnnHDC0z7+pS99aa2LAQAAAABoZEJ4JmvSIfxf/vKXMfcHBwdz5513ZtmyZTn44IOrVhgAAAAAQCMxlJW1MekQ/vLLL1/tWLlczkknnZTnPve5VSkKAAAAAKDRrDqUtbu7u97l0CTaqvIkbW059dRTc+6551bj6QAAAAAAGs7ILvju7u4UCoU6V0OzqEoInyR//OMfMzQ0VK2nAwAAAABoKFrRsDYm3Y7m1FNPHXO/Uqlk8eLF+f73v5/jjjuuaoUBAAAAADQSITxrY9Ih/G233TbmfltbWzbbbLOcc845OeGEE6pWGAAAAABAozCUlbU16RD+xz/+cS3qAAAAAABoWIODgxkeHjaUlUmrWk94AAAAAIDpatWhrG1tYlXW3BrthN9rr73WeNrvL37xi3UqCAAAAACg0WhFw9paoxB+wYIFNS4DAAAAAKBxCeFZW2sUwn/oQx+qdR0AAAAAAA3JUFbWheZFAAAAAABPY3BwMENDQ4ayslbWaCf8qoaHh3Puuefmm9/8Zh544IEMDAyMefzxxx+vWnEAAAAAAPVWKpWSJMVi0VBWJm3SV8wZZ5yRT37ykzn66KOzfPnynHrqqXnlK1+Ztra2nH766TUoEQAAAACgfrSiYV1MOoT/2te+li984Qt5xzvekY6OjhxzzDH54he/mA9+8IP52c9+VosaAQAAAADqRgjPuph0CL9kyZLstttuSZINNtggy5cvT5K84hWvyPe///3qVgcAAAAAUGd9fX1JhPCsnUmH8FtvvXUWL16cJHnuc5+bH/7wh0mSn//85ykWi9WtDgAAAACgjkaGsiYxlJW1MukQ/h/+4R+ycOHCJMlb3vKWfOADH8j222+fY489NieccELVCwQAAAAAqJeRVjTFYjHt7e11roZm1DHZEz72sY+N/v/RRx+dZz/72bnpppuy/fbb58gjj6xqcQAAAAAA9aQfPOtq0iF8qVQa82cX++67b/bdd9+qFgUAAAAA0AiE8KyrSbej2XzzzXPcccflmmuuSblcrkVNAAAAAAANQQjPupp0CH/JJZekr68vRx11VLbaaquccsopueWWW2pRGwAAAABA3QwNDWVwcDCJEJ61t1aDWb/1rW9l6dKl+ehHP5pf//rX2XfffbPDDjvkzDPPrEWNAAAAAABTzlBWqmHSIfyIDTfcMK973evywx/+ML/61a+y/vrr54wzzqhmbQAAAAAAdaMVDdWw1iF8qVTKN7/5zSxYsCB77713Hn/88bzrXe+qZm0AAAAAAHUjhKcaOiZ7wtVXX51LL700V1xxRTo6OvKqV70qP/zhD7P//vvXoj4AAAAAgLoQwlMNkw7h/+Ef/iGveMUr8uUvfzkve9nL0tnZWYu6AAAAAADqZnh4OAMDA0mE8KybSYfwS5cuzYYbbliLWgAAAAAAGsLILviuri5DWVknk+4JL4AHAAAAAKY7rWiolrUezAoAAAAAMF319fUlEcKz7oTwAAAAAAB/o1QqJRHCs+6E8AAAAAAAqxgeHk5/f38SITzrTggPAAAAALCKkX7wnZ2d6ejoqHM1NLtJX0ErVqzIxz72sSxcuDCPPPJIyuXymMfvueeeqhUHAAAAADDVDGWlmiYdwp944om5/vrr89rXvjazZ89OoVCoRV0AAAAAAHUhhKeaJh3C/+AHP8j3v//97LfffrWoBwAAAACgroTwVNOke8JvtNFG2XjjjWtRCwAAAABAXRnKSrVNOoT/8Ic/nA9+8IPp6+urRT0AAAAAAHVTKpWSrBzK2tnZWedqmA4m3Y7mnHPOyR//+MfMmjUr22677WoX4i9+8YuqFQcAAAAAMJW0oqHaJh3CL1iwoAZlAAAAAADUnxCeapt0CP+hD32oFnUAAAAAANSdEJ5qm3QIP+LWW2/Nb37zmyTJrrvumr322qtqRQEAAAAATLVyuTzaE14IT7VMOoR/5JFH8k//9E+57rrr8qxnPStJsmzZshx00EH5+te/ns0226zaNQIAAAAA1NzILviOjo50dKz1/mUYo22yJ7zlLW/JE088kbvuuiuPP/54Hn/88dx5553p7e3NW9/61lrUCAAAAABQc6u2oikUCnWuhuli0r/Oueqqq/KjH/0oO++88+ixXXbZJZ/97Gdz2GGHVbU4AAAAAICpohUNtTDpnfDlcjmdnZ2rHe/s7Ey5XK5KUQAAAAAAU81QVmph0iH8wQcfnLe97W15+OGHR4899NBDefvb356XvvSlVS0OAAAAAGAqGMpKrUw6hP/MZz6T3t7ebLvttnnuc5+b5z73uZk7d256e3vz6U9/uhY1AgAAAADUVKlUSqVSSXt7+7idQGBtTbon/Jw5c/KLX/wiP/rRj/Lb3/42SbLzzjvnkEMOqXpxAAAAAABTwVBWamXSIXySFAqFHHrooTn00EOrXQ8AAAAAwJTTD55aWaMQ/lOf+lT+5V/+Jd3d3fnUpz71tGvf+ta3VqUwAAAAAICpIoSnVgqVSqXyTIvmzp2bW265JZtssknmzp078ZMVCrnnnnuqWmC19fb2ZubMmVm+fHlmzJhR73IAAAAAgDorl8u56667UqlUsuOOO6ZYLNa7JBrcZHLmNdoJf++99477/wAAAAAAza6/v390KGtXV1e9y2GaaZvsCWeeeWb6+vpWO/7UU0/lzDPPrEpRAAAAAABTxVBWamnSIfwZZ5yRJ598crXjfX19OeOMM6pSFAAAAADAVBkJ4bu7u+tcCdPRpEP4SqUy7m+DfvnLX2bjjTeuSlEAAAAAAFNlJITv6empcyVMR2vUEz5JNtpooxQKhRQKheywww5jgvjh4eE8+eSTedOb3lSTIgEAAAAAaqFSqYxpRwPVtsYh/HnnnZdKpZITTjghZ5xxRmbOnDn6WFdXV7bddtvMmzevJkUCAAAAANTCyFDWtrY2Q1mpiTUO4Y877rgkydy5c7Pffvulo2ONTwUAAAAAaEiGslJrk+4Jv2LFiixcuHC141dffXV+8IMfVKUoAAAAAICpoBUNtTbpEP4973lPhoeHVzteqVTynve8pypFAQAAAABMhb6+viRCeGpn0iH8H/7wh+yyyy6rHd9pp51y9913V6UoAAAAAIBaq1QqKZVKSYTw1M6kQ/iZM2fmnnvuWe343XffnfXXX78qRQEAAAAA1Fp/f3/K5XIKhUKKxWK9y2GamnQIf9RRR+WUU07JH//4x9Fjd999d97xjnfk7//+76taHAAAAABArRjKylSYdAj/7//+71l//fWz0047Ze7cuZk7d2523nnnbLLJJvnEJz5RixoBAAAAAKrOUFamQsdkT5g5c2ZuuummXHPNNfnlL3+Z9dZbL7vvvnv233//WtQHAAAAAFATQnimwqRD+CQpFAo57LDDcthhh1W7HgAAAACAmqtUKkJ4psRahfALFy7MwoUL88gjj6RcLo957Etf+lJVCgMAAAAAqJWBgYHRoazd3d31LodpbNIh/BlnnJEzzzwzz3/+8zN79mwDCwAAAACApmMoK1Nl0iH8BRdckIsvvjivfe1ra1EPAAAAAEDNjYTwdsFTa22TPWFgYCDz58+vRS0AAAAAAFNiJITv6empcyVMd5MO4U888cRceumltagFAAAAAKDmDGVlKk26HU2pVMrnP//5/OhHP8ruu++ezs7OMY9/8pOfrFpxAAAAAADVNjg4mOHh4RQKhRSLxXqXwzQ36RD+V7/6Vfbcc88kyZ133jnmMQMMAAAAAIBGt2o/+La2STcLgUmZdAj/4x//uBZ1AAAAAABMCa1omEp+zQMAAAAAtBQhPFNp0jvhDzrooKdtO3PttdeuU0EAAAAAALViKCtTbdIh/Eg/+BGDg4O5/fbbc+edd+a4446rVl0AAAAAAFU3ODiYoaGhFAqFdHd317scWsCkQ/hzzz133OOnn356nnzyyXUuCAAAAACgVkqlUpKkWCwaysqUqNpV9prXvCZf+tKXqvV0AAAAAABV19fXl0QrGqZO1UL4RYsW+fMNAAAAAKCh6QfPVJt0O5pXvvKVY+5XKpUsXrw4t9xySz7wgQ9UrTAAAAAAgGoTwjPVJh3Cz5w5c8z9tra27LjjjjnzzDNz2GGHVa0wAAAAAIBqGhnKmkRXD6bMGofw99xzT+bOnZuLLrqolvUAAAAAANTEyC74YrGY9vb2OldDq1jjnvDbb799/vznP4/eP/roo7N06dKaFAUAAAAAUG0jIXxPT0+dK6GVrHEIX6lUxty/8sors2LFiqoXBAAAAABQC/rBUw9rHMLXwg033JAjjzwyW265ZQqFQq644oqnXX/dddelUCisdluyZMnUFAwAAAAANK2REF4/eKbSGofwI4H33x5bFytWrMgee+yRz372s5M673e/+10WL148ett8883XqQ4AAAAAYHobGhrK4OBgEjvhmVprPJi1Uqnk+OOPT7FYTJKUSqW86U1vyvrrrz9m3be//e01fuNHHHFEjjjiiDVeP2LzzTfPs571rEmfBwAAAAC0JkNZqZc1DuGPO+64Mfdf85rXVL2YNbXnnnumv78/z3ve83L66adnv/32m3Btf39/+vv7R+/39vZORYkAAAAAQAPRD556WeMQ/qKLLqplHWtk9uzZueCCC/L85z8//f39+eIXv5gDDzwwN998c/bee+9xzznrrLNyxhlnTHGlAAAAAEAjEcJTL4VKpVKpdxHJyv7yl19+eRYsWDCp8w444IBss802+cpXvjLu4+PthJ8zZ06WL1+eGTNmrEvJAAAAAECT+O1vf5uBgYE85znPyQYbbFDvcmhyvb29mTlz5hrlzGu8E75RvfCFL8yNN9444ePFYnG0jz0AAAAA0HqGhoYyMDCQxE54pl5bvQtYV7fffntmz55d7zIAAAAAgAY10oqmq6vLUFamXF13wj/55JO5++67R+/fe++9uf3227Pxxhtnm222yWmnnZaHHnooX/7yl5Mk5513XubOnZtdd901pVIpX/ziF3Pttdfmhz/8Yb3eBQAAAACgwekHTz3VNYS/5ZZbctBBB43eP/XUU5Mkxx13XC6++OIsXrw4DzzwwOjjAwMDecc73pGHHnooPT092X333fOjH/1ozHMAAAAAAKxKCE89Ncxg1qkymYb5AAAAAEDz+93vfpf+/v7MnTs3G264Yb3LYRqYTM7c9D3hAQAAAAAmMjw8nP7+/iR2wlMfQngAAAAAYNpadShrR0ddu3PTooTwAAAAAMC0pR889SaEBwAAAACmrZEQvru7u86V0KqE8AAAAADAtGUnPPUmhAcAAAAApiVDWWkEQngAAAAAYFoa2QXf2dmZzs7OOldDqxLCAwAAAADTUqlUSmIXPPUlhAcAAAAApiX94GkEQngAAAAAYFoSwtMIhPAAAAAAwLRTLpe1o6EhCOEBAAAAgGlnZBd8R0dHOjo66lwNrUwIDwAAAABMO6u2oikUCnWuhlYmhAcAAAAAph394GkUQngAAAAAYNoRwtMohPAAAAAAwLRSLpfT39+fRAhP/QnhAQAAAIBppVQqpVKppKOjI52dnfUuhxYnhAcAAAAAppWRVjTd3d2GslJ3QngAAAAAYFrRD55GIoQHAAAAAKaVkRC+p6enzpWAEB4AAAAAmEbK5XJKpVISO+FpDEJ4AAAAAGDa6O/vT6VSSXt7u6GsNAQhPAAAAAAwbazaD95QVhqBEB4AAAAAmDYMZaXRCOEBAAAAgGlDCE+jEcIDAAAAANNCpVIRwtNwhPAAAAAAwLRQKpVSqVTS1taWrq6uepcDSYTwAAAAAMA0YSgrjUgIDwAAAABMC1rR0IiE8AAAAADAtCCEpxEJ4QEAAACAplepVFIqlZII4WksQngAAAAAoOn19/enXC6nra0txWKx3uXAKCE8AAAAAND0RlrRdHd3G8pKQxHCAwAAAABNTz94GpUQHgAAAABoeiMhfE9PT50rgbGE8AAAAABAU6tUKmPa0UAjEcIDAAAAAE1tYGAg5XI5hUJBCE/DEcIDAAAAAE1t1X7whrLSaITwAAAAAEBTM5SVRiaEBwAAAACamhCeRiaEBwAAAACa1qpDWYXwNCIhPAAAAADQtAYHBzM8PJxCoZBisVjvcmA1QngAAAAAoGmN7ILv7u5OW5u4k8bjqgQAAAAAmlZfX18SrWhoXEJ4AAAAAKBp6QdPoxPCAwAAAABNyVBWmoEQHgAAAABoSqsOZe3u7q53OTAuITwAAAAA0JRGdsEXi0VDWWlYrkwAAAAAoCmNhPA9PT11rgQmJoQHAAAAAJrSSAivFQ2NTAgPAAAAADQdQ1lpFkJ4AAAAAKDpDA0NZWhoKIkQnsYmhAcAAAAAms6qrWgMZaWRuToBAAAAgKajFQ3NQggPAAAAADQdITzNQggPAAAAADQdITzNQggPAAAAADSVwcHBDA4OJlnZEx4amRAeAAAAAGgqI7vgi8Vi2tvb61wNPD0hPAAAAADQVLSioZkI4QEAAACAplIqlZII4WkOQngAAAAAoKnYCU8zEcIDAAAAAE1jaGgoAwMDSYTwNAchPAAAAADQNAxlpdkI4QEAAACApjESwnd3d9e5ElgzQngAAAAAoGnoB0+zEcIDAAAAAE1DCE+zEcIDAAAAAE1heHjYUFaajhAeAAAAAGgKI7vgu7q60tHRUedqYM0I4QEAAACApqAVDc1ICA8AAAAANAUhPM1ICA8AAAAANAUhPM1ICA8AAAAANLzh4eH09/cnEcLTXITwAAAAAEDDG9kF39nZaSgrTUUIDwAAAAA0vFKplMQueJqPEB4AAAAAaHh9fX1JhPA0HyE8AAAAANDwDGWlWQnhAQAAAICGZigrzUwIDwAAAAA0tJF+8B0dHens7KxzNTA5QngAAAAAoKFpRUMzE8IDAAAAAA1tJITv6empcyUweUJ4AAAAAKCh2QlPMxPCAwAAAAANq1wujw5l7e7urnM1MHlCeAAAAACgYZVKpVQqFUNZaVpCeAAAAACgYa3aiqZQKNS5Gpg8ITwAAAAA0LD0g6fZCeEBAAAAgIYlhKfZCeEBAAAAgIZULpdTKpWSCOFpXkJ4AAAAAKAh9ff3p1KppL293VBWmpYQHgAAAABoSH19fUkMZaW5CeEBAAAAgIakHzzTgRAeAAAAAGhI+sEzHQjhAQAAAICGU6lU7IRnWhDCAwAAAAANp1QqpVKppK2tLV1dXfUuB9aaEB4AAAAAaDir7oI3lJVmJoQHAAAAABqOVjRMF3UN4W+44YYceeSR2XLLLVMoFHLFFVc84znXXXdd9t577xSLxWy33Xa5+OKLa14nAAAAADC1hPBMF3UN4VesWJE99tgjn/3sZ9do/b333puXv/zlOeigg3L77bfnlFNOyYknnpirr766xpUCAAAAAFPFUFamk456vvEjjjgiRxxxxBqvv+CCCzJ37tycc845SZKdd945N954Y84999wcfvjhtSoTAAAAAJhC/f39o0NZi8VivcuBddJUPeEXLVqUQw45ZMyxww8/PIsWLZrwnP7+/vT29o65AQAAAACNy1BWppOmCuGXLFmSWbNmjTk2a9as9Pb2jn5h/q2zzjorM2fOHL3NmTNnKkoFAAAAANaSVjRMJ00Vwq+N0047LcuXLx+9Pfjgg/UuCQAAAAB4GkJ4ppO69oSfrC222CJLly4dc2zp0qWZMWPGhF+QxWJR3ygAAAAAaBKGsjLdNNVO+Hnz5mXhwoVjjl1zzTWZN29enSoCAAAAAKppYGAg5XI5hULB5lqmhbqG8E8++WRuv/323H777UmSe++9N7fffnseeOCBJCtbyRx77LGj69/0pjflnnvuybvf/e789re/zec+97l885vfzNvf/vZ6lA8AAAAAVJmhrEw3dQ3hb7nlluy1117Za6+9kiSnnnpq9tprr3zwgx9MkixevHg0kE+SuXPn5vvf/36uueaa7LHHHjnnnHPyxS9+MYcffnhd6gcAAAAAqquvry+JVjRMH4VKpVKpdxFTqbe3NzNnzszy5cszY8aMepcDAAAAAKzinnvuyZNPPpmtt946G2+8cb3LgXFNJmduqp7wAAAAAMD0ZSgr05EQHgAAAABoCAMDAxkeHk6hUEh3d3e9y4GqEMIDAAAAAA1hZBd8d3e3oaxMG0J4AAAAAKAhaEXDdCSEBwAAAAAaghCe6UgIDwAAAADUnaGsTFdCeAAAAACg7gYHBw1lZVoSwgMAAAAAdbfqUNa2NrEl04erGQAAAACoO61omK6E8AAAAABA3a26Ex6mEyE8AAAAAFBXqw5l7enpqXM1UF1CeAAAAACgrgYHBzM0NGQoK9OSEB4AAAAAqKtSqZQkKRaLhrIy7biiAQAAAIC6MpSV6UwIDwAAAADUlRCe6UwIDwAAAADUlRCe6UwIDwAAAADUzeDgYAYHB5PEUFamJSE8AAAAAFA3I7vgi8Vi2tvb61wNVJ8QHgAAAACoG61omO6E8AAAAABA3Qjhme6E8AAAAABA3Qjhme6E8AAAAABAXQwNDY0OZRXCM10J4QEAAACAujCUlVYghAcAAAAA6kIrGlqBEB4AAAAAqAshPK1ACA8AAAAA1IUQnlYghAcAAAAAptzw8HAGBgaSCOGZ3oTwAAAAAMCUG9kF39XVZSgr05oQHgAAAACYclrR0CqE8AAAAADAlOvr60sihGf6E8IDAAAAAFOuVColEcIz/QnhAQAAAIApNTw8nP7+/iRCeKY/ITwAAAAAMKVG+sF3dnamo6OjztVAbQnhAQAAAIApZSgrrUQIDwAAAABMKSE8rUQIDwAAAABMKSE8rUQIDwAAAABMGUNZaTVCeAAAAABgypRKpSQrh7J2dnbWuRqoPSE8AAAAADBltKKh1QjhAQAAAIApI4Sn1QjhAQAAAIApI4Sn1QjhAQAAAIApUS6XDWWl5QjhAQAAAIApUSqVUqlU0tHRkY6OjnqXA1NCCA8AAAAATIm+vr4kK3fBFwqFOlcDU0MIDwAAAABMiVKplEQrGlqLEB4AAAAAmBKGstKKhPAAAAAAQM2Vy2U74WlJQngAAAAAoOZGhrK2t7ens7Oz3uXAlBHCAwAAAAA1t2orGkNZaSVCeAAAAACg5vSDp1UJ4QEAAACAmhPC06qE8AAAAABATVUqFUNZaVlCeAAAAACgplYdytrV1VXvcmBKCeEBAAAAgJoylJVWJoQHAAAAAGpqJITv7u6ucyUw9YTwAAAAAEBNjYTwPT09da4Epp4QHgAAAAComUqlMqYdDbQaITwAAAAAUDP9/f2pVCppa2szlJWWJIQHAAAAAGrGUFZanRAeAAAAAKgZrWhodUJ4AAAAAKBmhPC0OiE8AAAAAFAThrKCEB4AAAAAqJH+/v6Uy+UUCoUUi8V6lwN1IYQHAAAAAGrCUFYQwgMAAAAANaIVDQjhAQAAAIAaEcKDEB4AAAAAqAFDWWElITwAAAAAUHUDAwOjQ1m7u7vrXQ7UjRAeAAAAAKg6Q1lhJSE8AAAAAFB1IyG8XfC0OiE8AAAAAFB1+sHDSkJ4AAAAAKCqVh3K2tPTU+dqoL6E8AAAAABAVQ0ODmZ4eDiFQiHFYrHe5UBdCeEBAAAAgKpatR98W5sIktbmKwAAAAAAqCr94OGvhPAAAAAAQFUJ4eGvhPAAAAAAQNWsOpRVCA9CeAAAAACgigYHBzM0NJRCoZDu7u56lwN1J4QHAAAAAKqmVColSYrFoqGsECE8AAAAAFBFfX19SbSigRFCeAAAAACgavSDh7GE8AAAAABA1QjhYSwhPAAAAABQFSNDWZMYygr/SwgPAAAAAFTFyC74YrGY9vb2OlcDjUEIDwAAAABUxUgI39PTU+dKoHEI4QEAAACAqtAPHlYnhAcAAAAAqmIkhNcPHv5KCA8AAAAArLOhoaEMDg4msRMeViWEBwAAAADWmaGsMD4hPAAAAACwzvSDh/EJ4QEAAACAdSaEh/EJ4QEAAACAdSaEh/EJ4QEAAACAdTI0NJSBgYEkQnj4W0J4AAAAAGCdjOyC7+rqMpQV/kZDhPCf/exns+2226a7uzsvetGL8j//8z8Trr344otTKBTG3Lq7u6ewWgAAAABgVVrRwMTqHsJ/4xvfyKmnnpoPfehD+cUvfpE99tgjhx9+eB555JEJz5kxY0YWL148erv//vunsGIAAAAAYFVCeJhY3UP4T37yk3nDG96Q173uddlll11ywQUXpKenJ1/60pcmPKdQKGSLLbYYvc2aNWsKKwYAAAAAVlUqlZII4WE8dQ3hBwYGcuutt+aQQw4ZPdbW1pZDDjkkixYtmvC8J598Ms9+9rMzZ86cHHXUUbnrrrsmXNvf35/e3t4xNwAAAACgOoaHh9Pf359ECA/jqWsI/+ijj2Z4eHi1neyzZs3KkiVLxj1nxx13zJe+9KV85zvfyVe/+tWUy+XMnz8/f/rTn8Zdf9ZZZ2XmzJmjtzlz5lT9/QAAAACAVrXqUNaOjo46VwONp+7taCZr3rx5OfbYY7PnnnvmgAMOyLe//e1sttlmufDCC8ddf9ppp2X58uWjtwcffHCKKwYAAACA6Us/eHh6df3V1Kabbpr29vYsXbp0zPGlS5dmiy22WKPn6OzszF577ZW777573MeLxWKKxeI61woAAAAArG4khO/u7q5zJdCY6roTvqurK/vss08WLlw4eqxcLmfhwoWZN2/eGj3H8PBw7rjjjsyePbtWZQIAAAAAE7ATHp5e3Zs0nXrqqTnuuOPy/Oc/Py984Qtz3nnnZcWKFXnd616XJDn22GOz1VZb5ayzzkqSnHnmmdl3332z3XbbZdmyZTn77LNz//3358QTT6znuwEAAAAALcdQVnhmdQ/hjz766Pz5z3/OBz/4wSxZsiR77rlnrrrqqtFhrQ888EDa2v66Yf8vf/lL3vCGN2TJkiXZaKONss8+++Smm27KLrvsUq93AQAAAABaUqlUSrKyZXRnZ2edq4HGVKhUKpV6FzGVent7M3PmzCxfvjwzZsyodzkAAAAA0LQeffTRPPzww5kxY0a23XbbepcDU2YyOXNde8IDAAAAAM1LP3h4ZkJ4AAAAAGCtCOHhmQnhAQAAAIBJK5fLoz3hhfAwMSE8AAAAADBpI7vgOzo60tHRUedqoHEJ4QEAAACASVu1FU2hUKhzNdC4hPAAAAAAwKRpRQNrRggPAAAAAExaX19fEiE8PBMhPAAAAAAwKeVyOf39/UmE8PBMhPAAAAAAwKSUSqVUKpV0dHSks7Oz3uVAQxPCAwAAAACTMjKUtbu721BWeAZCeAAAAABgUkZCeK1o4JkJ4QEAAACASRkJ4Xt6eupcCTQ+ITwAAAAAsMbK5XJKpVISO+FhTQjhAQAAAIA11t/fn0qlkvb2dkNZYQ0I4QEAAACANbZqP3hDWeGZCeEBAAAAgDVmKCtMjhAeAAAAAFhjQniYHCE8AAAAALBGKpWKEB4mSQgPAAAAAKyRUqmUSqWStra2dHV11bscaApCeAAAAABgjRjKCpMnhAcAAAAA1ohWNDB5QngAAAAAYI0I4WHyhPAAAAAAwDOqVCoplUpJhPAwGUJ4AAAAAOAZ9ff3p1wup62tLcVisd7lQNMQwgMAAAAAz2ikFU13d7ehrDAJQngAAAAA4BnpBw9rRwgPAAAAADwjITysHSE8AAAAAPC0KpWKEB7WkhAeAAAAAHhaAwMDKZfLKRQK6e7urnc50FSE8AAAAADA01p1F7yhrDA5QngAAAAA4GlpRQNrTwgPAAAAADwtITysPSE8AAAAADAhQ1lh3QjhAQAAAIAJDQ4OZnh4OIVCIcVisd7lQNMRwgMAAAAAExrZBd/d3Z22NnEiTJavGgAAAABgQn19fUm0ooG1JYQHAAAAACakHzysGyE8AAAAADAuQ1lh3QnhAQAAAIBxrTqUtbu7u97lQFMSwgMAAAAA4xrZBV8sFg1lhbXkKwcAAAAAGNdICN/T01PnSqB5CeEBAAAAgHGNhPBa0cDaE8IDAAAAAKsxlBWqQwgPAAAAAKxmaGgoQ0NDSYTwsC6E8AAAAADAalZtRWMoK6w9Xz0AAAAAwGq0ooHqEMIDAAAAAKsRwkN1COEBAAAAgNUI4aE6hPAAAAAAwBiDg4MZHBxMsrInPLD2hPAAAAAAwBgju+CLxWLa29vrXA00NyE8AAAAADCGVjRQPUJ4AAAAAGCMUqmURAgP1SCEBwAAAADGsBMeqkcIDwAAAACMGhoaysDAQBIhPFSDEB4AAAAAGGUoK1SXEB4AAAAAGDUSwnd3d9e5EpgehPAAAAAAwCj94KG6hPAAAAAAwCghPFSXEB4AAAAASJIMDw8bygpVJoQHAAAAAJL8dRd8V1dXOjo66lwNTA9CeAAAAAAgiVY0UAtCeAAAAAAgiRAeakEIDwAAAAAkEcJDLQjhAQAAAIAMDw+nv78/iRAeqkkIDwAAAACM7oLv7Ow0lBWqSAgPAAAAAKRUKiWxCx6qTQgPAAAAAOgHDzUihAcAAAAA0tfXl0QID9UmhAcAAACAFmcoK9SOEB4AAAAAWtxIP/iOjo50dnbWuRqYXoTwAAAAANDi9IOH2hHCAwAAAECLE8JD7QjhAQAAAKDFjYTwPT09da4Eph8hPAAAAAC0sHK5PDqUtbu7u87VwPQjhAcAAACAFlYqlVKpVAxlhRoRwgMAAABAC1u1H3yhUKhzNTD9COEBAAAAoIUZygq1JYQHAAAAgBYmhIfaEsIDAAAAQIsql8splUpJhPBQK0J4AAAAAGhR/f39qVQqaW9vN5QVakQIDwAAAAAtqq+vL4mhrFBLQngAAAAAaFH6wUPtCeEBAAAAoEXpBw+1J4QHAAAAgBZUqVTshIcpIIQHAAAAgBZUKpVSqVTS1taWrq6uepcD05YQHgAAAABa0Kq74A1lhdoRwgMAAABAC9KKBqaGEB4AAAAAWpAQHqaGEB4AAAAAWoyhrDB1hPAAAAAA0GL6+/tHh7IWi8V6lwPTmhAeAAAAAFqMoawwdYTwAAAAANBitKKBqSOEBwAAAIAWI4SHqSOEBwAAAIAWYigrTK2OehfAFBseTn7yk2Tx4mT27OQlL0na2+tdFc3ENcQ6Gh4ezp0/+W0eW/yXbDJ7ozzvJTul3TXEJLiGWFeVSiWPPfZY+vv7UywWs8kmm+iDyqS4hlgXlcpwMnBLUv5z0rZZ0vX8FAq+j7HmXEOsq0qlkiVLluSJJ55IR0dHurq66l0STHsNEcJ/9rOfzdlnn50lS5Zkjz32yKc//em88IUvnHD9t771rXzgAx/Ifffdl+233z4f//jH87KXvWwKK25S3/528ra3JX/601+Pbb118h//kbzylfWri+bhGmId/eTbN+dzp1yUR//02OixTbfeJP963uvykle+qI6V0SxcQ6yrxYsX56677kqpVBo91t3dnV133TWzZ8+uY2U0C9cQ66JSujqV3n9Lykv+erBti2TG+1LoPrx+hdE0XEOsq/G+j1177bW+j0GN1b0dzTe+8Y2ceuqp+dCHPpRf/OIX2WOPPXL44YfnkUceGXf9TTfdlGOOOSavf/3rc9ttt2XBggVZsGBB7rzzzimuvMl8+9vJq141NjxNkoceWnn829+uT100D9cQ6+gn3745Z776E2PC0yR59KHHcuarP5GffPvmOlVGs3ANsa4WL16cW2+9dcw/OpOkVCrl1ltvzeLFi+tUGc3CNcS6qJSuTmXZW8eGp0lSXprKsremUrq6PoXRNFxDrCvfx6B+CpVKpVLPAl70ohflBS94QT7zmc8kScrlcubMmZO3vOUtec973rPa+qOPPjorVqzI9773vdFj++67b/bcc89ccMEFz/j2ent7M3PmzCxfvjwzZsyo3jvSyIaHk223HROe9nX+9eFKkmy5ZYbvvDNpb097oT3FjuJf1w72TfjUbYW2dHd0r9XapwafSiXjX36FFLJe53prtbY0VEq5Up6wjp7OnrVa2z/Un+HKcFXWrtex3uifLA8MD2SoPFSVtd0d3WkrrPzd2uDwYAbLg1VZW0xHunbYMfnTnzLUlgz+zV86rnoNFbt60t7WvkbP29XelY62jkmvHSoPZWB4YMK1nW2d6WzvnPTa4fJw+of7q762XCmnNFSqytqOto50ta/8U8FKpZKnhp6qytrJfN2vzWvE8HA5x2/3lixdOv4vWFNINttyk3z5t59Le/vK69JrRBO9RrQX1/jrfjJrV/26Lw3053W7vDWPPfz4uGsL5bbM2nKzXPSHT6VSKHuNSHO9RqzN2sm+RpQr5dxwww3pH+hfbW2xbWW93d3dedF+L5rweROvEWuzdipeI6bi54hKpbLaNdRR6EhHYeXzDleG097Vnpe85CXjtqbxGjH5tdPq3xqV4RT+8vKk/EgKo2v/uieuNFzJcDZPZaPvJeO0FfEaMfm10+7fGqtcQ11thXS2r/y8lSuVlIYqqaSQtK1+DXmNGH9tw71GPMPaavwcMfJ9LIMZ/bofLA9mOH9d213szkEHHTT6uNeI1dc27GvEBGtr/XPEqtdeK5pMzlzXdjQDAwO59dZbc9ppp40ea2tryyGHHJJFixaNe86iRYty6qmnjjl2+OGH54orrhh3fX9/f/r7/3ph9vb2rnvhzeYnP1lt9/J2b/3bRQ9n+Ny5qXR15YWbvTAfff5HRx95+Q9fPuEX9+4b755PvuiTo/df+aNXpndw/I/xDjN3yOfmf270/v933f+XR54aP5B79gbPzn++5D9H77/+J6/P/U/eP+7azdfbPJceeOno/X+96V/z++W/H3ftjM4Z+fYhf92xferNp+ZXj/9q3LXF9mK+f9j3R++/95b35n/+/D/jrk2SHx3xo9H/P/O2M3PDkhsmXPvdQ7+b9TpWfqP+91/9e3740A8nXHvZwZflWcVnJUk+dden8t8P/PeEa796wFezRc8WSZILf3thvnXvtyZc+8UXfzHbbrhtkuSSP1ySr9z9lQnX/ueMk3Lk/15DX9gn+cj+461aeQ2d/eJPZc9N9kySXHH/FfnMrz8z4fN+ZJ+PZN/N902SXPWnq/KJOz4x4dr37/n+HDj7wCTJdYuvy0du/8iEa9+52zvzd1v/XZLkZ4/8LO+/9f0Trj15l5Oz4NkLkiS3P3Z73vk/75xw7Rt2fEOOfs7RSZLfLvttTl508oRrX7vda3Pc9sclSe574r6ceOOJE6599dxX5407vTFJsqRvSV5z/WsmXPv32/x93rrryi/gZf3L8qprXzXh2sO2Oizv3v3dSZKnhp7KkdccOeHa/bfYPx/c64Oj9w/5wSETrl2b14i7f35fHn3o8fzPSddmcL3xfwjZcMnMfP+rf5/tXrBtEq8RzfQa8Zl5n8lOz9opSfKNe76RL/zuCxOu/cQLP7FWrxGXXP+V/PerLp1w7c7f2zttv2/L9796Vf609X1eI9JcrxEjavlzxH1P3JdyefV/6G7SuUk+ufPKGkqlUg7/0uG5+8m7x31erxF/1WivEVPxc0SlUlntGnrtlq/NIZuu/Hr4/Yrf52N3fCxtt7WNG8J7jVipUV8jav1zRCGDaW97YvSx9Tra8odjth29/y/XL821D92b4fJzUskqO6b+l9eIlRr5NWI81fw5YtVr6NTdN8qpe2yUJPnD8sG89Lsj/95f/RryGrFSo79G/K1a/Bwx8n3swuddmO7Cyl9IXPzQxbnxLzeOWdf5q860ta0MyO846Y5s0rNJkuT0607PxbdfPGENN594c+bMnJMk+diNH8v5t5w/4dofH/fj7LjpjkmST938qZyz6JwJ1175z1dmzy32TJJ84RdfyEdumPjr87J/vCzz58xPknz1V1/N+65934Rrv/wPX84hz1l5LX77N9/O269++4RrL3zFhTlyx5XX+A/+8IO88XtvnHDtuYefm6Oft/Jr+br7rsuxlx874dp/O/jf8rq9Xpckufmhm/Oqb078Nff+/d+ff33BvyZJ7njkjrzsaxO35X7HvHfkHfPfkST5w2N/yEGXHDTh2pOef1I+cMAHkiQP9T6UF31x4hafx+95fD760pVfn48/9Xh2O3+3PPyOhydcz1h1bUfz6KOPZnh4OLNmzRpzfNasWVmyZMm45yxZsmRS688666zMnDlz9DZnzpzqFN9M1vTPicb5hykkSceyZWu20DXEBHoffbKq62g9fU9MvCNjVa4h1lWd/0gUmLbW9LXFaxATcQ0BNLO6tqN5+OGHs9VWW+Wmm27KvHnzRo+/+93vzvXXX5+bb169t2tXV1cuueSSHHPMMaPHPve5z+WMM87I0qVLV1s/3k74OXPmtFY7muuuSw4a+1uvvtU3V6Ry5ZXJ/vv7868J1rb0n5HfuCgdLz105dpx2tGMqFx5ZYoHHerPv+LPyEeMfN3/8rq78q6XnpHhjomv31QK+eQPz8weB+6axGtEU71GTMGfiN5y7e35v0ecOeHawnBb2iptOXvhh7Lr/jt6jUhzvUaszdrJvkY8+tij+Z+fr76DbNV2NEmy5/P3zEYbbzRhHV4jJr92uvwZ+WOPPbbaNfS37WgGK4N54QtemE022eRpn9drROO9RtT654jKwM+Tv5z4N2v/uieuf7ic4XKSjb6YQtcLnvZ5vUY05mvEM61d158jVr2GOsdpRzPqb64hrxHjr22014hnWluNnyNGvo8VC8UJ29EkyQtf8MJsuummSbxGjLe2UV8jJlqrHU1tTaYdTV1D+IGBgfT09OSyyy7LggULRo8fd9xxWbZsWb7zne+sds4222yTU089NaeccsrosQ996EO54oor8stf/vIZ32ZL94R/6KFkvE93oZBsvXVy771J+wTpKq3NNcQ6Gh4ezmvmvjmPPvTY+JtzCslmW2+Sr9zz2bS7hhiHa4h1ValUsnDhwtUGka2qu7s7L33pS8dtJQKuIdZFpTKcyp8PSspLM+E3srYtUtjs2hTG6QkPriHWle9jUH2TyZnr2o6mq6sr++yzTxYuXDh6rFwuZ+HChWN2xq9q3rx5Y9YnyTXXXDPherIyFP2P/1j5/3/7Qjpy/7zzhKdMzDXEOmpvb8+/nrey113+9ue5/71/0rmvE54yIdcQ66pQKGTXXXd92jW77rqrf3QyIdcQ66JQaE9hxkhv4vG/kRVmvFd4yoRcQ6wr38egvuoawifJqaeemi984Qu55JJL8pvf/CYnnXRSVqxYkde9buU/tI899tgxg1vf9ra35aqrrso555yT3/72tzn99NNzyy235OSTJx5sRJJXvjK57LJkq63GHt9665XHX/nK+tRF83AN8f+3d+9BVdYJGMefA4ogglckUAEvqeQKCngB09RUhspNc9LITbxtteEqObirec9LaplWlFrriOu91tBddwSRzUsOGqg4oqRgNzLwnoomGrz7R+MZT2hgp9Prke9nhhnP77yX58BPlOf8eF87dX+qi6Z9lKhGTWx/Rd+naUNN+yhR3Z+68w1gAIk5BPv5+fkpPDxc7u7uNuPu7u4KDw+Xn5+fScngLJhDsIfFPVqWem9LLrb3OJPLA7LUe1sW92hzgsFpMIdgL/4dA8xj6uVobkpKStLrr7+u4uJidejQQW+//ba6dPnpB+mePXsqKChIycnJ1u0/+ugjTZkyRV999ZUefPBBLViwQI89due7At+qWl6O5lZlZdLu3T/drNXPT+rendXLuDvMIdiprKxMubs/17miC2roV19/6N6W1cu4K8wh2MswDJ07d06lpaWqVauWGjZsyKov3BXmEOxhGGXS9Wyp/Izk4iO5RbB6GXeFOQR78e8Y8NtwmmvCm6Hal/AAAAAAAAAAALs4zTXhAQAAAAAAAAC4n1HCAwAAAAAAAADgIJTwAAAAAAAAAAA4CCU8AAAAAAAAAAAOQgkPAAAAAAAAAICDUMIDAAAAAAAAAOAglPAAAAAAAAAAADgIJTwAAAAAAAAAAA5CCQ8AAAAAAAAAgINQwgMAAAAAAAAA4CCU8AAAAAAAAAAAOAglPAAAAAAAAAAADkIJDwAAAAAAAACAg1DCAwAAAAAAAADgIJTwAAAAAAAAAAA4CCU8AAAAAAAAAAAOQgkPAAAAAAAAAICDUMIDAAAAAAAAAOAglPAAAAAAAAAAADgIJTwAAAAAAAAAAA5CCQ8AAAAAAAAAgINQwgMAAAAAAAAA4CCU8AAAAAAAAAAAOAglPAAAAAAAAAAADkIJDwAAAAAAAACAg1DCAwAAAAAAAADgIJTwAAAAAAAAAAA4CCU8AAAAAAAAAAAOQgkPAAAAAAAAAICD1DA7wO/NMAxJ0qVLl0xOAgAAAAAAAABwRjf75Zt98y+pdiX85cuXJUnNmjUzOQkAAAAAAAAAwJldvnxZdevW/cVtLEZVqvr7SHl5ub777jt5eXnJYrGYHccUly5dUrNmzVRYWChvb2+z48AJMYdgL+YQ7MUcgr2YQ7AXcwj2YP7AXswh2Is5BHsxh35aAX/58mX5+/vLxeWXr/pe7VbCu7i4qGnTpmbHuCd4e3tX278k+G0wh2Av5hDsxRyCvZhDsBdzCPZg/sBezCHYizkEe1X3OVTZCvibuDErAAAAAAAAAAAOQgkPAAAAAAAAAICDUMJXQ7Vq1dL06dNVq1Yts6PASTGHYC/mEOzFHIK9mEOwF3MI9mD+wF7MIdiLOQR7MYfuTrW7MSsAAAAAAAAAAL8XVsIDAAAAAAAAAOAglPAAAAAAAAAAADgIJTwAAAAAAAAAAA5CCQ8AAAAAAAAAgINQwldD7777roKCguTu7q4uXbros88+MzsSnMSuXbvUv39/+fv7y2KxaNOmTWZHgpN57bXX1KlTJ3l5ealx48YaMGCAjh07ZnYsOJElS5YoJCRE3t7e8vb2VmRkpLZu3Wp2LDipefPmyWKxKCEhwewocBIzZsyQxWKx+Wjbtq3ZseBkTp48qT/96U9q2LChPDw81L59e2VnZ5sdC04iKCiowvchi8Wi+Ph4s6PBSZSVlWnq1Klq3ry5PDw81LJlS82aNUuGYZgdDU7i8uXLSkhIUGBgoDw8PBQVFaWsrCyzY93zKOGrmQ0bNmj8+PGaPn26Dhw4oNDQUEVHR+v06dNmR4MTuHLlikJDQ/Xuu++aHQVOaufOnYqPj9fevXuVnp6uGzduqF+/frpy5YrZ0eAkmjZtqnnz5mn//v3Kzs5W79699eSTT+rIkSNmR4OTycrK0rJlyxQSEmJ2FDiZdu3aqaioyPrx6aefmh0JTuTChQvq1q2batasqa1bt+ro0aNauHCh6tevb3Y0OImsrCyb70Hp6emSpKefftrkZHAW8+fP15IlS5SUlKS8vDzNnz9fCxYs0DvvvGN2NDiJ0aNHKz09XatWrdLhw4fVr18/9enTRydPnjQ72j3NYvBWV7XSpUsXderUSUlJSZKk8vJyNWvWTH/96181ceJEk9PBmVgsFqWkpGjAgAFmR4ETO3PmjBo3bqydO3eqR48eZseBk2rQoIFef/11jRo1yuwocBIlJSUKCwvTe++9p9mzZ6tDhw5avHix2bHgBGbMmKFNmzYpJyfH7ChwUhMnTtSePXu0e/dus6PgPpGQkKAtW7YoPz9fFovF7DhwAk888YR8fX21fPly69igQYPk4eGh1atXm5gMzuCHH36Ql5eXNm/erMcff9w6Hh4erpiYGM2ePdvEdPc2VsJXI9evX9f+/fvVp08f65iLi4v69OmjzMxME5MBqK4uXrwo6acSFbhbZWVlWr9+va5cuaLIyEiz48CJxMfH6/HHH7f5PxFQVfn5+fL391eLFi00dOhQffPNN2ZHghP597//rYiICD399NNq3LixOnbsqA8++MDsWHBS169f1+rVqzVy5EgKeFRZVFSUMjIydPz4cUnSoUOH9OmnnyomJsbkZHAGP/74o8rKyuTu7m4z7uHhwW8HVqKG2QHw+zl79qzKysrk6+trM+7r66vPP//cpFQAqqvy8nIlJCSoW7du+sMf/mB2HDiRw4cPKzIyUteuXVOdOnWUkpKihx56yOxYcBLr16/XgQMHuG4lfpUuXbooOTlZbdq0UVFRkWbOnKnu3bsrNzdXXl5eZseDE/jiiy+0ZMkSjR8/Xq+88oqysrI0duxYubm5KS4uzux4cDKbNm3S999/r+HDh5sdBU5k4sSJunTpktq2bStXV1eVlZVpzpw5Gjp0qNnR4AS8vLwUGRmpWbNmKTg4WL6+vlq3bp0yMzPVqlUrs+Pd0yjhAQCmiI+PV25uLu+W4661adNGOTk5unjxov71r38pLi5OO3fupIhHpQoLCzVu3Dilp6dXWL0DVMWtqwRDQkLUpUsXBQYG6sMPP+SSWKiS8vJyRUREaO7cuZKkjh07Kjc3V0uXLqWEx11bvny5YmJi5O/vb3YUOJEPP/xQa9as0dq1a9WuXTvl5OQoISFB/v7+fB9ClaxatUojR45UkyZN5OrqqrCwMMXGxmr//v1mR7unUcJXI40aNZKrq6tOnTplM37q1Ck98MADJqUCUB2NGTNGW7Zs0a5du9S0aVOz48DJuLm5WVdZhIeHKysrS2+99ZaWLVtmcjLc6/bv36/Tp08rLCzMOlZWVqZdu3YpKSlJpaWlcnV1NTEhnE29evXUunVrFRQUmB0FTsLPz6/Cm8bBwcHauHGjSYngrL7++mtt375dH3/8sdlR4GQmTJigiRMn6plnnpEktW/fXl9//bVee+01SnhUScuWLbVz505duXJFly5dkp+fn4YMGaIWLVqYHe2exjXhqxE3NzeFh4crIyPDOlZeXq6MjAyupQvgd2EYhsaMGaOUlBT973//U/Pmzc2OhPtAeXm5SktLzY4BJ/Doo4/q8OHDysnJsX5ERERo6NChysnJoYDHXSspKdGJEyfk5+dndhQ4iW7duunYsWM2Y8ePH1dgYKBJieCsVqxYocaNG9vcGBGoiqtXr8rFxbYOdHV1VXl5uUmJ4Kw8PT3l5+enCxcuKC0tTU8++aTZke5prISvZsaPH6+4uDhFRESoc+fOWrx4sa5cuaIRI0aYHQ1OoKSkxGal15dffqmcnBw1aNBAAQEBJiaDs4iPj9fatWu1efNmeXl5qbi4WJJUt25deXh4mJwOzmDSpEmKiYlRQECALl++rLVr12rHjh1KS0szOxqcgJeXV4V7UHh6eqphw4bcmwJVkpiYqP79+yswMFDfffedpk+fLldXV8XGxpodDU7i5ZdfVlRUlObOnavBgwfrs88+0/vvv6/333/f7GhwIuXl5VqxYoXi4uJUowa1Du5O//79NWfOHAUEBKhdu3Y6ePCg3nzzTY0cOdLsaHASaWlpMgxDbdq0UUFBgSZMmKC2bdvSLVaC79bVzJAhQ3TmzBlNmzZNxcXF6tChg1JTUyvcrBW4nezsbPXq1cv6ePz48ZKkuLg4JScnm5QKzmTJkiWSpJ49e9qMr1ixghtKoUpOnz6tYcOGqaioSHXr1lVISIjS0tLUt29fs6MBqAa+/fZbxcbG6ty5c/Lx8dHDDz+svXv3ysfHx+xocBKdOnVSSkqKJk2apFdffVXNmzfX4sWLuSEi7sr27dv1zTffUJriV3nnnXc0depUvfTSSzp9+rT8/f31wgsvaNq0aWZHg5O4ePGiJk2apG+//VYNGjTQoEGDNGfOHNWsWdPsaPc0i2EYhtkhAAAAAAAAAAC4H3FNeAAAAAAAAAAAHIQSHgAAAAAAAAAAB6GEBwAAAAAAAADAQSjhAQAAAAAAAABwEEp4AAAAAAAAAAAchBIeAAAAAAAAAAAHoYQHAAAAAAAAAMBBKOEBAACAXyk5OVn16tUz7fwWi0WbNm0y5dxBQUFavHixXceYMWOGOnTo8JvkAQAAAO5VlPAAAACoNgoLCzVy5Ej5+/vLzc1NgYGBGjdunM6dO2d2tHvWnd5oyMrK0vPPP2/XsRMTE5WRkWHXMQAAAIB7HSU8AAAAqoUvvvhCERERys/P17p161RQUKClS5cqIyNDkZGROn/+/B33vX79usNy3bhxw2HHdiQfHx/Vrl3brmPUqVNHDRs2/I0SVVTVr5sjv74AAAAAJTwAAACqhfj4eLm5uWnbtm165JFHFBAQoJiYGG3fvl0nT57U5MmTrdsGBQVp1qxZGjZsmLy9va0rvpOTkxUQEKDatWtr4MCBt11Bv3nzZoWFhcnd3V0tWrTQzJkz9eOPP1qft1gsWrJkif74xz/K09NTc+bMqdJ++fn56tGjh9zd3fXQQw8pPT290tdcWlqqsWPHqnHjxnJ3d9fDDz+srKws6/M7duyQxWLRf//7X4WEhMjd3V1du3ZVbm6u9fkRI0bo4sWLslgsslgsmjFjhvVzdOvlaCwWi5YtW6YnnnhCtWvXVnBwsDIzM1VQUKCePXvK09NTUVFROnHihHWfn1+O5uY5bv0ICgqyPp+bm6uYmBjVqVNHvr6+eu6553T27Fnr8z179tSYMWOUkJCgRo0aKTo6+rafl+HDh2vAgAGaM2eO/P391aZNG+v5f355n3r16ik5OVmS9NVXX8lisejjjz9Wr169VLt2bYWGhiozM7PSrwUAAACqL0p4AAAA3PfOnz+vtLQ0vfTSS/Lw8LB57oEHHtDQoUO1YcMGGYZhHX/jjTcUGhqqgwcPaurUqdq3b59GjRqlMWPGKCcnR7169dLs2bNtjrV7924NGzZM48aN09GjR7Vs2TIlJydbi/abZsyYoYEDB+rw4cMaOXJkpfuVl5frqaeekpubm/bt26elS5fq73//e6Wv+29/+5s2btyolStX6sCBA2rVqpWio6MrrPqfMGGCFi5cqKysLPn4+Kh///66ceOGoqKitHjxYnl7e6uoqEhFRUVKTEy84/luvnGRk5Ojtm3b6tlnn9ULL7ygSZMmKTs7W4ZhaMyYMXfc/+Y5ioqKVFBQoFatWqlHjx6SpO+//169e/dWx44dlZ2drdTUVJ06dUqDBw+2OcbKlSvl5uamPXv2aOnSpXc8V0ZGho4dO6b09HRt2bKl0s/lrSZPnqzExETl5OSodevWio2NtXnDBAAAALBhAAAAAPe5vXv3GpKMlJSU2z7/5ptvGpKMU6dOGYZhGIGBgcaAAQNstomNjTUee+wxm7EhQ4YYdevWtT5+9NFHjblz59pss2rVKsPPz8/6WJKRkJBgs01l+6WlpRk1atQwTp48aX1+69atv/iaSkpKjJo1axpr1qyxjl2/ft3w9/c3FixYYBiGYXzyySeGJGP9+vXWbc6dO2d4eHgYGzZsMAzDMFasWGHzGm8KDAw0Fi1aZPO6pkyZYn2cmZlpSDKWL19uHVu3bp3h7u5ufTx9+nQjNDS0wrHLy8uNgQMHGuHh4cbVq1cNwzCMWbNmGf369bPZrrCw0JBkHDt2zDAMw3jkkUeMjh073vbzcau4uDjD19fXKC0ttRm/3eezbt26xooVKwzDMIwvv/zSkGT84x//sD5/5MgRQ5KRl5dX6XkBAABQPdUwqfsHAAAAfnfGLSvdKxMREWHzOC8vTwMHDrQZi4yMVGpqqvXxoUOHtGfPHpuV72VlZbp27ZquXr1qvYb6z49d2X55eXlq1qyZ/P39bc79S06cOKEbN26oW7du1rGaNWuqc+fOysvLq/A6bmrQoIHatGlTYZuqCAkJsf7Z19dXktS+fXubsWvXrunSpUvy9va+43FeeeUVZWZmKjs72/qbC4cOHdInn3yiOnXqVNj+xIkTat26tSQpPDy8Slnbt28vNze3Km37c7e+Tj8/P0nS6dOn1bZt2191PAAAANzfKOEBAABw32vVqpUsFstti3Tpp4K9fv368vHxsY55enre9XlKSko0c+ZMPfXUUxWec3d3v+Oxq7rfva5mzZrWP1ssljuOlZeX3/EYq1ev1qJFi7Rjxw41adLEOl5SUqL+/ftr/vz5Ffa5WYRLVf+63W47i8VS4Y2a2904925fEwAAAKo3SngAAADc9xo2bKi+ffvqvffe08svv2xzXfji4mKtWbNGw4YNsxaqtxMcHKx9+/bZjO3du9fmcVhYmI4dO6ZWrVrdVb7K9gsODlZhYaGKioqshfPPz/1zLVu2tF4bPTAwUNJPhXJWVpYSEhIqvI6AgABJ0oULF3T8+HEFBwdLktzc3FRWVnZXr+fXyszM1OjRo7Vs2TJ17drV5rmwsDBt3LhRQUFBqlHDMT/G+Pj4qKioyPo4Pz9fV69edci5AAAAUH1wY1YAAABUC0lJSSotLVV0dLR27dqlwsJCpaamqm/fvmrSpEmFm6f+3NixY5Wamqo33nhD+fn5SkpKsrkUjSRNmzZN//znPzVz5kwdOXJEeXl5Wr9+vaZMmfKLx65svz59+qh169aKi4vToUOHtHv3bk2ePPkXj+np6am//OUvmjBhglJTU3X06FH9+c9/1tWrVzVq1CibbV999VVlZGQoNzdXw4cPV6NGjTRgwABJUlBQkEpKSpSRkaGzZ886rJQuLi7WwIED9cwzzyg6OlrFxcUqLi7WmTNnJEnx8fE6f/68YmNjlZWVpRMnTigtLU0jRoz4zd4k6N27t5KSknTw4EFlZ2frxRdftFn1DgAAAPwalPAAAACoFh588EFlZ2erRYsWGjx4sFq2bKnnn39evXr1UmZmpho0aPCL+3ft2lUffPCB3nrrLYWGhmrbtm0VyvXo6Ght2bJF27ZtU6dOndS1a1ctWrTIuhL9Tirbz8XFRSkpKfrhhx/UuXNnjR49utI3DSRp3rx5GjRokJ577jmFhYWpoKBAaWlpql+/foXtxo0bp/DwcBUXF+s///mP9XrpUVFRevHFFzVkyBD5+PhowYIFlZ731/j888916tQprVy5Un5+ftaPTp06SZL8/f21Z88elZWVqV+/fmrfvr0SEhJUr149ubj8Nj/WLFy4UM2aNVP37t317LPPKjEx0XodfwAAAODXshh3c3cqAAAAAPeNHTt2qFevXrpw4YLq1atndhwAAADgvsRKeAAAAAAAAAAAHIQSHgAAAAAAAAAAB+FyNAAAAAAAAAAAOAgr4QEAAAAAAAAAcBBKeAAAAAAAAAAAHIQSHgAAAAAAAAAAB6GEBwAAAAAAAADAQSjhAQAAAAAAAABwEEp4AAAAAAAAAAAchBIeAAAAAAAAAAAHoYQHAAAAAAAAAMBBKOEBAAAAAAAAAHCQ/wOlg1sPymDTJwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -484,7 +521,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABJ0AAAEyCAYAAABQwqHbAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOydeZwkZ13/309V3/fcM3vM7Jk9spubJIQACySgSAggiIJGBE1EAZFb0RCVAB4I5AeCqEDAcIMYBIQEEo4gIQdJNsnm3jM7O/f0fVY9vz+qurq6p7unZ3Z2Z2b3eb9e9eq6u/qYnqpPfb6fr5BSolAoFAqFQqFQKBQKhUKhUCwl2nIfgEKhUCgUCoVCoVAoFAqF4tRDiU4KhUKhUCgUCoVCoVAoFIolR4lOCoVCoVAoFAqFQqFQKBSKJUeJTgqFQqFQKBQKhUKhUCgUiiVHiU4KhUKhUCgUCoVCoVAoFIolR4lOCoVCoVAoFAqFQqFQKBSKJUeJTgqFQqFQKBTLhBDi2UKIR5f7OJohhNgjhDiy3MehUCgUCoVi9aJEJ4VCoVAoFIoFIoQ4IITICyEyruHjHWwnhRBbqtNSyp9KKbedoGP8nBDi/Sdi36sZJaYpFAqFQnHy8Cz3ASgUCoVCoVCsUq6QUt663Aex2hFCeKSUleU+jk5ZbcerUCgUCsVyopxOCoVCoVAoFEuIEGKLEOLHQoikEGJSCPEVe/5P7FXut51Rr2503dgOqncKIR4QQmSFEP8hhBgQQnxPCJEWQtwqhOhyrf81IcQx+7l+IoQ4055/NfBa4F32c33bnr9GCPENIcSEEGK/EOItrn0FbXfUjBDiYeAZ87xOKYR4ixDiKft1/qMQQrOXbRZC/EgIMWUvu0kIkWh4ne8WQjwAZIUQHiHEe4QQT9qv82EhxMtd679OCHGHEOIjQohZ+zkvsecfFkKMCyF+37W+XwjxT0KIQ0KIMSHEp+zXFwa+B6xxOdTWCCE01/NPCSG+KoTotve1wX6tbxBCHAJ+JIQICCH+0153VghxlxBiYEFfFIVCoVAoTgOU6KRQKBQKhUKxtPwd8AOgC1gH/D8AKeVz7OVnSykjUsqvtNj+N4HLgTOAK7BEkr8E+rDO3d7iWvd7wFagH7gXuMl+rk/b4/9gP9cVtiD0beB+YC3wAuCtQogX2ft6H7DZHl4E/D7z83LgAuA84Erg9fZ8AXwQWAPsANYD1zVs+zvAbwAJ2zn0JPBsIA78DfCfQogh1/oXAQ8APcAXgS9jCWNbgN8FPi6EiNjrfsh+/86xl68FrpVSZoFfB47a70tESnkUeDPwMuC59jHPAJ9oON7n2q+l+t7E7dfVA/wxkO/g/VIoFAqF4rRCiU4KhUKhUCgUi+NbtsulOvyRPb8MjABrpJQFKeXPFrjf/yelHJNSPg38FLhTSvkrKWUB+C/g3OqKUsrPSCnTUsoilqhzthAi3mK/zwD6pJR/K6UsSSmfAv4N+G17+W8B10spp6WUh4EbOjjWv7fXPwR8FEtIQkr5hJTyFillUUo5Afwzlmjj5gYp5WEpZd7e5mtSyqNSStMW5B4HLnStv19K+VkppQF8BUvw+Vv7OX4AlIAtQggBXA38uX1saeADrtfZjD8G3iulPOJ6L18phHBHUVwnpczax1vGEpu2SCkNKeU9UspUB++XQqFQKBSnFSrTSaFQKBQKhWJxvKxFptO7sNxOvxRCzAAfllJ+ZgH7HXON55tMRwCEEDpwPfAqLBeUaa/TCySb7HcEq6xs1jVPxxK2wHL4HHYtO9jBsTauv8Y+tgHgY1jOpSjWjc6ZNtsihLgKeBuwwZ4VsV9Llcb3ASlls/emDwgB91j6k7V7rNfaihHgv4QQpmueAbhL5tzH+wUs0evLdtngf2KJVuU2z6FQKBQKxWmHcjopFAqFQqFQLCFSymNSyj+SUq4BrgH+xd2xbgl5DVZJ22VYpV4b7PlVpUU2rH8Yyy2UcA1RKeWL7eWjWEJKleEOjqFx/aP2+Afs598tpYxhlb+Jhm2d4xNCjGC5rt4E9EgpE8CDTbbphEksAepM1+uMSymrpXeN7wtY782vN7w3AdttNud4pZRlKeXfSCl3ApcALwGuWsSxKhQKhUJxSqNEJ4VCoVAoFIolRAjxKiHEOntyBkusqDpoxoBNS/RUUaAITGE5ez7QsLzxuX4JpO0A76AQQhdC7BJCVAPDvwr8hRCiyz7+N3dwDO+0118P/BlW2Vv12DJAUgixFnjnPPsJY71PEwBCiD8AdnXw/HOQUppYAtZHhBD99v7WurKrxoCehjLETwHX2+IXQog+IcSVrZ5DCPE8IcRu222Wwiq3M1utr1AoFArF6YoSnRQKhUKhUCgWx7ddHdAyQoj/suc/A7hTCJEBbgb+zM5PAisr6EY7A+q3jvP5P49V0vY08DDwi4bl/wHstJ/rW3YW0kuwwrX3YzmC/h3LJQVWePdBe9kPsErI5uO/gXuA+4Dv2M9Z3dd5WGV+3wG+2W4nUsqHgQ8D/4clCu0G7ujg+VvxbuAJ4BdCiBRwK7DNfq5HgC8BT9nvzRqsUsCbgR8IIdJY7+VFbfY/CHwdS3DaB/yYzt4vhUKhUChOK4SUzRzGCoVCoVAoFApFa4QQEtgqpXxiuY9FoVAoFArFykQ5nRQKhUKhUCgUCoVCoVAoFEuOEp0UCoVCoVAoFAqFQqFQKBRLjiqvUygUCoVCoVAoFAqFQqFQLDnK6aRQKBQKhUKhUCgUCoVCoVhylOikUCgUCoVCoVAoFAqFQqFYcjzLfQCK1Ulvb6/csGHDch+GQqFQKBQKhUKhUCgUimXmnnvumZRS9jXOV6KTYlFs2LCBu+++e7kPQ6FQKBQKhUKhUCgUCsUyI4Q42Gy+Kq9TKBQKhUKhUCgUCoVCoVAsOUp0UigUCoVCoVAoFAqFQqFQLDlKdFIoFAqFQqFQKBQKhUKhUCw5SnRSKBQKhUKhUCgUCoVCoVAsOUp0UigUCoVCoVAoFAqFQqFQLDlKdFIoFAqFQqFQKBQKhUKhUCw5J0x0EkIYQoj7XMN7TuBzZU7Uvts85wEhRO886/xlw/TPl/gYbhdCPGq/v/uEEFcvcJv7hBCvFEIEhBC/FELcL4R4SAjxN0t5nCuN6667brkPQbGKMXM3Y47vwTy2zXrM3bzch6RQtOSGP/13XuR9NZdrr+JF3lfzhj//E3Z9fBeR6yNs/sfNfOC/PsDY2Ji18k03wYYNoGmwYQPJf/kX7rjjDr7//e/zve99j//93//ljjvuqK2/TIyNjXHHHXdwyy23rIjjUZwaqN92hUKxUNTvhuJEcCpeqwop5YnZsRAZKWXkhOz8BD2XEMIjpax0uO4B4AIp5eSJPq42+78deIeU8m4hRDfwJDAgpSx1so1rngDCUsqMEMIL/Az4MynlL1rt54ILLpB33313q8UrGiEEJ+p7rzi1MXM3Q+qvgIJrbgBi70cLvXS5DkuhaMoNf/rvfPuT33emx7cdYd8V96L7dEKhIBVZQSB46+a38ufT/cTf+U7I5Zz1Db+fh976Vg5deilg/XZ6PB50XWf37t0MDAyc9Nc0NjbG3r17EUKgaRqmaSKlXLbjUZwaqN92hUKxUNTvhuJEsZqvVYUQ90gpL2icf9LL62yH0D8IIfba7pot9vwNQogfCSEeEEL8UAgx3GYfG4UQ/2fv4/0Ny94phLjL3s/fuOb/te3w+ZkQ4ktCiHfY828XQnxUCHE38GdCiCuEEHcKIX4lhLhVCDFgr9cjhPiB7QT6d0C49v0tIcQ99rKr7XkfAoK2m+gme17GfhRCiH8UQjxov4ZX2/P32MfzdSHEI0KIm2xBqBMiQBYw7H19UghxdyfOJWlRdYt57WF1ftMVihNJ5p+pP7nAms58CFl5AmmMI2VxOY5MoZjDdz59CwCGx6AQy/H4ZQ9i6iaVSoVSqYxmWKLNjQduxH/ttXWCE4BeLLLlM59xpqWUVCoVTNPkkUceIZ1OUygUqFQqJ+3k6IknnnCORUqJrusIIZz5CsVCkdKAzD/Q/Lf9n5fjkBQKxWqg5Tmh+t1QKBrxnMB9B4UQ97mmPyil/Io9npRS7hZCXAV8FHgJ8P+AG6WUNwohXg/cALysxb4/BnxSSvl5IcSfVmcKIV4IbAUuxBKFbhZCPAfIA78JnI0lqNwL3OPan6+qyAkhuoCLpZRSCPGHwLuAtwPvA34mpfxbIcRvAG9wbf96KeW0ECII3CWE+IaU8j1CiDdJKc9pcvyvAM6xj6fX3uYn9rJzgTOBo8AdwLOwnEetuEkIUbRf91ullIY9/732MenAD4UQZ0kpH3Btk7fHXyClnLLXuwfYAnxCSnln4xPZgtrVAMPDLTXBFcl1113H3/xNTXurannve9/7TkkLo+IEYY62mD+JnHyxMynxgxa3BhFzPSYQWqw2T4uDiIMWcx6F8J2kF6NYrRimQcWs4Pf4yZVz3PLkLUzmJpnITTCZm2QyN8lvn/nbmIZJpi/Jvb/3UwBKkQJI65+jWTDQK+DFZMabJjDV/LkCExN84U3fwhfw4gv58Ed8BCLW44+CP8cb8OALeu3BRyDsxx/yE4z4CUVChGJBQtEQoUiQQCCA1+vF6/U6jimPx1M3rmnN74VVKhUmJydJJpNIKR3Xlc/nQ9M0cg2CmULRiDRnoLIfKgeQxlNQOQDGfqgcBFoYxFv95isUCkXLc8KjmOmPIby7wLsbofef3ONSrEpO9WvVk15eZ5elPV9K+ZRdynVMStkjhJgEhqSUZXv+qJSyaWaSEGIKGLTXjQFHpZQRIcQ/Aa8EZu1VI8AHgSjQJaV8n739P9vb/JNdbvY+KeWP7WW7gQ8DQ4AP2C+l/DVbQHuFlPIpe71p4Awp5aQQ4jrg5fZzbgBeJKX8ReN7UJ0WQnwE2Cul/Iw9/wvA14AUllh0uT3/k8AdUsr/bPE+3E6tvK4P+DlwmZTyoBDij7EEIo/9Wt4spfxys/K6hn0mgP+y13+w2Tqwesvr9uzZw49//ONVa1lULC/m+B4wj85doPUgon8FMgXmLNJMgUyC8+gal9n2TyJCLqHKFqRs0UpoiTqBynqsjscQ4kTeR1CcKKSUZMtZJnOTTOWmmMhNMBAe4NyhcykZJf7se3/GZH7SEZSm89P8+cV/zjsueQdTuSl2f3K3JcQgiHvjRAnxW+b58PZf0eOb4cGzJ9icK/JPzy8yHQS/AZoEiaCoC7qyfu7/pEnUnOvSGyPE74oXNznqhSEEeINevAEP3oDXEasax/0hL/6QJVwFwn68AQ+aVyA84A140bwCX9BLIBzAH/LhC3iRSAKBABdeeKEjXHVuElacSkhZtEQkYz9U9iONA7bQtB/krGtND+jrwbMJ9A2Q/7r1+9yItgat//aTcuwKhWJ10fKcEA9WwYjtA9AGwLsL4T0LvLutcS1x0o5TsbpY7deqrcrrlusKRbYYX+w+qggsR9W/1s0U4q3z7Mt9Ffj/gH+WUt4shNgDXNduQ3udy4BnSilztqgTmOf52uE+6zfo8DOSUk4IIe4FLhJCaMA7gGdIKWeEEJ/r9JiklLNCiNuAXwNaik4KxWlJ5G3N6/cjf4EI/oYzp93lrpRlkOl6Icq0B5lCmsl6oco4DOW91jKZb7NnkCIMIlEnVFUdVaJOyGoQrUQU62dDsVSY0kSz39OfH/45o+lRRzSazE2yvXc711xwDQC7P7mb6fx03fa/veu3OXfoXLyal4cnHyYRSLAxsZFz+s4hqkUZEcM8dOutGA8/xOeOXM7aw5MMPnWU6KHD+KamsAy9UCpqPP3LCIfo4yUVyX9cMUbZpxMIhahgIBBcde5bMXf2Q0OmU8Xv58Abrua1O86jkClSTJco5cqUsmXC/ijlrEFyMkVqMkV6Okt6JkMumaNcmhuNKCWUcmXK+Qq6t4zm0dA0AcIulTMlpiExKyamYS7ovfb4PbZw9VnbkWW5rvwhny1e+QiE/ATCAYKRgPUYDRCMBAlHbSdWLEg4FiISCxOOhwnHQnh93gUdh+LkIKUJ5hhUnqoXloz9YDxN3emh1g+ejRB4EcKzEfSN1rS+rk6kNz07Wvy2v+0kvSqFQrHqaHVOGHs/Ing5lB+G8oPI8l4o70UWf+isJfX1lgvKu9sSojw7EdpJiUJWKJaF5RKdXg18yH78P3vez4HfBr4AvBb4aZvt77DX/U973SrfB/5OCHGTHYq9Fijb6/+rEOKDWK/5JcCnW+w7Djxtj/++a/5PgNcA7xdC/DrQ5Vp/xhactgMXu7YpCyG8Uspyw3P8FLhGCHEj0A08B3gnsL3Na26LECKEVZr3D0AMS0hL2plUvw7c3mbbPqBsC05B4HLg7xd7LCudkZGR5T4ExSpFC70UE6x6fXMUtCGIvG1BgZFCeEF0g9bdfHmbbaUs2ULVrPVoC1XYQpWsmzcL5lNQtt1XrcpH7GeVImoLUYkG0SqGmDMv4XJjRU4LV4mUknQp7YhGFbPCJesvAeCGO2/gwfEH60SlXf27+OqrvgrAu255F0/NPAWAV/fSG+ol6A06+/6j8/4In+6jN9RLb6iXnmAP3b5upqamyCST/PvAe5D79uF57DGCBx8hfPAgocMfwZOxovjOAmQ0ityxA+2KK2DHDmf41w//kP/59x9hGibaExq/Xe7hzuGfcCB5gAHfAG/Y8gbecMkbiA8MQDwO730vHDoEw8Nk3/UuKmefzVAmg2maCCGIRqNs2bKlbWh3MV8kPZ0hPZ0hVX2cytjz0nXzrWVpUtNpKsXWfTx0XcMf9uENeNH9Opou0DwaukdD02vOJikt8SqXypOeylApGpQLZcqFCqVCeUG3uXSv5pQV+oI+AraI5Q9bLqxgJGCJWZEAoUiAYFXAiloCVtgWs2pil7WdL+A7Lf5mjhdppi1hyTiArIpKdnlc3UWeCFlikvdsCLzMEpc8G0Hf0PFF3FL8tisUitOLeX83fOeD73znvE6aaSg/aAlQ5b1Quh9Z+K69VCA9m8GzyxaizgLvdoTwn/wXplh2TsVr1ZOZ6fS/Usr32ONdQogHsFw9v2PPezPwWSHEO4EJ4A/a7PvPgC8KId4N/Hd1ppTyB0KIHcD/2Sd0GeB3pZR3CSFuBh4AxoC9QBMfNWA5m74mhJgBfgRstOf/DfAlIcRDWALZoerrAv5YCLEPeBRwd3z7NPCAEOJeKaVbHPsv4JnA/VinwO+SUh6zRauFUs1n8gOfk1LeAyCE+BXwCHAYS3RrxxBwo53rpAFflVL+zyKOZVWwYcOG5T4ExSpGC70UlulCRAgf6L1YUXBNlrfZVsrCXHeVXQIoXePOY3nUFq9SSBp1czca0nFUud1TdkZVk9wqR7QSoRVx8b1/Zj/7Z/fXiUamNLluz3UA/Ml3/oTvPP4dykbtfdjUtYmfvd6K27v/2P08MfMEvaFedvTuoDfUy/be2s/5v13xbwQ8AXpCPUR90brXXKlUeN2O15GdmqL80EOYD92J/thj+Pbvx3/oEF2HD6OVa89r9PfD9u1oe/bAzp2OuCSGhpq+l2/+5Bbe/MlrOnsjXvtaa7CJY4UKLhR/0I9/rZ/etT0t1zFNk9nZWcbHx5mcnKRSqYApCHpDBLQAlDXSM+3FqvR0humpJMV8a0FV9+qE4kESg2ECUZ8tXHmsUj+/B4/Pg+7VEJqwxCtNoGkCsyKpFCuUChXK+TKlfJlSoUwpVyKTyjrzyoUKpXx5Qe4soQn8QetY/EGfVSoY9jkurFAkaAlZ0SChaJBgxHJlOUKXS8RyP/pD/paZWCsVKUuWm9POV5IVV9aS6Q4a0+xyuA3gu7jetaT1L8nvyHL+tisUitXJQn43hBYF/zPB/8yaEGVMQWVvzRFV+hmy8C17qQfpOcPliNoFnq3WzUvFKc2peK16wjKdWj6hlel0gZRy8iQ/b8R2P4WwXEtXSynvPZnHcCqxWjOd/uVf/gWAP/mTP1nmI1EoVgdSSpB5l1CVcolXDflVbvGqum4106Apngahyi1eVUPX3blWrnECcy40TWkyW5h1hKOL1l6Erun84MkfcOtTt9aJSqliir1v3IsQgrd9/218+cEvO/sJeAIMx4e5/XW3A/DFvV/kwOwBx4nUG+plIDzAtt5tC3of8/k8uaNHKT3wAOZDD6E9+ii+p54ifPAggWPHEKYlXEghMIaHkdu3o595JtqZZ9bcS4lEx8+50pBSMjs7y8TEBBMTE5TLZTweD729vfT19dHV1bUo0aSYL5KeyZKeSjc4qGpilVvASk2nSU9l5herYgECsQCBiJ9gzE8g6rfK8uIBgva4P+onkggRiPjx+X0ITWAUDUeMsh5LFHMlSvkyxVyRYq5EIVukaM+vCVhl13bWvEqp3d/PXHwBL4GIlXdVE7Es0SoYtZxZ1fmBsOXSaiViued7vIu/RymlBHPcJSy5XEvGEep+I7QeK2PJsxFRFZU8G0AfVk0WFArFKY/1ezkG5QfssrwHnYgFCz94d9oZUXZpnr5RRSScQqz2a9VWmU6nk+j0RWAnVrbRjVLKD57M5z/VWK2ik0KhOHlYglV2Tm5VLb9qtt5dVee4SlGthUoWDZ5MlZkqGkwWTKYKBpN5+LNzNtIV6Obzj03zkfueYKpQwpQCy/Ol8cDrP0ZPaD0fvutmPv/g9+gN9tEbHqA31E9vqJe/fs5f49W9PDb1GOli2hGUQt7jc2CVikVyTz5J2RaXxKOP4nviCYIHD+KfrmU3mT4flU2bkNu2oZ15Jp7duxE7d8LWrRAMtnmG1YOUklQqxfj4OBMTE5RKJXRdp6enh/7+frq6utB1fVmOzRGr7BK/dmJVVahKz2Qo5tqLVcGYJUoFon6CsUBNrIr57WUBQokQ0a4w8d4oka4IwUgAXdfRNM0R3jRNw6gYlAplCpki+WyBQqZALp0nn8lTyFrzillLyGoUrOZMFyuOCFbOl1nI6Z/H57HEqHDAFqoaBKpQgEBEJxAsEAxlCQSS+AMzBIOTBAJjBEN5AiGTQNggEPISjK0lENuIL7wBzbvJdi1tsJyRCoVCoXCQUoJxqFaWV94LlYdB2hmMImy5oLy7EZ5dthC1bkU4yRWnHytGdFoIQoj3Aq9qmP01KeX1y3E8y4UQ4r+olflVebeU8vvLcTywekWnalvtUCi0zEeiUJyeVMwK0/lppnJTrI2tJeaP8fjU43z94a9bLqRql7bsJJ9+yT9zVt96vvzgV3j7D/8ekCBNQBLxern5yldyRtzD7Ycf5bv799MbMOkNVOj1l+kJ6FzQ58evN7v7F6gv83O5rERDAHtjaaDb1m6Wy+QffpjS/fdb4tIjj+C1xSVPttafwohEKG/ejGk7lzy7d6Pv2gUbN8IyCS4nEiklmUyG8fFxxsfHKRaLaJpGd3c3/f399PT0LJvQtBS0Eqvqpm2xKjmVJj2dJjOTnV+sahSqbIHKclkFiCRCRLrDRLsixHqixHujhGNhvF6v07Wv2rmverFhmiaGYVCpVKhUKs54uVymkCuST+fJpS0Bq5AtWCWEtmDVWEJoObHKlItlKvki5UKRUr7oiFrFvEExLzFbR3PNQdOE5bpyZV7NKSEMV8WtoMud5W/r0AqEV1+poUKhUHSKlIaVeVfei6w8YAlR5UegGocgumpClO2IEnr/sh6zojNW+7XqqhSdFCuX1So67dmzB4Dbb799WY9DoTiVKBtljqSO1JWvTeYmuWzTZewe2M3esb286XtvYjI3yUx+xtnuP176H/z61l/n9gO3c9V/XUVPqKdWwhbs5c0XvZkzes7gaPooD088TF+ozwraDvUQ8LRuyCllxe4QaAequ9xVmEk7w6oxdN12V8ns3P3lTcqPeSnt82M+piEeL+LdP0vg0ERd3lKpJ0F50zrMbcNoOzbjPWsn3rPOg7Vb7A6Cq1domQ8pJdls1nE05fN5hBB1QpPHs1y9S1YGpUJpToB6o2CVqj7ayzIz2bZlgJpHs0r9YoGmYlUoHiLSFSbaFSbWE7XFqhjhWAifz4fX63WGqtPKMAzMygyV0iEqpVEqpTGM8hSV8iyVchbD9FAx/Bimj4oRxZAJKmYUwwxRMf0YZZ1SEcp5KxOr3n1ldTCslAyrDLFoULEdWI7QZWdnWeWIJacMsdTmfWiGP+hzBbg3cWiF68WtxlLDVhlax1NqqFAoFCcKKUtQeazBEfUETgmz1m+LUGdZbijvmQitq+0+FSef1X6t2kp0Uv85FQqFQlFHySgxlZvCo3noC/eRK+e48b4bmcpP1YlKV519Fa/Z/RoOpw5z6WcunbOfnlAPuwd2E/PHOKP7DC5Zd4kjGvWGejlv6DwAnj38bA6+9WBLK/ia6BrWRNd0fPxCeKy7fFoXMLcDSEvD+ewslb33UbrvLsyHHoRHHsf7xH58R8cISEkAkJqgONRHaWM/yedsQDvDh3d7Ef/2FJ5ECQ9F4HF7+F+rQHDC2r0UEZe7ypVlpcURDY6runERXbF5DblcznE05XI5hBAkEgmGh4fp7e3F61WBp1V8AR+9a7rpXdO8c2Ur5hOrklNpUlMppwxw6sAxMjO5tiJNTazyE4z6CES9BGMeglEPoZggEjcJx01iXYY1dAeJ9/USSZyBz9+P1z+IN7Aer68Hn8/nOKyklBiGUeeucjus3OPN5lWHZjdETcOkXKyJWEbRxCibGEUDo2RSLlhilrtjYaOIlc8WSE6kLGdXrkghU6CQLTZ9vlZ4vHrNUdVMoAoHmgpW8zm0VFdDhUJxPAjhs91NuxB2ny4p81DeVydEyeIPnW2kvr7ODYVnZ8ddPxWKhaBEJ4VCoTgNcAdsT2QnmMxNMhwf5gWbXoBhGvzmV3+zLmQb4Jrzr+F9e94HwN/95O/w6b66MO2oLwrAUGSIG379hrplPcEevLolOIwkRvi3l/5by2PTtZPoAJISRkeRDz9M+YEHMB58EB55BM/jj+OdnMSD9Y/R9HrJr19PbuduMi9/JWLnTrxnnUXw7LMJRCI081lJWXLlUtV3A5RNHFcYTzhOq/YdAoXdIdAtVLlK/pqUCTqlgSK85Bey+XyeiYkJxsfHyWQyCCGIx+OsXbuWvr4+fD4V+LyUHJdYNZUkNXGA9NSTpCcOkpo8SnpqgtRUkuT0DKlpL6lZD+kZD1P7dTJJKOVbCzBNnVXRAKF4kHAiRKQr5JT/VV1V8d4Y0USEQCCAx+Opc1Y1+25KKVuWBS5k3DDmD2HXNA1d15EViVGWGCXDErNKBuVihUrRoFKoObFKhTLlfJli3nZi2Xla+WyBmbEkhcyYlbWVKVDIFqiUOw+Cd0oNXQKVu1zQys5qJWa1dmj5Q75VXc6qUCgWjxBB8J0HvvNqHfPMtBNQLssPQul+ZOG71S2Q+qZ6Icq7AyH8y/USFKcISnRSKBSKVUihUiBbytITstrSf/vRb3MoeYiJ3IQjHu3o3eGIRs/+7LOZyk3V7eOl217KCza9AF3TifljDEYG64Sj3f27AQh5Qzz6pkeJ+CJNLxKD3iCv3PnKE/yKF4hhwFNPwb59VB58sE5c0jMZBOADKuEwueFhMhddhLFtG9rOnXh27ya4cyehcJjwAgQbIXyg9wF9c5e12c5yWRQahKrauLQ7BdZ1BSwfrQlatAvR0W3Bql6oqopSosFxVROv4iCCzuddLBYdR1M6nQYgFouxZcsW+vr68PvVCelyIs1Zuxuc3R2ush+PcYBu/QDdgyUYtFcUEasjnL4D4dnoBHijb0BoVn5EqVAiPZNtCFe3Sv+SkylSkynLXTWdJjOdZerALJmZLKV8a+G0VRlgOB4i2h22SwBrYlWiL+6IVT6fj0Ag0FaoavqeSHlcolX1cT4XlBACXdfxeDzOY3UcE4yyaYlXRauksFQoW24sOzOrZLuxii6xKp8tOOJVNplj6ulpa77tzGpXctkMf9BXL2I1ClShRveVtU6wnQAW9uP1KSejQrHaEFoU/M8E/zNrQpQxBZUHa46o0s+QhW/ZSz1Izxm2EGUHlXu21mVcKhTzoUQnhUKhWAEYpsFMYaaufM2UJq/Y8QoA3v+T93Pn03c6y7KlLOcOnct3XvMdAG745Q08NP4QIW/IEY08Wu0n/trnXItX9zoupN5QL13BWi3/51/++bbHF/VHT8CrXgLyeXjsMdi3D/nww1QefBD27cPz5JMIO2/JAxg9PeSGhym88IUYZ5xRcy5t3Eg4HCa2jE4A6yI6CHoQ9MG5y9tsa3UIzDV1V1mCVYOQJWehfKjWQRCz5b5L5TgT6bOZSG4nlRsENCKhAhvX5OnrlgSDEUvAknFkKV4naAnROnNLsTisvI6DYFiikjQOWEJT5Snrc3XwgL7eEpd8z7bEparApPXMK9r4Aj56hnz0DC0s66OVWDU7kSQ5lSI1Wcusysxmmdw/Q3Y217FYFYgGCMUChBJBK1S9K0KkK0ysO+K4qhJ9cRJ9cUes8nq9BAKBRbv9mpULdjJeKpWalwv6rEED/Gj48QOWYNsoXDUKWO5xTWgYJZNKyRKvysUKpZwlXlWFq2rpoDNtdzt0z0tNpa1SQ9e6Cy01bFZCWCdQNQTBd+LQ8gdVqaFCcTIReg/ozwX/cxHY5xbmGJQfsNxQ5b1Q+F9k/iv2Fn6kd4fLEbUL9E0rNgpAsfwo0UlxWvG6171uuQ9BcZogpSRXzhH2hQG4/9j9PDj+YJ2oVDJK/MeV/wHANf9zDd99/Lt1+xiMDDqiU6FSIOQNcd7geY6otCGxwVn3i6/4ImFfmJC3ebeLV53Z2Ah0lTE7C/v2OeKS+fDDsG8f2sGDiOpFkqZRGRwkOzJC/jd/k8rWrYidO/Hs2kVozRoikQhdp1jplxDCapdMGPS5uVftBSvTCk53BaqXS0kmp7KMT5rMpjWQJuFAhg1DT9IXf4Kg72lLxKqkkenWF6cSn5VfpcXq3VNag7uqzoWVsDsEnlqf0UKQ0rRO9B3X0gFLVDL2g3EU3CKh1g/6Bgi8COHZAPomW1xauyx3oI9XrEq7QtSTkymSkylmJ1O2yypNesoKVp/YP71gsSqcCBKOhwgnQkS7wkR7opZY1Rsj0RMj0R8n0Rsn2mWJVR6Px+kCWBV7jsfN5xauOsm7qo4Xi8W67eZDC2joYZ2YJ0C3J9JWuGo2rmkaRtmkmCs6rirHfWVPNxWzMgUKudo6M2NJCtlxe11r/kJKDYUQbQWqaqnh3HysJoHxLgEsEParUkOFogOEENZNMH0QEXghYAtRxmFbiLKDyvPfQOa+YG8URlY75nlsR5S+TgnIC+RUvVZV3esUi2K1dq9TKI6HslFmOj9dF6j9kjNegk/38d+P/Dff2PeNOlGpUClw8K0H8epe3vvD9/LZ+z4LQMwfoyfUQ3+4n2/+1jcRQnDLk7dwJHWkrryt0Y10yiMlHD1qiUuPPOIITHLfPrSxMWc10+cjt24dueFhciMjlLdsgR078OzcSai7m0gkQjAYVC3TO6RSqTA5Ocn4+DgzMzNIKQmFQvT19dHf3084HJ6zjZQGyIwrwypVl2clq7lV7gyraplgkw6BdYigLUYlaqHrtkBVl1/lEqqc5WJ13EuTZrrmWKocAOMpqBwA4wDIfG1FEbKEJc9GqwTOs6k2fpqHvTaKVbMTScdVlZxI1cLXZyyxKjubI5fMdyxWhWJBQvEgka4wkS7LWVV1VcV6YiT6YnT1JUj0x4l1RfF6vSf04mollAsuZLzxvSiXypZolS3WiViN4tYcUauJAOZeZ6Glhr6At2XIe7XUsFXnwnYOLVVqqDgdkdKwboyU9yIrthBV3gfVnEqRsHOhao4ooQ8s5yErTjCtutcp0UmxKFar6DQ5OQlAb2/vMh+JYiUgpUQi0YTGscwx7h291wnargpL1+25jjXRNXz2V5/lvT9675x93PmHd7I+vp4b77uRLz74RUssCvY6Xdpef+7rCXgCjGfHMUyDnlAPPv30dXIAUKnA/v2Oc4l9+5C20CRSqdpqkQjZ4WFHXCps3Ijcvh3fGWcQjsWIRCKEw2E8ntUhNKwkDMNgcnKSiYkJpqenMU2TQCBAf38/fX19RCLN87uWAikrthCVqhetqoLVHKHKJV7JXPudi/Cc3KpqlpXQ3EJWg2glogixtA4IKcvWXeHKfjAOICtVYWk/mJOuNTXQ1zklcHVZS9qAuku8xJSKZUeoSk6mmBmfrZUATqVJTdWEqsxMllwyP79YpWtWJ8BYkHC8JlZFu6slgFHivfUlgF39CWJd0ZMqji+2XLDRpWWarctyq+i6flyila7rTlfEdhiGQTFXqnddtXVo5etKDZsJYFWHlml2fo2ke/R5Baqg47jq3KGlSg0Vqw2rFPxxOx/qAUuIqjwB2G5Hrd8Woc6qddvTTqMbrPOw2q9VleikWFJWq+i0Z88eAG6//fZlPQ7FiaNYKdY5kXb27WQwMsi+iX188u5P1jmRpvJTfOk3v8Ql6y/h5kdv5o//54+d/SQCCfrCfXzqNz7Fjr4d/Gr0V9x24LY6F1JfqI91sXVOlzZFA668pTqB6bHHEKXa3elSby+54WGy9pDfsAFz2zZ8w8NEolHC4TDhcPi4slkU1sXZ9PQ04+PjTE9PYxgGfr/fcTRFo9EV//5aHQJTc4QqJ6PKtMoE53QKNJNAsf3ORXSOUFXLqGoUsixnlRQxkHmEcbAW4l3NWjIO45xkA2jdtpi0EVEVlTwbQR8+rUsKVwulYtkSqiaSzEwkrfI/R6yys6pmsmRmLVdVdjZHPlXoQKyyu//ZHQDDXWFi3WGi3VGi3RESdgfARF+crr4E3YNdhKLBZf1bbVUu2Enp4ELKBd3lja0EqlaiVXV6IeHzbqSUlAqlejGqhUCVb3Ro5dq7uMqlds0f5r4HjZlXcwSqcGPIe72LK9jCoaVKDRUnCynzlgOqGlRe3mvdgKmir7fEJ+9ZdlD5ztPWzbvar1VbiU7q9rBCoVgVFCtF7hm9xxKLcjVR6YptV3Dp8KU8PPEwL//Ky0kX03XbffzFH+cVO15BrpzjF0d+QW+ol8HIILv6dznjAM8ZeQ63XnUrPcEeuoPdc4Skc4fO5dyhc0/a611VzMzUC0vV0rj9+528JalplNatIzs8TOYVr3DcS6VNmwgODTnC0lAkQigUUifDS4RpmszMzDA+Ps7k5CSGYeDz+RgcHKSvr494PL7ihSY3VofAXqD5HcD2GVZFl0BVH7oumwlVxpgzLmktHADUbt+JWnmgZ7t1R9ezDvQRq6TAEa8S1joivKre/9MZn99L75puetd0L2i7YqFEairN9NhMrQTQ7gCYnk6Tns6SmcmQmc0xPTrLkUdGySULlAudiVWRRIhwV4hIwnJWVTsAxntidPXHHWdVvDe2ZGJVVczxHUdGXrNywU5Eq3w+f1LLBUPxILGepRXkK+VKczdWS4eWPe0uNUznmR6dqXNxFXLzCOsN+ALe9iWEDUJW06ysJg4tVWqoaESIIPjOA995tY55ZhrKD7k65j2ALHyvugVS3+Qqy9sN3h0IoTrlrlaU6KRQKE46uXLOEY3i/jibuzdTqBT44E8/yERuwnEhTeYm+cNz/5A3X/RmZgozvPKrr3T2oQmN7mA3Zw+eDUBfqI/f2vlblgMp3Od0advSvQWA89eczy//6JctjykRSJAIJE7o617VuPOWGgdX3pL0+ymOjJDdvJn0c55jlceNjFBYv55gV5dTEtcfDhOJRE54DsrpiJSSmZkZJiYmmJiYoFKp4PF46O/vp7+/n0QicVq+50L4Qe+3hsZl2GV/xlE7X6matWTlLmGO1a8tukDrsR1RIRAea75ZAtK2aHUUKo9AyXJ0NL809iBFdG7ouu2oqgtddwevixiI5XW7KDrDH/DRt7aHvrU9C9ounyswOz7LdLX8zw5VT06l7O6AWSeravLINIcfPkoumadcaO2i0XSNUDxAKB4i0hUinAhbwerdEeI9UWK9MeI9USerKt4bI9odOSHOKiEEXq8Xr3fxAoWUEtM0O3ZXVcer3QWXq1zQ4/UQSXiIJObm5R0PptksBL59CWG9mGUtmzg8NcehtdhSw5YCVaiJK2seh5YqNTy1EFoU/BeD/2KXEDVt50Lttbrmle5AFr5lL/UgPWfYjihbiPJsXZbGGYqFo8rrFItCldcpmvHo5KOMZ8frStg2dW3i1btejZSSZ3/22YxmRsmXa0G5V519FR+67EMYpsGZ/3Im3cFuekI9TjbSCze/kMs3X07FrDhOpd5QL12BLnRNuWGWnCZ5S457yZW3ZMZiFDdtIjcyQmrNGjLr15MdHqYwOEjAdi1VBxXsfeKRUpJMJh1HU6lUQtd1+vr66Ovro6urS73/2N135IwVfFo5gDT2O+MYh8DtaBJxV87SBvBsskO9RxAisIDnyzrdARtLA2VjbpXjtLLntZCqLLwNHQDrRSnhCFkN7iotru4Wn6IYhkEuk2N2MuUIVk5HwKk06Wk7VD2ZIzuTI5fMkUsVyKcKHYhVQasLoEuoqopV8d4Y8d6qqyrmLFvuMsBOcQtX84lW7daZD3e54HxCVbvlJ/s9lVJSLpZb52W1c2hlWwtghUxh0aWGLQWq0Ny8rHkFMFVquGKRUlo3fdxleeUH7f+PAH7w7qgLKkffhBCr93xntV+rqvI6hULRMVJK0qU0U7kpikaR7b3bAbjxvht5bOqxusyk7b3b+dRLPgXAVd+6isPJw85+PJqHK7ddyat3vRohBM8deS4+3ecIRz2hHjZ3bQZA13QeedMjLY/Jo3m4dPjSE/iqTzPyeXj00TklcTz2GLjylozBQUqbN5N78YtJr1tHcs0assPDlLq70T0eR1TqDodZb4+rYO+Tg5SSVCrFxMQE4+PjjtDU09NDf38/XV1dp+2JtJSFWje4yn4rxLuatSRTrjW94BmxBKXA8xH6plrWkug67os7IQSICBABfc3c5W1fg+nqENiQVWWmkI5QZQtUxjjIJ+z1023lKom/iVBlTYsmjiu3eKXyp1Yuuq4TjUeJxqOs37y2o22qokkuk2PWzquanUhaYtW0JVhlpq2sqoydVXXs4Dj79x6ikC7O2w0wHA8SjltZVVWxyir/izplf1VHVawnuixilaZp+Hy+E1ou2Eq4Wmy5YLP8qoUIVwu5CSGEwBfw4Qv4iC9xtnG11LCpG2vOPFd2lkvMqis1rApex1lqOEegCrlLCIP15YhtHFpe39xOjorOEUKAPgj6ICJwOWALUcZhKD9gC1EPQv4byNwX7I3CSO8u8LgcUfo69TksM8rppFgUq9Xp9JWvfAWAV7/61ct8JMvDVG6K0cyoIxhNZCcwpcmfXvinALz7lndz6/5bmcxNUjasE8ntvdv50e//CICXffllPDL5SF2Q9lkDZ/Hmi94MwM8O/QyP5nGWx/wxtFV8t+GUoDFvqTocOGCVzGHlLZkbNlDatInchg2k165ldmiI9Nq1GHYXs2Aw6AhMKth7+ZBSkslkGB8fZ2JigkKhgKZpdHd309/fT09Pz2kjNElp2uVwB6DyFLIqKlX2gzlKnUtIG7TEJH2T1R3Os8EK9dbXLnnXupWAlAbIdH1+lTOetALX3V0B3eKVzLbfuQg1CFVt3FVOaaAlZAmhBOlTAdM0KZfLlMtl21mVZHYi5XQETE2nnRJAK1Q96ziq8qlC52JVImx1AewK17KqemPEe2J1jqrlEquWmsZywVZC1XxdBldSd8Hlolpq2LajYYOYlbeFrrYC2CJKDZtmYTnCVC0IfiEOrUDIv2Lf++VASsN2LbsdUftw3MsiYedC1RxRQh9YzkNuyWq/VlXd6xRLymoVnU4lTGmSKqaYzE2yuWszQgjuOHQHvzjyC0tQsrORMqUMt151KwBv+u6b+Oa+b9btpy/cx/1/fD8An/jlJ3hi+olaeVuolzXRNVyy/hIADNNQJW0rkQXkLZlbt1LevLlOXEr292Pad3i9Xm+dsBRRwd7LjpSSbDbrOJry+TxCCLq7u+nr66O3t/eUdpdJc9Z2LT1l5SxV9ttZSwep60gnwnZ3OFtY0jfY5XEbEFpoWY59NSJluSZYzRGtGkLXG8UrmW+/cxGZI1RVHVWiwXFVJ1qJ6Koul1DUC1WVSoV8Nm93AUySnLSzqqYylqNqxhpyyTz5dLFzsUrXCCeCRLrCRLoiRLvCxHtjdWJVrCfiiFVVwWq1i1WNVIWrhYpWS1EuuBjxajW999VSw2Yi1rwOrTl5W/UCWLnYvmGFGyEE/pCvvUDVoqNhKwEsaLu2dM+pcb4nZQkqj9eX5lUex+kqq/U3BJXvQmhdy3rMpwJKdFIsKatVdDp82Cr9Wr9+/TIfSXNKRomJ7EQtTNvu0nbV2VcR9Uf56kNf5d/u/TdnWcW0auEfedMjxPwxrv/J9fzL3f9CV6DLEY16Q718/MUfx6N5uOfoPUzkJmrlbcEeIr7IqvqHf1pTqcBTTzXtFEe61rVPJhLI7dspbd5MfmSEzLp1zAwOMhOPI21LvaZphEKhOe4ln08Fda4Ucrmc42jKZrMIIUgkEvT399Pb23tcAbwrDSlLVqZSXdaSPcgZ15oeq7Vys6wlrVd9d5cZKUst3FXVDKuGMsFqfpU5C5Ta7FmAiNpCVGKOaCXqhKzGskH1P261UhVPqmJVuVwmn80zO1kNVs/YJYAZpwNgdjZHIVVYhFgVItoVJtIdIVYtAbQFq1h31BaoTm2xyk21XHA+V9V8eVcLLRfspGywmch1KmQWGhWjqYjV3KGVryslbCeAFbILKzX0+r3tBaq2YlZrh9ZKKDWUMm85oMoPIssPWEKUsb+2gr7eDio/yw4q34nQIif1GFf6tep8KNFJsaSsVtHpZIezGabBbGGWsC9MwBPg4OxBbn3q1lrQdt56/PALP8wZPWfw+fs/z3tufc+c/dz2+7exrXcb337023x939fpDfbWdWn7tS2/RsAToFAp4NE8eLRT1/VwWtCYt1QdHn+8Lm+JNWuQ27dT3rKF3MgImfXrmR0aYtbvp+K6S+n3++e4l1Sw98okn887jqZMJoMQgng87gSCH0/myHLjBILaTiVZFZWM/WA8DbhKQrQ+27W0wXYt2VlL+jrVqeYURcqCyz01Wxe6LhvEqzmh67RzCGguR5XbPWVnVDXJrXJC10Vo2S+SFAtDSlknUlWHQq5AcirllAGmpy3BKjOTI5u0hSqXWFWwH+cTqyKJkFUC2BMl1h2x3FS9NaFqjljVHSEUOz2+V8tVLrjYvKuVXC54PJimSTFfquVhtRCo3B0Mra6GhYZt5m5rGvN/NlU0XWsrUM0XBN/KoeUP+o7rfFaaaSg/ZDmiKg/aQtQRe6mwzj+8uxHeXeA9C7w7TmgzjlM1SFyJTi0QQmwA/kdKuWsZj2EP8A4p5UsWsM3rgB9IKY+eoMMCVqfo9M193+Sq/7iKnD/HWevP4trnXssrdrxiQfuQUpIr5xzRqBqofdHai9jcvZl9E/t43+3vc5ZP56cxpcnnX/55Ltt0Gbc8eQu//63fR9d0eoI9Thnbdc+9jh19O3hy+knuOnoXPcGeurDtkFeVhqwqbroJ3vteOHQIhofh+uvhta+du56dt5S8804yv/wlvqeeInr4MP5jxxDV32ZNg02bkDt2UNm6lfyGDWTWrWN2cJC0plEoFJw7ibqu1wlL1fFTyRGzmhkbG+OJJ54gl8sRCoXYsmULAwMDFItFR2hK2R0CY7EY/f399PX14fcvf6cxM3czZP7ZykrShiDyNrTQS5uuK82MXf5mC0tV15JxoL78SoTsErgNtmtpU238JN9ZVKxerA6BuQb31GyDu6pRtKo6rtI4pRZN8TQIVW7xKmGHrje6rOxxlibzbiF/e4rF4Raqqs6qUqnklAEmXVlVmeks6ZkM2Vmr818zV1VHYlWXlVdVdVLFeiL2Y7Sh/K8zsarV/5dGfvjFn/KZv/wiE4en6Fvfw+s/8Bpe8JpnL9l7eSJoVi64mPH5WMnlgp1+vicTKSXlUqXWqXBeh1ZhjgOrlQC2kFJDYE6g+xyBKuTK0GoIgm8qgIUKBHyPo8uHaqV55oT9bB7wbK0vzfNsnXNDbDG/3T/84k95zetfTaqY5BUjV62Kv89GVPe604fXAQ8CHYtOQgiPlLLznqWrkG/u+ybX/M81FP1FZFFyJHWEa/7nGgCuOOMKKmaFoDdIvpzne098zwnZrgpLr9r5Kq7YdgWPTj3K8298/pz9//1lf8/m7s3omk7RKLIxsZFnrHmGIxyd0XMGAM8eeTYP/clDxAPxpgHbm7s3s7l784l9MxQnlptugquvhlzOmj54EP7oj2DvXlizpt65ND4OQByI+Hzk1q9ndvt2spdfTvj882HHDlIDA2QqFbLZrHPSJIQgqOtEwmEGBgYcgUkFe69cxsbG2Lt3r3NSm8/nue+++4hGo5Rs91okEmHTpk309fURDAaX+YhrmLmbIfVXQMGecRRSf4VpTlgupDrX0gHXiRmABvo6S1zyXWSVw+kbrfI4bUB9XxXHjdUhMAyEQR+au7zNtpZglW3inrID1+e4q6YtEdVMWflWbXsE+pANuVW1kr8moevuDoJ2h8CWf3ughKclRAix4O51VaGqsfzPnVmVnEqRms6QmkzXhCo7p6omVuWZeWyGQrpIIV2kmGtdZloVq6KuEsBYTxTdr5EtZQjG/ARjQQIRH/vvP8TZzziLTWdscMSqH37xp3zk6k85zzF+aJKPXG11H17JF7bV7oLHg5Sy4ywr97xisUg2m12ScsFW4/OVCzaePxQKBfbu3QuwrMKTEAKf34vP7yXWE13SfTulhtUSwrYOrXytc2FDEPzMWHKOi2sheP1eW5g6i0DYQzBk4A8VCQazBIL3Egz9nEDIxB8SBKO9BKJrCMbXEwjkCOjfIxAqWEHxoSmCoesIDBQJ9V2J1++dc/5T/fssFcsUyK2av89OUU6nFridTkKITcA3gKullHc1rKcDHwL2AH7gE1LKfxVC/DmwW0r5eiHEbuBLwIXAu4DNwBagF/gHKeW/tTiGPcB1wCSwC7gH+F0ppRRCnA/8MxCxl78OeBbwOeBpIA88E9jZuJ6UclQIcTtwH3CpfWz3Af+EJUTeBbxRStnyL3O1OZ3O+dQ5HEkdITWbouwpE/AHnDykvlAfL9v+Mj72ax8jX8mz/ePbAfDqXnqCPfSF+/jDc/+QV535KtLFNF944At1eUl9IavEzasrN4kC2LDBEprmIx6H88/nyOAgM5s3kxsZoeD1Uvb5KPt8SL+fUDjsrK7rOtFolFgsRjQaxev1omkamqY5XWTcg7qYX1nccccdTqe5YrGIaZpIKRFC0NXVxdDQENFotO4kdKXY/c3xPdbFbju0btu1tAlRDfD2bAR92LmAVihOJaQ0XR0CU3NEK9nguKrLuJKZefYesIQocxpock9QW4PWf/vSvyjFCaWak9RMpHIyq3IFUlNWXlV6OmMFqqfyFNLFOmdVIV0gn7KEqlwyP6+zKtYdIT2TxajMdfz0D/dy04FPnsiXfkqwXOWCMzMzmKaJpmnOuZ9hGAQCAZ71rGedhFd+6uCUGjpiVocOLVuwmiuAZSlkc+QzFcz5zXQOmq7NcVkdfPgw5WKFu+XtzDLJZeKVwOr7+1TldQukKjoBvwl8GUusub/JelcD/VLK9wurwPMO4FXAQeB24CPAe4E/k1LeIYS4Dng5cDEQBn4FXNSsHM4Wnf4bOBPLuXQH8E7gTuDHwJVSygkhxKuBF9kC1+1YJXl3C8vn1269h6WUfyKECACPAy+QUj4mhPg8cK+U8qNNXuvVAMPDw+cf7OTCeoUQuC5AMVO0bnmGsNz0EvDCUNS6MyqEoCfYwxk9Z/CZKz9D1BflxvtvJOgJMhQdYjAyyGBkkKgvuuwXgYoVjKZZ3eSOE6lpGH4/ZiCAYQ/OeDCI6fc7841gsLbM78cMBpGhUP0QDCIiEQiHkaEQmt/viFWNopV7upNlQgj1NzEPt9xyi9NhrlCwXAvVE8+wS1xspJndv/HuqNfrbblsKQJWzWPboK2jAyvcWV/jDMI1jrYGtB71HVGcFljZVLNgztjDrJ1RNWN1/jNnwJyygvMbs8w6RqANPrqUh604CVRFp6rI5H5sNV4t9WtFuVhh7OA4s6NpJp+aZvLALGNPTDI7mur4uIQQ/MD46lK8xNOeqrDU6rOsVCqUSiUKhQKFQoFKZf5Ck2w2C9QcX7quO9+lyy+//ES/pNMKKfOW2O/8flvj5eIU2dlJsrMzZGeTZGfTZFNZssk8mZRGLqUzO+lh8piXqWNeJo95mZ3wYJqdn/c8KR9iP/vmzN/ETp6UDy3lyzyhqPK6xdGHJfq8Qkr5cIt1XgicJYQtR1qVMlullPvtfKUHgH+VUt7h2ua/pZR5IC+EuA3LAfWtFvv/pZTyCIAQ4j5gAzCL5Xy6xT6J14HRJttum2e9r7jW2y+lfMyevhH4U+Cj7p1JKT8NfBosp1OL412RbB/czpHUEWRFMj09zdDQECWjRF+oj0/8xic4ljnGaHqU0cwom7s2E/PHALj+p9eTLWXr9vU7u36HD7/ow0gpefsP3k5vqJehyJAjTG1IbCARSCzDq1SsCIaHmzudhofhwQchm7VK77JZyGZ58M47MVIpvKUSWqGAXiggcjn8lQrrurrQcjk8mQwym4VMxtounYaxMYS9L5HLITo4cXFjejyYweAcYatR1Cq5RS17nhkM1q0vG0QuEQ6j2WJHpwJWp+uutvbKVUKhEIVCAV3XndI5wzDw+/1ceOGFdXdLW3UCqg75fL5u/ny475g2G9oJVh6PByGGEM1iArVeRPQvwDiKNI5abijjIJT+DymzDSv7kI2ilLbGKofS14I+qBxRihWFU3rnEo2qYpI0Zxrm2eNytj63rBERsUPKE5Yz0HsuaF12qV0CRJf1qHWB1oWcerWVB9KINreMUHFyaCzTmk88apxuh/t31+v1EggE0E0PpbTB7LEUs8dSTB+dZXp0lqkjM0wcniI5US8uCU0Q7Q2zbtcgXUMJzjx/BwMjfQyM9PJPb/gk06Mzc563b33Pkr5Hqx33Z9z4+bYTk+bLjhJC4PV6nc84Ho87n7X7c298/OUvf+mcP1QxTZNQSOW9tkPKCphJTGOKfGqM7Mw42ZlJsskp0jOz5JIpskm762WyQDZZJpuSZNM62ZQ9pHUySY1iXm/Ye9AeaoSiPkLxAJF4mKGRg2zZlSYcM6whaj/Go0TX/zXheIhwPEQkEXLG/3DX29h86Ewm5FHu5+d1TqdTASU6tScJHMIqQWslOgngzVLK7zdZthXIAGsa5jcKNu0EHHeJm4H1mQngISnlM9tsRwfrNV4VnLJc+9xrrQwn+xtfMkoIIbj+Bdfz/I1zM5qq7H3jXo5ljjnDaHqULd1bAMiVc/z00E8Zy4w5pXoAb7noLbzn0veQLCR57Tdf6zikhiKWKHXBmgsYSYyc0NerWEauv74+0wkgFIIPfACiUWtw0bdxo1Orr2maU3a1e/duxMBA2zySOkqlOYJW3dAwX8tmLUHLNa8qbMnpachmHVGLXK4WbN4hpu3MMm3Ryu3Uqvj9joBlBAKUGpxbblGrURAzg0Gkz4dmCykLFbAWI3Qthci1ZcsW9u7di2EYdZ/z1q1bF5wl4qbxAqgT0apSqTh3WDuy+su34+EwHj2PrhXx6AU8uoEneDHe1A50fVe9YOXV8egFdDGJR4zjYdQSrcyjYByF4k+Q5njDkwik1meLUJYgVeeW0tdYOTirUHBULD+1UrhZe5hucB/N1kQjt0upZVc8YecvJSyBSB8Az7Z6AckWjmpCUnzBwqqMvL0+0wmAAETetqD9KOZSLZPq1HHknm5XJdIoLPh8PkKhUN28qpgghEZ2OsvU07NMPT3DsUOTjB2cYPzwJOMHrfF8plC3f1/Ay8BIH/0jfWw9dxMDI30EEj5SpRliA1Hi/VGEJpzzCHfmz9X/+Ht1mU4A/pCP13/gNUv/Bq8A3OWMrYSiVp9/u8+4URwMBoNthaPq+GJvmrU6f9iyZcvxvD2rAiklpUKJzGyOzMwk2dljZGcmyM5OkU3OkJlJkU2mySazZGcLZFNFsqkKmaRJLgWZlE4urSFlu/ddxxeIEI7phGM+wokA4USI3pEwkUSccDxBKJEgmohYApFLKIokwoTjIUKxYL0o2JjHB0AAYu9GCzUviXz9B17DR67+FH25NY4ycCr9fSrRqT0lrFK47wshMlLKLzZZ5/vAG4UQP5JSloUQZ2BlKnmAG4DnAB8XQrxSSvl1e5srhRAfxCqv2wO8Z4HH9SjQJ4R4ppTy/+wyujOklA8BaSDawXqN+9sghNgipXwC+D2ssrxThmqXuvf+4L2kw2nWxdZ11L0u4AmwIbGBDYkNc5aFfWHu+qO7MKXJVG6K0cwoxzLHGI4PA5Cv5An7wjw+/Tg/PfRT0sU0AB+67ENclbiKfRP7ePlXXu44pIYiQwxFhrhy+5Wc0XMGhUqBbClLd7BbXWitJqpd6jrpXkctBPK4u5L4fNbQ1bXoQxcNjw5SQj7fsaCFLWhprdadmamJXNksoriwYEepachgELM6VIUq27lluEoNK9VHv59SE6dWU1FLr7+jdbzurOr48PAwo6OjFItFAoEAw8PDRKNRisXiovO43OV3i8UwjJbilHO3Ny+p5O+y5pkJCnInRraPSvLYPOGqHmA9mjbS4KQSePQiHi2LR0uja7N4xDS6GMcjxvDwCLqewaMV8OhFdK2M0EI1t1QzUUrrx4pZVJzKSGnYGUkzc5xG0nEfzTQISUlad6nTa+4jrQv09VY3Iq0LUSca2cu1BIj4SfmuaaGXWsV3qntdUxZSrrZQR0q1dLn6mxUIBOaICs3G3b/hpUKJ8cNTjB+c4MDBo3MEpckjU1TK9ccR7Y4wMNLHmi2DnPP8XbZLqY/+4V76R/pI9DUX393dzYKBYNPziGoY8WrtXjefUNTss29H42fY7DNu9lnr+sn9P7Nk54nLgFExyCZzZJM5MrPZ2uNsiuzsNJnZKatcLZkmO5shm8qTmS2STZXIpgyySUml3P6cSNMk4bgkHIVwXCccDzG4wU84HrRFoRjhRJxwootwopdIVz+RRMwWkCzRyOdf2lzexfx2V/8OP/rOf2Hd0c30D/euir/PTlGZTi1oCBJPALcAfyelvLlhPQ14P3AF1rXaBPAyrCyn+6SUNwgh1gO3AZcAfwJswnJBdRIk/g4p5Uvs6Y8Dd0spPyeEOAdL1IpjndV/VEr5b0KI3wQ+QC1IfFuL9W639323ve8XcAoHiVfZs2cPALfffvtJf+5sKcuxzDG6gl10B7s5OHuQT9/zaUYzo45gNZ4d53NXfo7LN1/OrU/dylX/dRVe3Vvnlnr7M9/O1p6tjGXGODB7wJofHcKnq9IUxSrFMBYkaC1o3WzW2v8CkF4vMhSyBKhgENMeN/3++vysBudWJRCg4vNRsUWuar5Wnajl91u5X21YSCniQkoWm223FHlczdxW7USscrk8Z3lzt5UBsowVpFzBoxXRtTweLYNHS6JraVu4stxXul7G4wni8UbxeOPo3h68vl48vkE8/jVonrUITZUjrCSkLM0tT7NFI8eBJF0CkjlrBXW3NIh7aw4jrasmJGkJ24FUFY26XOMqp3E56aRcrd10OxodKY0iQrv5830npJRkkznGDk5YYtLBScYPTTB2aJJxe97MWLJuG00T9Kzppm+4l4GRXgaGLceSIyoN9xKKrpzOpUtJNYR7McLRfAJhu9K0diLh8eYdnuqYpkk+U7BEI1swskSjXIOQlCUzmySbTJFzl6ulShSy859/BcOGqwzNJBIXhGIeIgkf4VjQFoeitlDURbirm3Cin0jXAOGuQQKRnlPqs1zOa9WlQAWJrxDsIPGMlPKflvtYjgclOp0YKmYFKSVe3cuh5CFufepWRtOWIHUse4yj6aP8+xX/zo6+HXzh/i/w7lvf7WzbHexmMDLIZ6/8LOvj67n/2P08PPFwTbCKDhH3x9XJteL0Qkool0+coOUuo+z0kNwZWLaoJV1urap7q6lzq+resrscVgWuss9n5Wt5vbBAp9TxliUuVAhrRruOQC3nl4tUKlkqlSJGpWTlN1CpCVWy/oJUExV03cDjEXh0Dx6v3xapwujeOB5vFx5vvG32lfr9bI0VwDo7T4D2bL24NCf7y4UI1YlGjtNIVAWk7gb3UQJESH1Gy0SjG6VTAWmh5WoLGT+eC1HTNJk+NmsLSHbZ2yFbWLJFply6Pr/LF/A64lH/cF+DS6mXvnU9eLyru8ikU3dZs8d2n7OmafMKRc0e1e9yc6plac2EoqzbcZTMkU25xp3lWXKpAqbZXifw+iXhqEEkViEUM63xuCvDKCYIx/12OVrEFo+6CCe6iHT1Ekr0o3t67N/xbrsM+fTuBr7Sr1XnQwWJKxSrAI9W+5Mcjg/z+nNf33LdF215EcPxYcsp5RKmqiHo//vE//KxOz9Wt03AE+C+P76PmD/GzY/ezANjDzhZU1VhaigypP6BK04dhFiS0sOWVEsPFyBciWpeVuP6ySQcPVo/f6Glh7puZYiFQshw2BK4qsKW27Xlcm65HVlVQatii10Vv5+SPV32ejGEcPIkFkNV5FpMwHy1dKXZelXHlmmazvEZRhmjMk2lNIlRnqVSTlIpZ6lUclQqaSolg2Jep2L4qZh+TNOLldXjATwgvPajB/CC8ODx+PF4fPOGr7cSrZYqI+xEUgvQnhuWbQVozy1rw5ylPruiARF1CUTdoG0CrbvBfeQa17qwGgIrTibzCQrtyteOp1ytndhwov5mSsUyE4cnGTtoOZPGD00ydmjCEZkmDk/OLX3rCtM33MvQpgHO2bPLdilZItPASB+J/tVzY88t9Heac1Qdny/vyP1ZhsPhjlxIq+G38WTiLkubU5rWIB5ZotFcUalcau8E1DQIxTTCMUkkZhKOVRgYLBI+o+QSjWpCUihq2sHXEcLxOOFEN75Qt12K3O1ymXbbbtJuEEH1uSoAJTp1jBDiRcDfN8zeL6V8+UL2I6W8rsm+dwNfaJhdlFJetKCDVJxW9If76Q/3t1z+tme+jdfsfo0VgO4q34v6rMivX43+is/c9xnKRi0oNegN8sSbnwDgwz//MA9OPFgnSq2PreeZ6+fLr1coTiOEcEQe+vqWfv+VylwRq41Dyy1micZ1Z2fn7mOBpYf4fBAOI8Nh69EWs+qcW1Whqxog7xp3O7eqLq1qKWLZ66Vsl2AYhuEISMcjctVEqh50vb827dXw+DX8moEmsmgii5ApMNPADJhppJlBmnkkGlJqSKljSh1TRjGNCEYlQkmGMM0AhunHMD1IPEBrd0X1bn4r0ap65759N8HOT+CtAO1UQwlbQ/lagyvJEpDmC9C2Ly70IfDudLmP6ruvWUKSunN9MmlVxtSJgNQ+n615gHKnJWsn+8Izm8zWO5QOTjB2aMIRmaaPzdatL4SgZ00X/cO9bLtwC8955cV1WUr9w72EYyurPLf6WS9UOKp+1q1oVrIWCAQ6Kl87lcqcFouUknymUBOImpamZa3xVHP3USE7/w2nYMRLOOaxArDjgnjCZM1IhXC0TDiSJxLLE4pmCUcrNfdR3CphC8cMgpGAlVvnFouqWXaNIpLWddKy7BSnJkp06hC7O12zDnVLse+9wDknYt+K0xev7mV9fD3r4+ubLn/fnvdx7XOvZTo/7QhTmVLGOTEsGkUOzh7kF0d+QbJg5RJs7t7MT//gpwC87luv46mZpxx31GBkkJ19O3npNiskL1lIEvVH0YQ6AVEoFo3HA7GYNSw1Uta6Hi6wtLAqaDkil9ulVV1/EaWHhEJgC1qEw45jq865FQpZ4fEukcsRuNw5W4EAhtfrlCUauo7hErIMw6BUMjBNH6bpwTSjznzXm0StVK9sP7pL+HJUG8FKCZpmIIREaB40vKD5AC9C84PwI/EhpUm5bIkCVUGtUVyr/g67L9StURNdl3h0E69esXKs9CIeLY9Hz1k5VyKFR5tFFzN4tGm722ABXSvh0QtoomLvy1MrWxNdoI+A9xw7/8gdoO0qbxMxddFxkmhXrjbf+GK6q3USoLxSBAXTNJkZS9plbrZLqeExm6z//fH6PHaWUh8X/vq5jpBULYHrXdeN17c84mg112o+4ajZZ96u+6j7s/Z6vfj9fiKRyLzla8shEq4krG5pzTOM6gSkZL1QlLPXzaVy85el+Tx2F7QAkbiPUEyne8BDJB4jHA0TipaJxEqEoznC0SzhSJpwZJZIvEAoaglIet1VvN7gNBpwxkWjeGQPQgRO6PuoULhRmU6KRbFaM51uvfVWAC677LJlPpLVRb6c51jmGLlyjjP7zwTghjtv4IGxBxzBajw7zjPXPZOvvuqrAFzyH5dwJHWE/nC/I0xdOnwpV519FQD3jt7r5FAFPOofn0JxymGa9aWHS5WhVR0vleY/Bje6PkfQqpuuurfczq1QCKPq3GrsfBgMUvF5qfgMDF8ekwxmJYlhZDArGQwjj2nkLUFJejBML6b0YJpeTBnClAEM02e7owQgqJ6SWSVuJhLpGgeksJ1Xwt6meg5nzQfdmbYuGgUIgUCA0JxHXfei663LAr1eb93g8/nUBeki6KRcrdWydk4UoK3DqF0WzmooYyqXykwcnnK5lCwxaeyQNT1xaHJO6VA4HrKcSXZAt9ulNDDSS6I/fsJFMynlgnOOOi1ZayYUzZd7tBo+66XGqBiWe2hO2HXD+GzWcRk1ikrzl6UJQrEQkUSIUDxkdUiLhQjHfYTjmtVFLWYQiRmEYyVC0bwlHkXSRKIpwpEZfL4ZqwtnK0RkrttItHMhRRHqJu8pwWq/VlVB4oolZbWKTooTh2Ea5Mo5on6rfO+Le7/IwdmDjig1mhnl2cPP5gMv+ABSSjbdsIlixbIPJwIJhqJDvPrMV3P1+VcjpeSLe7/IQGSAocgQQ9EhugJdp93Jk0KhaEOlcvzCVbv5bRwEzZB+H4QDEPJB0AthHUI6BCWETAgaEKhAyIAQyJCAkAZBDTPgQQa9GAEvZtCHGfBjBMOY/iiVUDdmoBdT9GDSg0EvpuzGxBKuTOnDMDRH4DAMwxmqTojqtNtNJaWsG3c/tqOan9UshL5xaCWAVJe1C61fKb/3jeVqC8k7Wmi5WisB6VRzomRTOZdDqepOqjmVpkdn57xv3UNdVse3kT76h90uJStTKRwPL9nxVf925vvMm81rx2KEo5XkMDvRVMvSWmUXWeKQPZ5s7j7KZ9pky9kEwn5LKIqH7M5o9rgtJIXjYSv8uppnFCsRihYJR/OEo2mC4RTCybZzDS3Lkr1zRaKqA0k0E5ESCKE6UitWJ0p0Uiwpq1V0uu+++wA455xzlvU4TndMaXLHoTucrKmqMPX8Dc/n987+Pabz0+z6l1112/h0H39x6V9wzQXXkCwk+didH6sFoLtyp7y6yg5RKBQLx3IUZWoXEPkxyIxDZgyZmYTMFGSmITsD2SRkU5DNQK4MORORk5A3IWdCTtqPGuSFNeRMyBmQqyDyrS5OWhybAIJVkUpYYlbYb7u1IhCJQSgBkW6I9EGkHxGJNXV0yVCorhTRDAYxPZ46caqdK8ctalWFLLegtZAMLncZYWNJYTsxyy1adRpEX8WdFeZ+za1e90LL1VoJRqeLmCClZGZs1hGUrGDumktp/OAkmdn6roVen4e+9T2WK2m43qFklb714PMv7H97Y8naQoSj+fKOOu2s1rjOahYKO6G+W1q2dWlaqj4YO+cSkDoqS3MLRXFbKIrVC0h1olI8SDgmCUcLhKMFdG3W+Z2X5rQr62669vsvM60Pwml6UD84YdqiXlxChE/5z16xdKz2a1UlOimWlNUqOq32NpSnC6Y0LSHK7spXFaf2bNjDpcOX8tjUY7zoP1/kOKWq/OPl/8hrz3otj089zvt/+n4Gw5YQtSa6hsHIIGcPnk0ikFieF6VQKE4aVoB2sj4o25wFOWN1YKsL0HYtp5VTQXMFaCdcFxoJREPXNScjSYsjRIvozMbSwzaOK5nJQHYashM14SuThFzaXr8AuZJL6DIRC9O0rOywdmWHLUoRm82vZm5VQ+LLXi9l06RUKlEul+dc5FddJW5Bq5pT08qJ5c6+cp/HNp7TSinnrOOmPjNrrnurUfRqDH2vuraqwlbjYyshbCU5uRZKuVRm8si040pycpWqneAOTVIu1n8BQ7Ggk53UP9xL/7DtULLndQ20Ln2rOvg6DcjuVCxs5jLrREzSdX3VfnbtcMrSkh2UpiWb5x01fu6NCCFc7qKQSzQK2y6jJu6jqqhkr+cL+JCyYP9+u0Qic9r+bXfNd4SkWaCVkOi3BaJ6t9GcHCRHSGrzu65QLAGr/Vq1leik/moUCsWKQxMaa6JrWBNd03T5GT1n8NRbniJZTDrC1LHMMS5aZzV8TJfSPJ16mruP3s1MfsbZ7qZX3MTzNj6PH+3/Edfedi1D0SFHmBqKDnHFGVfQF+6jZJTQhY6uqcBchWK5kbIMZtLVXa0mGsnGrmvOXeoU0Ko8zlsTiEQC9E3g7aoFaDuiUWOA9hK6UjStJtTMQyeXt1KWwBgF4ygYR5HFw8j0QUgfgcxRSB+zhKm8y4WV90IhCvkQohC0pnMe25UF5MqIdBqOHZsrjLVz/mAlS+mAvzozEKgPhrezs8xQyHJa+f0Yrg6HZb+fitdLyeul7PNRssdLdjC8u/uh6fPVkq2aiAGNwpJ7vJkQ1Oi4qopWVTGj6uRylyculGaliZ1MNxOvmpUmNlu3U3LpfC2Q23EpTTod4KaOzswtfRtM0D/Sx5ZzN3DJSy9wxKSqyBRJhFuWKObKGVIHZ9uKSe1o1mWtEzFJ10+d/+/usrTWpWlul1HOFXydXVBZmlsoivVEGdo0YJej1YtGEZeoVBWQgpHAnO+ilIZ9g2DaJRhNgvm4LSK5hKXUDGZyxm7g0Ayt/vdb3wje8+pdSI3ikgge/wegUCjmRYlOCoViVSKEIBFIkAgk2NG3o27ZeUPncetVVhBfsVJ0RKntvdsBiPqinNl3JqOZUe58+k7GsmOUjTKXrL+EvnAfNz1wE39921/TF+6zXFK2MPWOS95BV7DLCVUfjAwS8q6sFsoKxUpGymK9QCRn6wWk6l1pt5Ak0232GKh3GHm3O3elhVs0qgpMWtcpWeoghA88I9YAELKuu6pIaVrvrfE0mKNgPI00rEeMUaRxFORYw149SG3AEuX0IdDXIvQh0NZApQczG8FIlzFSKWtIpzFSKWQmg5nJIDMZZDpd59wSuRwil0MrFNDTabSJCfRCAb1QwJfPoxWL6MX5W4W7kUI4gpZocFzJqqjVEAJfFbccN5bPZw0NIpcRCCA9rU+Vm5X/tRKy3IKW9ZmJus6FVYeXabvC3NPV5UshcuWTBVLjGZJjaWs4lmZ2LMXMaJKZo0lyqXzdtrpXp3tNgt513ex41lZ613XTu66b7jUJutckSAzE0H16XallVSyaKo4ztu9oRyVrbkHI3VFvvrK1U+FvuVQs13dFm1OalrXcR6kWolIqj2m0z6DzeHUiiTAhl2jUPZgg4pSghee6j1yPoVgQj7f9ZaNVopyzf9unwRyvdyGlZzAb3ElWmHaL77UI12cdebbYAlKrMG3VXVOhWKko0UmhUJzS+D1+RhIjjCRGnHnPWPsMnrH2Gc60KU2mclNO6d3Zg2fzlovewmjaCkB/cuZJ7jh8B+++9N0A/Me9/8En7voEADF/zHFK3fiyG/HpPu4dvZep3JTlpIoM0h3sRlNdRRSnEM7FhUs0qolHMw3uo9mawNTyDjW1C4yqOOTdYLuPEq75iYbSNnWXuhOE0EDvtQbOtubR0F2tlKZcOkalNEGlNEO5lKRSzlAp56lUipQrSSpGgYpxlLIRxDS9WGWHXsADYa8l+Ig44MXj8ePxBjrOOMLjQXg8SCEQjaWHbcLfRZv5YmYGrXE/5QXmaXm9lkMrFKp3Z1UzsQIBKk1ErIrPZ027hC7TPW7vQ2/Ig2o2VMv5GgWtKlVhqlgoMfX0NOOHrQ5vE4enmXp6hskj00wdnWHm6CzlYr1zyB/yER+MEuuPMnhGL9H+CNG+MNG+MJHeEOGuIEKbW6JYIsexVI5jqaNz3rOq2NbMpdUsYL5ZieJ840IITNNc9lJFwzDIpfINQlCL0rRUo/uo87K0UCxYcxIlQvSt72HDrvVE4uE5QlGz0jRfwLfg98lymc5aQrU5gyzUBCNZ50xyiUi06irqqReJvNscR1IrEUkIf4t9KRSK1YYSnRQKxWmPJjT6wn3O9HlD53He0Hkt13/lzleyrXdbXe7UTGEGn251G/nMrz7DN/d901nfq3vZ0r2FH171QwC+8fA3mMhNOAHoVXGqur1CcTKxBKS0SxxqKF+rcyW5yttaXlxQn3+k94HnjHoBqTo4QpLq1rNYqm6Z+fJuOu+upgO9QC+aptVEooBOQC/j0XN4tTQeLYlHm8KjTeARo3jE03i1WTx6Ho9eRAgJ+EFfYzul1iD0Nda0Zj/qvc0/90jEGk4E5fKCuhlWRa3qo+5ef2Zm7j4W6EYy/X5LgHIJWdXywWopoREIkA8EKHl8ZMuQKUIqL0nlDGYzJjOpMtOzJaZmy+RNnQI6BTyU0Yj0hIkPxugd6WLTheuJ9UWIDUSI9UWID0YJRPxzSp6qIldV8GoV2t7o5HI7txrdW+5pwzAoFovk8/m6ZYulk/LCZgKYEIJyoUIhU6SYLVHIFCiki+QzBfLpIrlUnny6QD6dJ5vMk0vlnbK0qpDUUVlayE/IJQA5ZWmxRoEo3LQ0rVlZ2kKRUiLNdINQNO3KuWsQj5wy5RaIaE0o0gfBu9MWilq5kKKnhCtNoVAsDhUkrlgUqzVI/Oc//zkAl1xyyTIfieJUZjI3yeHk4brOfKY0+avn/BUAv/ON3+HHB35ct8223m3c9vu3AfD+n7yfZCFZJ0htSGxgU9emk/5aFKuLWj7G7Jyw7DkB2o6QlKR1gLYOWty+I52ocxqJOe6jhKvEQd3TWihV4agT0aixq1w1eLsZ1dKl+YKSG8cXmntjiZcpp2TPKeEzjzpZU5gTjUcHWp9LmFqL0KzH6vSquliVEgqFjgWtalC8zGYx02nK07OUpmapzKaQ6YxVilgs4CkX8Rll/C3DkFscjqbVCVdGNTvL768JXMGgU4ooqsHwkQgiHEZEItYQDqNFo+ixmPPoicfxBAKOS+n437p6wapRtGo2XsyXnPKzzGyOnO0kqopFuVTeGS9kis6jJTIVKWRKyHm6pWkejUDYhz/ixx/2EQj7CUT9BCJ+gpEAwViAYCRAKB4kGA0QjoUIxYOEYlbXtEg8jNfvnTe7q9V4Y1lm7f0qNeQguRxIcsYlILkGWjmqvPXd1hq7sWndrpy7api2ukmgUJwIVvu1qupep1hSVqvopFCsBKSUpEvpmiiVHsWre3nFjlcA8LpvvY57R+9lMjfpbLNnwx6++JtfBOBVX3sVhmlYolRkiKHoEGcNnMWFay8EoGJW8Gjqon+1UyttmHVdRMy2CdCebZ+PgbeuNM0tJNUCtBP2RUXCFpAiSxugfYrT2KZ9IeLRfE6PxpKkTsdXUretxsBzzKNWnpR7aLwwFuGaCKXZuVJuUUrrWxE5Ls0+e/fnW8gXmHp6hvHDk0wemWb66CzTT88wcyxF8liK5HiGSkPpmy/oJT4QJTEYo2tNgt7BGP0DYQZ6gvT3huiO+vCVy3hLJTzFIh47E0svFNDyeUQuZ2VspdPIbBaZzUImUxO/7HVELmetP09odyOmx1NXKmgGg0iXiFUNjRfVzC1bxNKiUQiHKWt+SsJDAS85Q5CpQLoI6YIkmS2TTVvh2Bm7W1quIe+o07K0xpDrcCJkiUOxIKGYJRZVHwMRv/1ojes+zRHEWjm3Olk2//WWCRggDevRHhfCQBNlNK2EJopoooAu8miigKZV0EQFXSujiUptWvegaT40PYCmB9H0ILonjK5H0DxRND2K5kmg63E0TxeaHnHEw5XyW6FQKFYnqnudQsHqV48VpwZCCGL+GDF/jDN6zpiz/HMv+xwAZaPMWHaMY5ljeDWvs3xtdC0Hkwf51bFf8d30dykZJX5n1+9w4doLMaXJ1v+3lbg/zmBk0BGmLtt0GS/Y9AJMafLk9JMMRgaJ+qMn6yWf9lgtnmfry9Ns0UjWdV2bdS3PtN6hCNa7j7xrHNFIuMvXHCGpC0RIXVB0QLNytU5L1+a7uNQ0bU6nrU4cR6dKYPKcwHPqu/NZgedTjiCFcbQu8JzS/Ug527BXD1IfBG3Idky5yvj0NaANIbTOGz40c5y1eqzrwpbOkxxL1QK6xzOkquNjadKT2TmummhPmO41XWzYNUzf+m76h61ub0MbBxjaOEBXf+K4hYBqN8GOKJWaOrHMdBozncZIp5GZDEY6TWV6lvJ0kkoyiZnKIDNZyGQRszm0Y7PoxSKeUhFvpYS3UsJnllmofF1Apyg8lHQfZY+PiteP4fNjBILI9ZYrS4tE0GIRy3mViOHpjuPvSeDr6cLXk3AErrohFAK/H07Q35SU+YZStSTSmKFSmcGsJDErKUwjjWFkMY0MplHANDVM6cUwPZjSg2l67OkgpoxhEsGUYUwZwpAxTBnAlH4q0odpeDGkB9PUMU2BaXbSWTFtD0fq5gohFtUtcSGdFBtLHBUKRY1T9VpVOZ0Ui2K1Op327NkDwO23376sx6FQLBVSSmYKMximQV+4j5JR4oY7b7CyprI1J9Ubzn0Db7/k7YxnxznnU+cAEPFFHGHqDee+gRdteRGZUoY7Dt3hzO8N9aJry+8iWClYJUTZuR3W5g3QzrfeqYjMFYi0rgb3kat8TUsgRODEvtBTgJVQrnYqt2lfLqSZtTvwVUWpBqeUOQYYGKaHihGgbASpGH1UWEtFDlA2ezHMbspmjIoRpmwEqFT0OuFwznNKST5VIDWWIT2RJTOZIzluiUmzx1LMjibJzNSH5Gu6Rs/aLgaG+xjY0MfgSD/9I5aoNDDSS/9wL/7g8gQll4rl+u5nydbB1zlX4LV7+Xzd0nSP7mQTheIhwtEgsbBOLKQT8UPEKwl7JSHdJCgM/JqBX5bxmWV8RglPpYheyFuh8Pk8ej5vdT20B/e4ns+jLTQgXtNqAlQkYjmyquWFDV0QCWkQEhAEQiYEDQiWkYEiBAsQzEMgC8EMBNIQLIKnmZiiufLs3KVs3a6bBe48pK5FNUuQUrbsjLgQd1arPK5mZZCLpRMBq1ke12LFLiVyKVY6q/1aVTmdFAqF4hRECEF3sNuZ9uk+3nHJO+asV73BEPaG+cSLP8FoZtQJQT+WPUbRsNqUPzn9JH/w33/gbKdrOv3hfj70gg9x+ebLOZw8zLcf+3Zdad9gZJCAZ/WJIFKargDtWTtUdbZFgPZsB7kYoiFAewC8213uo4Q9dLuykFQ2RjsaS5YWEpY934WQOyzZ6/Xi9/s7chypEpSTR+vPP0S5PEKlsnbOMms6j2mUgTLIiuuxArKMECk8+jgePY9XL6DLEsWkJDMuSE7A7BhMHzOZPlpi6mieiSNJirn64PxAyE//SC9DIwOcfekuBtyC0kgfPWu6TojIWO2W1kwomtM1LWWN5xrWLRXmF2jquqXFQ/Su7WZk57paiVo8PCfw2l3G5g8uvFtaK9zuw+pQcpWlVioVKsUihu3IkpmMM2CXFYpczi47zKEX8uiFnC1c5R3hSi9m0Mcma2JWoYCWL6EVyghj7k36dq9O+jwQDkLYFrJCEQjHrFLDcBDCOoQrEMpCGAgXIZyG8FRNDGvm0AqHIRiENsHi1Ryo4w0f75T58rg6Ea2aLSuXyy33uRiq78l8AfPH4+TqJI9LoTgdUaKTQqFQnAZUT3zCvjAv3/Hylutt693G9177PScAvZo71R/uB+DhiYd5/0/eP2e7r77qq1w6fCl3PX0XX37wy44YVRWntvZsPaHd+WoB2jNznEaysetaXYB2K2FCd+UaJUAfBu9Zdv6RWzRqDNBWTpZG5itXa+c4qlQqCypX8/v9RCKRloKRe/pkXZAprO9Ap8Jh42O7z7/aWa36+QaDQWKx2BznmVEymB1LM310lqkj00wcPsr4wTHGDo4zcTjJxNN5zIafgnh3hf51JUa2lLhwT5m+dT4GhuP0j/QxsGEdsZ71CM/aWkmfFuvofSjkig3uotxcAcl2GTUTlXLpNq5JG3/QVy8EdYUZ2NBHOGaJQqGGbmmNndOC0eCK+vuolnzpuo7fX3OHWbl3M+DuyiZdgdquEjdpzFIp56iYgooRwDD8VEw/FSNM0ejBMINUzAQVGccwI1SMMBUzaK/rxSiCli+jFywRSi+U0AvFesdVoYC3VLIytkol9ELBytmqCljFIvrYGCKfdzK3qsOCcYtSzQSq45nv8y2o9ND9+ZwMWrm4jtfVVSqVmgphi60KqopcJ6pMsXGZErgUKxklOikUCoXCIeAJcPbg2ZzN2U2Xv2jLi3jszY85ZXtVYWpr91YAjqaP8qMDP2I8O153ovaTP/gJW7q38LWHvsZ/7v1PyyUVGXI69L1w8wsJeAL2NmXmlKc5nXlmm7iPZu3Wzq1ODH314pB3myMaiTrRKOEqfYioE7gGGp0GrYSiZvMXUq5WFQ/aiUaqXG15cFwlHeYcucfb0fj5BgKBjsoXdV23GjNMZxg7OMH4E5PW48EJxg5NMn5okvGDE8xO1Ld+13SN3rXdDIz0ses5Wxmws5T6R/oYGOmjb32MgH96TuB5Of802ZknSD/9fxx7xCSb0smkdHIpnUwqSDYTJ5uJkE0Fyaa9ZFM62ZQkmzLIzBY6LkurCUHW49qtQ9a8WGMgdrhuverg9XnbPsdKxCpddolHbsFIzjTMtx9luvUORaxWqqavQXh34Q114dO6QMzt1Dbfb34zt1XVhVf3d1GpkHc7sBrWb7FzS5CyRStfuYyvXMZjC1h1QfGFghMWXw2M1+zSQ5HLwegoorFTYrG4sA9D10+coBUOW/s/Dtwil9d74r/rzYLkFyNuNYpZrZxcxyNyLbZMsVNxS+VxKRaLEp0UCoVCsSAivghburewpXvLnGVXbr+SK7dfScWsMJGd4OnUUxxLP8W6YAZZvAOPcT9eOcoDR/fyg+wsBaMEmDz62svweTJcf9c+vvrkNANBnaGQh8GQh6GQzlt2J9CEYKLgw+/pIurvQehd4F1XE4/colG1lE10gQiqkyObduVq8wlJCylX83g8hMPheR1Hqlzt5FP9DnTqNOq0w54Qou6z9fl8hEKheYWj+ULSDcNg6ugMx56yBKSxg7awdLg6PUEhW39R7Q/6bAGpl63nbqRvuJf+9b3Ee6OEEyF8fh/5bKHORTQ7nuLpx0ftbmnN846ssrS4PTQnFC0QjmaJxMuEogbdvSbDmwzCUUkoHiCSiBJOJAgneoh09RNODBHpXk+4e4RwoptAyH9K/D1IWWwuIDlNExqXzQCtxElfXf6R9bvfkIMk3JlIcYRYWjGildtqIUgp6/6WGkWpxmX5SoV0g8A1nyDhFvEdJyDgq1Qc8cpXLltB724hqypgFYtoriD5xmB5xsfnzl9oppPf316kOh5BKxhc8oD4k+3kWoxzq12ZomEYdSJX4/LFilzH69xSeVynFypIvEOEEBuA/5FS7lrGY9gDvENK+ZLlOoYqqzVI/L777uNTn/oUn/rUp5b7UBSKk4qZuxky/2wF8GpDEHkbWuilHW9fC9BuDMu23UfOnejZegcShdb7JEKqEuNYwc+2nmEQCb57cJwfHznKWK7AaDbDaDaFIeHhN/4ctC7e+J23cPOjNxP0Bmule91b+eBlHwTgV6O/QiIZigzRF+7Do7W/t/LNfd/kb3/8txyYPcCGxAaufe61vGLHKzp+XxbC2NgYTzzxBLlcjlAoxJYtWxgYGFjwfjopV2snIC2kXK2daKTK1RbHUn4POnUdNU7P9x1o/Iw7EY7c4uENf/rvfOfTt2AaJpqu8RtXX85bPvGHTZ+vmC9ajqRDk4wdtIWkQxOOS2niyDRGpf6iNhQLkeiLEumOEIoE8Yf8eHwedN3q3FUulJ08o6polEvNX5bmC3hrTiJ36ZkrxyicaF2aFowGnAtTaWbAPOZ03pPVDnzVRzvwvA7RVeu6N6cL3xpLaGlz4dXqd/74f/9Nu3y5XkByGig4ziOXgCSzLfYmGm4Q1NxGoi5E2yUkqc6bQP1vfyeiVav581EVWBobIlRvLNQt03U8pumUEnqKRfRi0XJduYWrRvGq3bxsFjOTQWaz6IXW5xBNEaImQi1EvOp0Xd9JyGC86SZ473vh0CEYHobrr4fXvvaEPNVS5XEtpNRxMZyMPK5GF9dy/OaMjY3xve99j69//ev8xV/8xaLPD5aTVkHiSnTqECU61bNaRSewfrjU915xOmHmbobUX1EvAAUg8mcI3/l1FwuyUTSSLiGpZYC2ZpcydFHnNJoToO3u2hNHiM7MtmWjjFe37lr/7NDPeHD8QSdrajQzSsQX4aZX3ATAlV++kruevss6KqHRF+7jWeufxcdf/HEAvvbQ1xBCMBgZ5IGxB7j2tmsB8GpeymYZIQT/+pJ/XXLhaWxsjL179zonTtW7i9u3b6e7u7uj8iT3eKflau1EomZCgrqbeGJp9z3o6upq6z5qnD9f1ki770A7Mel47+bf8Kf/zrc/+f0588953i7OvGQbo0+NMX5kiumj08yMp8g3ySjy+j3oHh2EwDRMKsUyptn+/7amaw1CUK1zWiQeniMUhZusezLL0qSsgDle13lPusr5MI6CbMz68btEqSGEvhb0IdDWIssPQ+YjzPmdD7wcCv81d3707fbvf01IasxBqv1vmAVa/OaIkMtlVBOMmndj6wYRV9l3y4jb7dqqBHA+IWs+4aDqDJpXsGpYXh2fmprioYcesn4nAewSwp0jI/SFw01FqoUIWnXzS6W2r2UOHs/SlR02zguF4Mtfhquvto6xSigEn/70CROeTiaNItdSlCm2c3wdbx7XUjm35it1FELUnR9cdtll3HrrrUgp2b1796oSnpTodJy4RSchxCbgG8DVUsq7GtbTgQ8BewA/8Akp5b8KIf4c2C2lfL0QYjfwJeBC4F3AZmAL0Av8g5Ty31ocwx7gOmAS2AXcA/yulFIKIV4A/BNWyeRdwBullEUhxAH7uX4dy7d8NfBB+/n+UUr5KWFdYfyDvY4E3i+l/Eq792O1ik633norl19+uRKdFKcV5vge6yKmIzx1opG7VE04glGDkCRiCLEyXC6PTj7KoeQhR5Q6mj7KYGSQd1/6bgCe8W/P4OnU0wBM5CYwTIOgN0jcb5XLlIwS62LruO+P71vS47rjjjsoFAoIISgWi05LayEEoVCo6TaN5WqLcZwoVg6GYfCzn/2Mgn3nvio4tfseNOZdzfcdcC87mc4z0zTZv/cQd37nXj77V19a1D78IT+ReIhod4RwwiUQxeZ2RpuTY5QIn0JlaSXbVZq1frfLjyErT0DlMag8YTlNF4RO64YJTdatuznQzIXUXScwCbH6Opcqjo9qudZCXFalUolCodDR+Xcul0NK6Vyc+/1+DMMgEAjwrGc9a2lfTKVy/MJVq/mZDCzV9cbICBw4sDT7Oo1YSB5XJ2WK84lgxyNyVb/39913H+9973u57bbbTtz3/gTSSnRSmU4LRAixDfgy8Dop5f1NVnkDkJRSPkMI4QfuEEL8APgYcLsQ4uXAe4FrpJQ5+wTpLOBirKapvxJCfEdK2eoK8VzgTOAocAfwLCHE3cDngBdIKR8TQnweeCPwUXubQ1LKc4QQH7HXexYQAB4EPgW8AjgHOBtL+LpLCPETKeVow2u/Gku0Ynh4uMN3bGVw3XXX8Td/8zfOdPXE9H3vex/XXXfdMh2VQnGSMEfnX6eK1mPdOdeHQBtA6EOgD1olGfogaH0r+i71tt5tbOvd1nL5j1/3YycE/YX/+UJ0j+6U4EkkFbPCgdkDS35cuVwOj8fjnJRUT6ZN02THjh1NRSVVrra6KRaLJJNJUqkUyWSSTCZDJpMBalkY1f9FUkp27tw5R0BaiQJicirNL797L/ff9hBP3LefsQMTZJO5jk623/T/3kDfup56USkeIhQLrtpQeOt1F8DMWGJRdTCzIGvzpLM841reZJpOnRc+EGHQwiAiUHmkxXptcrgSn6wXkkR0xdxAUKwMWgWoL3R6IVlUuVyuzhEC1m9mbjFd/ubD44F43BqsF2wFr6dS8w9+v7W9EGCaUC5DoWDtwzA6F5yiUYjFrGHfvubrHDq0NK/3NGOl5HF14s669tpruemmm5x9Pe95zwPgd3/3d1eV6NQKJTotjD7gv4FXSCkfbrHOC4GzhBCvtKfjwFYp5X4hxOuAB4B/lVLe4drmv6WUeSAvhLgNywH1rRb7/6WU8giAEOI+YAOQBvZLKR+z17kR+FNqotPN9uNeICKlTANpIURRCJEALgW+JKU0gDEhxI+BZ7i2A0BK+Wng02A5nVoc34rkuuuu47rrrmPPnj38+Mc/Vk4nxemFNtTc6aQNIro+7eSLSGMUjGOWSFV+BIzbkHMymXSk1m8JUPqgtY86YWpgRQtTIW+ITV2b2NS1ia3dWzmSOoJPtzIa8uU8qWKKmD/GaHqUoejQ0j1vKEShUHBEhOqJUDgcXlW2aUVzpJRks1lHYEqlUuTzVtmYrutEo1GGh4c5dOgQlUql7gS4eiezv79/uQ6/KYZh8NDPH+Xu/72PfXc+zpHHjjI7nqRSqhcxAmE/a7cOsWHXenY9ezuffvsXmpbfaLrGlX/6ayfr8NsipWGVrlVFnwaBqCogyRYCknsdSyjqMKdEhOsHLQzaurppISL1y93TzrwwQtRny7R2tLZyOnnBsxHh2bSwN0+xapgvA6rdPPeyTgSjxrI5v9/vNJNoLJ9rNu0W4avOYPfvpGmaLV3B9ou13EWdiEXzDeVWUQIudL0mFFWH/n7YsmXu/HZDJALuG0wbNsDBg3Ofb5Xd7D9dcQulC+WNb3wjf/AHf8Cf//mfs3fv3jqn06mAEp0WRhI4hCXStBKdBPBmKeXcQAPYCmSANQ3zG3/N2/26u1u0GHT2GVa3MRu2NzvcXqFQrGYib2uR6fQOhHc7eLcD1o+XGys8PGmH3x4D8xjSOGaLVMegvA+MHyFpbMdcFaaqItQQQh+03VNVsap32YWpa597Ldf8zzWUjBJezYtH8xDxRfDrfp534/P4h8v/gZdu6zxstx1btmxh7969GIaBruuUy2U0TWPLlrkdABUrH8MwSKfTJJNJR2SqBvT6fD7i8Thr164lFosRiUSck9BQKOR8D9yZTsv9PZg4PMn//c/d7P3JPp564BATRybJp+sFZ92jE++LsW7rENsu3ML5LzyLs557Jl5v/WnE048da5rp9BtXX35cx2iVnWVcDqFsk2m3o6iJOOQMnTomdJfYUxV/IqANgLcmBom65eHm24jQiXURtfqdb5rp5AU8yMkrIfo2CP2+cjitMNxlQe3K2OYTkxYiGFUf/X5/U3GoVR7TcWUBVipzRJ+dBw9y5OGH8eRyePN5tGwWTzZLn98PH/2otV46PVcs6uSGciAwV/gZGVmYUBSLWfs5ES7U669vnul0/fVL/1yKFUX1PLH6N1t1CC73+cFSoQSHhVECXg58XwiRkVJ+sck63wfeKIT4kZSyLIQ4A3ga672+AXgO8HEhxCullF+3t7lSCPFBrPK6PcB7FnhcjwIbhBBbpJRPAL8H/HgB2/8UuEYIcSPQbR/jOxd4DKuGkZGR5T4EheKkooVeat2HX2D3IiGqXYYS4N1hzWtYxxKmZm1hagzMUZcwNQblh1sIU542jqmTI0xVw8Ibu9edO3gub/7em/nj//ljRtOjXHPBNcf9XFU3U7VrmRCC/v5+5XJaJZRKJUdgqpbKVU8Mw+EwfX19xONx4vE4gUCg5QVY4/fgeLrXLep1FErc+8O93HvLAzx295McffIYyck0plHv1AnFgmzcPcyms0Y467lnctFvnEvPUHdHz1HtUufuXvfiP7yQN3/0YmTxznrBSGaRc8rMWohGLRsZNOJ33ECO4KP3ghhxCUBhhBaum64XjSLWPlg9OVHtfufN3Plz5gv/xcjUtcj0B6FwC8Q/hPAoN8VS0Zh7NJ841Gz5YgWjVp3nWo0v6jveaQnafEOTkrkue3BjRiJo8Xh9KdrQ0MKEomj05HSfOx6qYeEnqXudYuVQPQ+onh8GAoFV2b2uFSpIvEMagsQTwC3A30kpb25YTwPeD1yBdX02AbwM+Ahwn5TyBiHEeuA24BLgT4BNWC6oToLEne51QoiPA3dLKT83T5D4BVLKSbu87wIp5Zvs7Q8AFwBTnCZB4nv27AHg9ttvX9bjUChOJyxhasZySzmOqZp7iqpINSfLxAN1wtSQLUwN1FxTWu8JuUNfMSt88q5P8ltn/hYDkQEqZsXJfloKHnjgAbLZLBdffPGquag9XWhXKqdpGrFYjFgsRjweJxaL4fWevI5nC+Hgw0e48zv38OAdj3Dw4SNMHZ2mmKv/G/P6PXQNJBjevpYdzzyD81+4m+3PGEIT+YayskzddH3ZWaucohyLLzubKwCJOoGoUTCqbSvEyvw8ViJSSij8FzJ1PVBBRN8Fwd857V1P7gyj+fKKWolHnbSGX4g4tCSC0UJK0Jo5idxDJ13fmpWgLWZoLEFTKE5hzj33XHw+H3feeedyH8qiUN3rVihCiOuAjJTyn5b7WBbCahWdHn30UQC2bWsdNKxQKE4+c4WpBsdUVaRqKkwN1IQpfQhRdUpVc6a0nuO6iDKlyW9//bfZ3b+bd1/6bicD6niYmJjgoYceYvfu3fT09Bz3/hSLx10qVxWa3KVyVYEpHo/XlcqtFDKzM/zyu3dy320P8uR9hxndP01mtoB0XfMKDSJxncERL1vO0jnn2XDB80pEYrl6V5HMd/isnhYCUX0OkWiWS9QoGJ3osjPFvEjjGDL5Xij9FHwXI+IfROhrl/uwFkWrDKOFTC9UMJpPHGo13bFgZBjzi0CdCkkdvLa6EjS3s2ihQzB4YkrQFIpTmC996Ut0d3fzohe9aLkPZVGo7nUKBUpsUihWKlYpX7fVRcm705rXsE69MDVa75gyjkF5LxRuQc4RprxIfcAWp6wSvpowVXVMtRamykaZjYmNfPLuT3L7wdv5+K9/nB19O47r9fb09ODz+Th69KgSnU4y7lK5VCpFOp1eVKncYrG+xw1iT5OSMtkwbRppHr0ny10/LPHI3ZLDT2jMjGuUS4LaX4vEH5QMDZcZOaPAzmdkufCyFBu2FYFAQ9lZ2HISuqbFvLlE9jQ+5dA7hRD6IHT9O+S/ikx/CDn5Eoj+BQRfdVI/ZynlgkvQGpcbRutufVUaS9K8Xi/BYLAjoag63tH7Ui1Bm51duJPIPWSznb2Bkchc4edULEFTKE5hhoeHV1xjkaVAOZ0WiRDiRcDfN8zeL6V8+RLsezfwhYbZRSnlRce776VitTqdvv3tbwNwxRVXLPORKBSKE0FNmBp1xCnplPDZnfmMY8zNh/Haoedux1RNpEIb4pb99/COW95JspjkLy/9S/7o/D9COw6HxlNPPcXhw4e5+OKL8fv9x/W6Fc2RUpLL5epcTO5SuWg06ghM7UrlpKzYQlGrIGt3t7P5w67b9wuB6XEPd94aY+//xXny4SDjRzzk0uCWYjUdYj0e1mwMse38Hs59/nrOe/4mfMF4fS6RU3am7jMq5kdWjiBTfwmlX4DvOYj4+y1Rar7tXIJRJ+JQuVxetGB0vC6jtoKRlFbO0FLkFXVSgqZpEI8fv7MoErHK2RQKxarm7//+70kkElxzzfHniS4HqrxOsaSsVtFJZTopFAopTTBnagJUU2FqjGbC1GSpi3f+31H2zeS49VVvIhoYqROm0Lo6LhXK5/PceeedbNy4UTU4WCLqu8rNkErNUqmUQZp4vRCPQixSJhbJEw2l0USzIOsm03Wdv9rhacgZaiwrqy87K1cC7P1ZirtvHePRe8Z5+vEZkpNZjEp9CUwwGqBvXQ+bzhph93N2ctFvnMvA8Kl3J1SxPDQKRuVyCSP7fcqZb1Exgxjel2Nou9qWpZ0IwaiZeNSyvLWxBO14ytE6KUHz+5cmr0iVoCkUChenaqaTuu2lUCgUitMKITTQe6zBu8ua17COJUxN20HnljglzWP0Bo7xmRccZSJ7mEj5SxQKRX58NM8L14ftLb1IpwOfFXoutKGGUr5uhBAEg0G6uroYHR1leHj4tC9XktJsUnbmEn/saemaLhWLpDJeUpkQyWyMTC5ud802Cfqn6A09TSz0NPHQEQK+mdq1nQSyVb9RYG4ukd4PYpOr7Ky1gFRXgtam7OzpJ0a58zv3sven+zjw4F4mn56mkK3v6ujxeegaTLD+jDVsv2grF/zaOZx5yTZ05WBQtEBKueD8ombOo7kMAX9oCfByAk3/BR7fOjzeWhma3+/vOL/I4/E0F4xKpZrYMzOzeKFosSVo0SgMDCy8BE25UxUKhaJjlOikUCgUCkUDljDVaw1NhKnBXkskuemeG7j2Jx/gyq3b+OClv0HMm66V9pXvhcIYco5jymdnTA0xGNvJvqltTB/9Mt09/TVxSnStChHKKjtrnUtUHZcNZWjNt8nRruxMSsiXuklm15PKbyCVW0e+lAA0hBBEw1nWDqaJRyvEIgKfLwZiCLQ9DcHV7pyi0JKXneWzee75/v3c+8MHefyeJxl9aoz0dAbTrL02IQTheIjN5wyx+ZyNnPO8M7nwxecS74kt6bEoVjaNgtFiw6/nQ9O0OWKQz+frqCxN1wWe0pcQ2Q9afy+x9yECL7ZK0KpuomaZRZ0OxeK8x4+mzRV+enpg40ZVgqZQKBSrACU6KRQKhUKxCITQeN15byJTgQ//34f55bGjfOzXPsalw5c661iOqak5jqlqWV9P6Ed4tSijTx+mS/+Wa+8+l2PKGkTVKVUt51uEMGWV1BeblJDVi0GyUUBqlVNEBxeMAHibdDpLgHedazpiO4qswZAhMtkAyYxOKm2STJWpVCQg8Hq9xLviDNmd5aLR6EnvKmeaJk/ef5BffvdeHv75oxza9zTTx2YoFepFRl/AS/9IHyM71rHzkm1c+OJz2XTWyIrrgqdYGFXBqFU+0Xz5RdXH+WIuhBBzxKFgMLigEjXHKWcYkMksylkkk2VIPgTplyLTEmF2EM/RrARt7VrYsWNhYlEopErQFAqFYhWjRCeFQqFQKBaJR/Pw1ovfyp4Ne3jTd9/Eb33tt/i75/0dbzjvDUDVMdVnDd7d1jzX9howkH6Cp58+SCn6O/j1CZcwZTumineDHEPSWALjQYo4aFEQIRB+EF6geiffBFmaKxgxvzPCOtDgXIeQPlg3XROJ3DlGjdMRhJi/G1KpVHLCvpPJJJlMBtOsABVCoRB9fb3EbJEpGAyeVCdYcirNnd+5h/tve4gn7tvP+MFJsslcnWCg6RrR7gibz97A1vM3ce4LdnP+C88mGA6ctONUdIaUEtM055ScLaRb2kIFo6oQ1EwwaiYcuTOMRLlcn1G02DK0TKazNygcniP8iIEzkbGLIHgE/HsxY0FE38sQPRerEjSFQqFQtEWJTorTii98obEpoEKhUBw/5wyewy2/dwvX//R6Lh2+FCnLbXOJ3N3OBqNljhibOXboToYHHplbpiZbZZVUQE6BMdXmyARWZlEYtG7QNtmPfaD1g2ctiH6EFmkQjEIIceLKUKSU5PN5R2BKpVLkcjnAKgWKRCKsXbvW6SrnO0ktvCuVCg/f8Sh3ff8+HrnzCY48fpTZsSSVcr3gFwj7WXfGECO71rPr0u1c/Bvns3bL0Ek5xtOdRsFovryiVtOLEYwCgQBer7ezMGxdRysWEW6xaHq6M3GoMQS70EGQfbMStO5uGBlZeAmap/nlgROJVn4Mku9CVv4XGfAhYn+F0BIL+yAVCoVCMYe//uu/pre3d7kPY8lRopPitGL9+vXLfQgKhWIFUis7a5U5ZItEbXKJ/DLL3+7KQuW/kWNF3v7zCbbEvVyzM47W0pXjJSQixEOv4NhkF+v7SgitC7T1dY4h0Rh03Tgtwkh8CDlld+CzSvikMeqMWzlTD8Acx1TAKuVzlfMJfQjpKu1DJI7LWWSapqurnCUylctWGZrX6yUWizE4OEg8HicSiZyU4OyxQxP84tv3sPen+9i/9xATRybJp+sv7nWvTqIvxtotQ2y7cAvnv/AsznrumXi96vRpMbgFo07CrVst60QwahSD/H4/4XB43rBrj6bhKRTQMpmaYNSpWNQ4dNDRzWqrGK8Xftasge3bV2wJmvCeAT1fg+ynkJlPIku/gNjfIQLPOynPr1AoFKcqAwMD9Pefet1p1VmT4rTiK1/5CgCvfvWrl/lIFArF8VLrdpZpkjlUE4Nkq6DrxnlzxJgWiFBdDpHlIlpTN102/STlN7j+Vw9y2/gAH738z1kb21C/jQg7ZWdrGGPfvn2k9N+mq6trUe+Hdbk5APoAcLZrnvs9M8CcdAlTo0jjGJijVpeq0p1gjjcp5WsUpobsjKkBV8ZU3BGmqqVy1XK5dDqNabchDwaD9PT0EIvFSCQSJ7xUrlQocc8tD3DvD/fy+N1PcvTJYyQn05iGqy26gHAsxMbdw2w6a4Sz9pzJRS8+l56h7hN2XKuRaobRYsKuFyMYNXZJa5ZX5AhHUuLJ5dCzWfRs1hKMpqY6cxI1LuuEJiVo9PUtTCiKxVZtCZoQXoi8GfzPRybfg5y9Bhn8TUT0LxFadLkPT6FQKFYlP/zhD4nFYrz1rW9d7kNZUsR8//wVimZccMEF8u67717uw1gwe/bsAeD2229f1uNQKE5XpCy5Sswaw6xr07LZOnO2yXX4rFrrzKG63KFw83W06ngERLDjsjMpJV996Kv81W1/hS50PvCCD/Dy7S9vKrAYhsEvfvELurq62Llz5wLe0aXHEqYmLBHKHG3umDLHqYp0Vle5LlL5TaTyW0nm1pEvxgEPQvMQjfiJxeLEE0PE4kP4T+BF9oGHDvHL7/6KB+94hIMPHWbq6AzFfKluHa/fQ9dAguHta9nxzDO48NfP5YwLNp/ywd6NGUadZhe5x6vCYSuqglFLF1GTEjRPpYInl5srGC3UVdRJCZoQCxeFFliCdjoiZQmZ+ThkPw1aPyL+AYT/0vk3VCgUCkUd5557Lj6fjzvvvHO5D2VRCCHukVJe0Dhf/cdUKBQKRUusGxOFtrlE9d3O5gpIddOU5ntKG9/cMjKt2y47cwdZR1oIRC4BicBJDZ2uIoTg1btezcXrLuYt//sW3vuj9/K8Dc+jKzjXyaTrOgMDAzz99NOUSqWTlmHUDCH0WlldE8eUaZqkUrOkkkdJJSdJpjKUS1bgt0cvEAuNMRh/gFhwH5HgKLpmB5ebwGwQ0ynbs7rxCcdBVXVMxeb9vLLJLL/83n386kd7eeJX+zm2f5zMbBbp6qglNEGkK8zIznVsOW8T575gF8/4tXMJx0JL+n6dDBZbkrYQwQiYIw75fL7mndI0DW+xaAlFuRyebBZPLlcrSVuIaFTpINi+VQnatm0LE4vCYdUF7QQghA8RfRvS/wJk8t3Imdcjg7+NiL7L+o1WKBQKxWmNEp0UCoXiFENKwy47czuE5gpGsoWAVD8vR+dlZ/UZQ2gR0NbVTYvG5c22EWGrdOMUYSQxwjd/65s8OfMkXcEuTGnywNgDnDN4Tt16Q0NDHDlyhLGxsRWVP1cul+u6ys0plesddLrKhUIhRzCSsuIq5XM7psasznzFn9ulfA1iiAgh7bI9U/Tz6L1R7vphiUfuynLosRSzY1lb5KrhD/kY2jTAhjPXc+aztnHRi89jZOfKeA9bCUYLmV6oYKTrOl6vd65gJCXeQsFxFrkdRnUZRp0EXXdCKDRX+Nm06bQpQTvdEL6zofdbyPRH/z977x3nyF3f/z8/MyNp1LXt9nq/c6+4dwwEjMEUg6mhJoYA3wAJEBKS+CAhof0ICSmEhIQOpgUMjmOMsY1tbOOGfcb17Ou3valLUz6/P2akVd3V3u3d7t59nveYh6SZkTTS7u1qnvt+v96Q/29k+S5I/D0idO5CH5pCoVAoFhAlnRQKhWIRMN121i7IOjedTzTLPp23nemt28605RCYFkGiJoOotTCqTDs7utuTDgVd09nasxWA6x+7nj/9+Z/yh2f+IX9x8V8QMrwT6mg0SjKZZGBggNWrVy9IdVZlqlytZKpMlRNCEI/HWblyJclkkmQyOWNFlhBGTcXU6d66puez/Va+Qcb2P8t9Nz7Go3ce4LnHMgzvy5HPPFd3L02XJLttVm6w2Xq6zhnPT3DGZSsJRlb6FVMr/MypFFLKQ34PpZRzEkWtKo+cDsKkGzOMKsKo0oIWcBwChYIniQoFAoVCtRVtTsKoUJj9RbdqQUulYO1a73o83pkoisdVC9oxiBAmIvFRpPkiL+tp4veRkd9HxD+EEOGFPjyFQqFQLADq04BCoVAcBFJKkIUZMof8aqKmNrM2wgirw2cONWcO6b0g1jW0nTXmErVoQyO0IGLjWOeVx7+Sx4Yf4z8e+g9+tedX/MtL/4UT+7wcpxUrVvDkk08yNTVFKpU67Mfiui7ZbLZuqly57LVAGoZBMpmkv7+fZDJJPB6fl6ly5bLFo7f/jgd//ghP3f8s+58ZYGo0g2PXy5lw3GTdib1sOGUNp1y4mnOv6GPZygK4A0jHr5ZyB8G5G3IjSOozKiUxbLkGm1U4rMB2+3DoxXG7sN0UtozhOMaMMqlTYdRYZRQKhbwWtHKZoF9ZVJVG+TxaRRhls50Jo05a0AyjuQVt+XLYunXuU9CO8nwrxeFHBJ8HPT9BZv8/yH8DWfoVJD+NCJ650IemUCgUiiOMChJXHBRLNUh8dHQUgN7e3gU+EsVC4LWdtWohq88dkrPlElWnnc3e8gK0bSGrnWQmWgRb19+uVB0dPW1nxzq377qdD978QcYL4/zd5X/Hm059E47jcM8999Dd3X1YAsVrW+Uq0+VqW+UqbXKNrXIHy/5nBrj3Zw+y/a4n2P3YXkYPjFPMler2MYIGXcuSrD5uJcefs5mzXnI6J57vVYXNVkVkWZa/roxt5bDtPI5dwra99UgbT+jaIJsFkqY5GDrohoahBzCMIIYIEihpBEuCQFEnUHTqg67z+aosmlEYZTJeyvpstGpBa6wY6rQFTUlkxSJElu5Fpv8CnP0QeQci/gGEUC2TCoVC0ciNN95Ib28v5567NNuSVZC4QoGSTUsRr+2sfS7RdJB1q+2NWUUdtJYAYDSNtkckwFhRJ4xEq1yippwi1XamaM1l6y/jl2/5JR/9xUfZ0LUBmA4UHxgYwLIsAoGDl4xSSorFYl0VUy6XA7xWuVgsVm2VSyQShzRVLp8t8ODNj/DQrdt55qHnGHhuiMx4tj7YW0A4EWbtSatYdfxytpy9geMu2oQZC9YJpSl7jLvuumvW59Q0bbq6SNMIuAEipRDBoiRQcAgUSg1T0bLo2VG07ChaZgwtMwHpKchkIV2ATAkyNqI4uyiSQkA8Aok4MpFCJFKe+Fm9em5VRaoFTXEMIELnQc8NyMxnIP8VZOl2SH0aETh1oQ9NoVAoFhWpVIru7u6FPox5R1U6KQ6KpVrp9NWvfhWAt73tbQt6HEczXttZnpYtZLXZRLPlEs257cxsyB1qzCGK1bSctas48m8TVG1nigXhH+75B/pCfayaWsWWLVtYvXp1x/edrVWutoqpXauclHLGaWiWZbHz0T08+svHefbh3Qw9O0p6NINdrq8iMoI6sZ4ovWu7WH3Scjafv46+DT1ofttWRRjpmkbQsggWiwQKheplpRVN96ei6bkcWi6Hlsl41UXZLKKxssjq4GdFqxa0mkXGohDXICYhZkOsjIzmIZqF2BREJiE6CRFAq/kZIWI1eVL+RL7KND59uTelT03xUiiQpbuQU3/hZblF/xARex9CLNy0ToVCoVhMfOxjHyORSPBnf/ZnC30oB0W7SiclnRQHxVKVTpdddhkAt99++4Iex2Jjuu2sMZeovsJItssuqhNGeTprOxMgIq2DrGtuT7edxdru4+2nqgUUSxvbtXndD17HPXvv4fzu83nP1vdw+QWXtxWgtm3XCaZ0Oo3jOEgpMU2TSCRCJBLx8oUMoy6nqF3bWuX+ALmJAjvu28WeRw4wtGOUyaE0pVwZJGjSJYJNVLPpiemsWGaydnWCjRu7WLc2Qdgut25F89vR6lrSOvkcEg7PfeLZYWpBk7Lsh58P+JP5/Kl8zqCfMzXkTe1ryJhCxKsCyhNTFUm1AvR+0FZ4YlyhOMqRbhqZ+Tso/AiM4xDJTyMC899OrFAoFEuNM844g2AwyH333bfQh3JQKOk0B4QQ64GfSSlPnmW/s4C3SCn/+DAdx1f94/hBh/ungDdKKf/1cBxPLUtZOu3atYtdu3Yd8ed28zdA9vPe6HBtBcT+BC1y1UE9lvf/tnHaWescItlSIjXcptjhMwfat5E1tZ21yiWqvU9YtZ0pjgqGhobYsWMH+XyeSCTC5s2b6e/vn9NjSClxXZdSucTn7vgc//LwvxDTY5yfOp/799/CkDXC+gnJn/82yem/9372XXIJlmVVBZGmaXVLK1F10xfu4LGfPkrYtYhqNuc8fwO/9/oz0HN5Jh7fy/jje8jtGcIdm0Qv5Ai7FhEsolieYBI2Mc0hgkXQ6aCqSIjZ84g6ySuKx+EQ2gwXAinL4Ax7P+/90HPpDtaJKk9MNSDifsVUP+gr2lRMtRZT8/k7RqE4Esjibcj0X4I7AaEXgPWo939Dff8qFIpjkKGhIV70ohcxNDTEj370o4P6PLnQKOk0BzqVTkfgOL7K3KTTeuZ43MI7MxFSyg4TkT2WsnS64447ONLf927+Bkj/JfVyJwSRtyOCp9blEMkZBFLdbTqYZgQgwg0ZQ41tZ1Gv7WOmXCIt5rWnqRJ4haKOoaEhtm/fjhACIUR12tmGDRtIJBIdVRZV1kkpsW2bYrHI7sJuPvXsp9hf3E+qIAk5YOkgJPzb/2o87+TXUjzlFMxymbBlYTRORstmq+1oIpulODCCUcwT7KAK0UZQEEHKoTDE44T6e4msWY42Q1tayyUaVVPQZsATU0P+BD5vke5A9Xp7MZVoqpiS9iAU/wco1+xoQuJv1Ym7YlEj3Unk+LvAfrhhi/r+VSgUxw6Vz5Mf/OAHeeyxx/jFL36BlJJTTjllSYknFSR+kAghNgI/BK6VUt7fsO0y4ENSypcJIbYBG4CNwFrgg8B5wBXAfuDlUkpLCLEL+J6/voBXmbRjhkO4RAjxJ8By4CMVASWE+DBwDRAC/kdKeR3wKWCTEOK3wC1Syg+32s+XUzcD9wHPA14qhHiff0wS+Fsp5fUH944pWpL9PM3VRCXIf8nrRpsTpn/C0esvfaD1IHTv0rvdC1rSD7FW/80VisPFjh07EEJgWVZ1CpyUkqeffppIJNLRYwSDQWKxGKFQiMHBQQDWhddhaAbxssT045ImTe8H9O+/0uX0weuJPH09r30c3v0AWBp84GU6ES1ERDOJdIWJLotwnrOCswKnc9O3f82DG0tIK4hrGThWCNsKIgsmlmWSxyBHAC2VxEjECIZDhCJBzEgIM2YSiYaJRMJEo1Fi8QjxrhjxrijJ3gSJ3gRdyxIkeuMETZWH1ilCBMFYA6yZXtewT7OYqq2YGgL7d0h3rM0zFCH9UdzCt0FLgUiClkRoKf/3Q9JbryVAVNbFVQWq4ogg3Qmwd4D9DDhPtdij6H12UtJJoVAsIlzXxXVdHMepLjPd7nTfyjThymcoXddxHIcdO3YsKenUDnU2OgNCiOOA7wJvk1I+0sFdNgHPB04E7gGullJ+RAjxP8CVwI/9/aaklKcIId4CfAF42QyPuQK4CDgeuAH4gRDi94AtwDl4n1FvEEJcAnwUOFlKebp//O322+Ovf6uU8l4hxNXA6cBpQC9wvxDiV1LKgYb341rgWoC1a9d28HYsHrZt28bHP/7x6u3Kf+jrrruObdu2Hf4DcAfabzNfAbLoh28XvQlrsjC9jmLD1LUiOPu8pYbm2q0ACBMpwn61U2Ux/Swls26dqK5r3NZiwfTvo05OFMc2+XwewzAIBoPVKqfKB5Le3t66DxaVpVLVVKFcLlMul8lkMpRKper64fIwiZrClUgZXAG2DmcOwPCLL6f40vPZteXV5MM6993+TgpOgaJdpGAXkGT447PezknnfoB//PFrue9VtzYd/8Y7TuD0oZOYDI5z58tuRi/raJa/lHXW/GYzPc/1U0zk2XvODrTndHTLQPf36d65jPBUFCtUJteX9rbZOoYTIOgGCbohgoEggaBB0AwSDAcIhUOY0RDhWJhw3CSaCBNNRol1RYl3RYl3x0n2xkj0JUj2Joh3xQiFj02Z1amYkkOn0Oq3ANggQn7l1FMgJ71q2rZoSJHwBFSdmPKuNwsr/1Ik1B84FC2RbsYTS/YzSP8Se4eXizYbM312UigUihZU4goORvx0Io3m2i1TiT3Qdb26aJpGIBDANM3q7X/7t3/jW9/6VvV+z3/+8wF485vfzIUXXjiv79FCoD4htKcP+Anwainl4x3e5ya/mmk7oAP/56/fDqyv2e87NZf/MMtj/thvfXtcCFHRnL/nL5Va5BieRNrTcN+Z9tstpbzXX38R8B0ppQMMCSHuAM7Gk1xVpJRfBr4MXnvdLMe9qNi2bRvbtm0jn88TjUaPeHsd2gpwD7RYvxIt9dlZ7+59C5RqhFStmGpc562XVYnVQma5E03bZMdT4mqOC3NWmUWNzBIzyqwW2wgckyeaiqVDJBKhWCxWPzQAOI6DaZqcfHL7TufKh5hKi11lefTRR8lmswD0B/uZMnYRsr2fVzELyjqsHofPP7Sch//qkziOw55sFjft8rkTPld9fCkllrTAhfvuu49g0eSMb12EE7BxAg5uwMEJOMRHUnz05vcwYU2wYWcfZVmm5JQoukWKTpHf/+Dvc3bybB7Y8xB/8fCfk7fSFJ0irusipeTiyQvYMLaZx93H+NG6X3qZ4FIipURKOPvnl9C1s49d/c/y5KW/RbN0T1iVPXm16dYTiYzHSS+fYHTrgC+zPHGlWTq9zyzHKAcoRYtYsSKGEyTgBggSIiRMQoEgQTNAKBycllnxMJG4STQRIZqMEE1FiXVHSfTESfTESfUlSPTEicTDmNFQ9eu2VBEiiJzpd0z31+pWSWmBmwY5Ce6Ut/jXZc316nprt389jWwptvzHFbG6iipPTqX86qrp69PSyhNWQoTm7b1QLBzSzfmVSztq5NIzXpVeBREGfROELkYYW8Bf5Ngb2nz/rjhyL0ChUBwxKmJovquFKtfnep5X+QxXK4V0XScUCjVta7dvu9udnsf80R/9EW9/+9uxLIsrrriC2267rfp58mhASaf2TOHJmYuATqVTCUBK6QohLDn9He9S/17LNtfbPqaPqLn8eynlv9fu6LfN0bB/u/1m+lPnUUun7S7zTuxPWmQ6md76DvAqiioipjPmqmqktECWWkiqRsmVb5Ba/jZqJdak90Gz4X4znbC0Rkc2iKuOpRZh0CpVWe0llxDNY+MVik7ZvHkz27dvx3EcNE2rftjZvHnzjPer/OUr0BCQfcIJJ/Dggw/iui6vX/F6/i33BcqyQKAm0+mv7wkS+tznOO+886r3ayexKsvlb7iI275xd9NxnP/a5+E4DlEZ5S1r3lL3oQ2AHOzO7abP6OE/zv4y4H1YLLtlim6RsB4mEoxwpns8FxfOxsKiLMuevHJLPP9Nz2dlfCVPTj7Jj3f+2BNajleJlSvl+ND7PkhPuY+f7b6B/xj6MkWn6Akr1xNXlzx+MeZ4lAd6fs2jm++pyiyk99Pkwv9+MYHRIHtOfZYDp+1CtzyZpVk6+qDBcf99OrqtM75hiMzyqWqFVqVaq+eZ5WhCUE6UIARBgoRECFMPY4ZCvswKYsZMwjGTSCJMJBEhlooQS8WId8dIdMdI9MZJ9saJpaKYURMzGsIIHMGPWHP4HSNEAPQeoKd52wxP4U05zfgCampaTLmTIH1h5V/HnQJrsHpdzpBBKDFrKqZqhJWWQtTIKRqvi4j6o8QCIGUR7OfAftqXS5UWudrq6yAYmyB4Tp1cQl/VskJaHuJnJIVCMf9IKQ+LEKpcnwtCiLaiJxAIdCyE2kmixfC7pPJ5svK5sFJVNdvnyaXCrJ+IhHdG9nUp5ZuOwPEsJsrAq4CbhRBZKeW35/GxX4eXv/Q6vDa8uXIz8DdCiG9JKbNCiFWABWSAeAf7NXIn8C4hxNeAbuAS4MMHcVyLnn/913/lpS996RF/Xi1ylRffu4gnCwkRABHAK4jrYP85Pv70xL2ZZVZd9dUM27y/1NdXfMk6R9vhcRGcVWbVbhMzVWa1ui/HZlvQsUKlz/5Qp9fVPt6yZcsYHBzkgq4LEFsEP3zmPxksD7N+Av768V5e/ZEvwJvqfyW3k1gV/uJrHyAWi3Hjl2/BdVw0XePKa1/EH//LH7Tcv/aDYTuR1bh+lbOqed+sw76pfUTcCG/seWPL58oH01y+5TIu33IZEoktbCwsbGHT/4p+zIDJi4sXsDu/m7LrCy3pyau3/PFbiIVi/GLPL7hl9y3kywVypSzZQpZsMcdfvOH9FCZL/PfIf/JLe3ud0BKu4PxbLqSYL3HPybexa/2OqsxCSgL5EOd96UUAPHvp75hKjXtSa1hHO2AQyphsuv0kAIaP3085WvSqtPxqrkAhRNdgL7qhYyfLGAGDsG5iGmHCYRMzHMKMhTBjYaINMivRHSPeE/PaC7ujflWWiRkzCQSNpp8pR+J3jBC6X62Uar29zf2klP4AjHpJVbkuqxJr0lvn7AZr0ttWF4zeSADZUDWlcqvmDynLYO9saIt7Bpy9UB1IEABjAwRORYRfA8ZmXy6tndMfdJbCZySFYrEh/ariuYqgTiVR9Y9PHSKEaCl3KhEEs4mfmcTRYhFDh5PK58bPfOYznH322ZimuSSn17Wjo+l1Qoi7gMullDP99j9qqJ0CJ4RIAbcAfyOlvKFhv8uoDxLPSik/52/LSilj/vXqNj9I/Hq80O4S8IZ2QeKN0+saHvP9QOVsIQu8WUr5rBDi28CpeK1+H261H+BQM+XOn2D3GeYQJL6Up9cB3H777Qt6HIrDg/eX+Ba5WLX5WG4BqKm+atmCOEP7InP76wxoLSRVjZiiWVqJTmRWzaXKUjm6uO+++5iammLjxo3Tf+F6xStg92747W8X9NgOloORWDPt2+mH4doPwUITOMKhjCeubGy2dG3BMAyenHyS/fn9lFyvtbDklDB0g/ee9V5cR/Kl+/+N+wfuJ53PkClmyJVyRJwo77U/SGYyx78aX2B34LnqSYCUkuRkN8+/6UrKxTK/uuL/mOqdqEotzdFI7enl5P85B4AnrnyIcqTkCSu/tTA+mGLlI+sBGDx5D1KT6GWvistwA0TyEZK5LoyggUw6mAGTSCBKOBoiHDWrMiua9NoM411eZVa8N06iO+ZXZYUIx0zMqLkoc7OkLE7LKJmuuT6FrLleXV9pCZwltwqVW1VFShucXdWKJWlV5NIupn/f6aCv8yuWNiMCW325tM77g5VCoWhJYxvZfOcMHUy+0MGKn9n2Xeqt6ouFpX6u2m56XafS6evACXgZP9Xf5FLKz8/nQR4L+NLpLClliznISwclnRTHIt7PS6t99VUL0SVnbFVsFFqNofGdEmghptpnZolZZVZjtlZIVQYcISzL4o477kBKydlnn00qlfI2vO1tcNttnnhSdCSx5iKyDkZiVf6Cq+s6UkhsbE9mCZuSW8IwDI7vOR5d17lz/52MFEc8qeW3F/aby7lmw+so5or8xd1/wZ6p3WSKWfLlHHm7wIbSJl46+Epy6Tz/vPmzFLVCjdSClc+u4+Rbz8Iu29z2rhtwdE8QaLaGbhks376WDXcdjxSS7Vff67Ud2nq1xbBrVx89O/txNZehk/ahW14AfMANEJRB4uUEMTdB0AygxzViZpRwxMvLilTyspIRYt0x4l0xr72wK1rNyqrIrIXIzZpzblX1ehpmagPvKLcq0dQOuBhyq6R0vBY4+2k/d+lpXzQ9x3QRvAB9TbUdbro1bqMXaq9QHIVUqoXmK2PoUPKFZmojO1QpNJd8IcXCsdTPVdtJp07/ZPOsv2jUt28pFArFMYP3yzoIIggkOrvPHJ9j5tD41qJLziSz3PHmtsWDCY2vTi3sIABehP18rc6yuLyKLxUaD5DJZKrBkclkcnpDVxdMTCzcgS0yZmsnnCuNEst13Y6FVe066UhwIOB6x/XUqDcKvsf/N/0CgDI89vSj6LrOu7deWyexGsXWa5wr6rKySm6JrkgXJ/SdgK7rfOfx71BwCmSLObKFDOl8hpNeeTIXxS5mZHiUP3/qz6oyq+AUKLhFtmzcxGnPncy4Nc69F9zclJe16dcnsvo3m8jFMtz/ytsA6jKx1t96HMueXEUhmeO5yx6vCq1KGHzfkyuJjSYoh0uk149hVALgCWFqJkmni1gwSigaJBw1icQjRGonGaaixHtixLvjxJKRGpE1LbR0o3UL17zkVlXbANNLKrdKShecAy0mxj1LXUyotgoCmyF0CcLYDMZWXy51nh2pUBwpDteY+kNpI2slfSptZAdbRXQstJEpjk06kk5Syo8DCCEiUsr84T2kxYcQ4sXApxtW75RSvmqujyWlXN/i8T8GvLZh9fellJ+c6+MrFIqlzZELjS/OKrPqpVbD+mqL4uQ8hsZ3JrSapVbl/ZpZdC2F0PipqSkcx6Gvr6/+g2dXF2QyYFkwT6JFMc3hlFhzrbqybZtyuVwnvhpPioIEyZHjgd1exfFGNgL+yVBUR094JzAFPUtqfYwvb/pSywotXddBwJ+Ur63mZVUmF27+6GY2dm9kPD/ONx7+Bulc2msvzGfIFLJcdOnFrC9u4qnRp/iP/F6KToGimydLiTJltia2smLnKvbGd/PkJb+tyqzK5Uk/Ppuep/sZ2zjI4xc84EsrA62go0/pbL35NOLDKaZWjTFw2u7pgHhfai1/bA2hokm5u0ipP0+QIKZmEtYiREIRurRuotEI4Zg5XZWVihLv8iYZRlPTVVlmzCTsX5rRKIFgEmGsa/q6LqbcKk9KaeDm/J/DI+AMeI9dWzGr9XvVSpFzEIbfFmdsQmid5TcqFJ2wVMfUH0yrmRBCiSGFYo50JJ2EEOcDX8FLGF4rhDgNeJeU8j2H8+AWC1LKm/FCuQ/X438SUIJJoVAcEaZD4zsrXD340PiZZVZdCPxMVV1NofH5WU7U2hwXoVllVn1W1hxaEEWY+QiNHx0dRQjBsmXL6jd0dXmXk5PQ13dIz6E4/CykxGpVpTWbxGokRIi9B/ayT+xD13XO1c9F79LRe5ursY7TN/Bq42XVEzPDMKonaIFAgLJbZiA/4LUW2v7kwnKOM/7iTJIkeXz/49yw4wbS+TSZQrZ6+dKtLyc2leT+wn0MRp6jIPOURZmyKCOlZEvuOMzhKDu27OXJ8x6BBtV9zn9ejpmOsPfsHexdswOtrKPv19F2eXLr5B+dg1EOMLL1AJNrR+uklm4ZrHl8A4FAkGJ/DplwMfUwkUCEaDBKPByjO9zltxl6IivWFSXREyMSj2DG4pjRXsL+1MNKdVbQbP4ZUZ9bNUV9btUUOJMgR8AZBOt34GbwprzN9DUUQNSTVHq3d9sdQ9qPg7MfYf22RmaljvrcKoXHYhxT30r+VMbUH0pLmZJCCsXiotNMp/uA1wA3SCnP8Nc9VgmiVhx7LNVMJ4VCcXTgtcG0ycaq5GNVQ+MrFVudZ3F5jzG3kvvWofEN4goTtDBeNZuJqJFZkhC/vFsgJTz/4pXoRmT6/t/6CeKtfwhPPQVbt87326k4xmglsWbKx2pc3yi3DjYTq1J1VZFVjZVYjesri42NGTAJGAHGC+PsTe8lb+XJFDOkc2kmM1Nc1ns5oii4e99d3DV4F+lChnQhTa6YI1fO8ZrBN2FNWdwRu5VHex+iLMpYmuVXLcEL//1V2GWHxy97kMGT99a9Dt3SufCLVwDw9IseYXzDCLqfpaVZOqFMmBNuPBOAA6ftopjKe0KrbBCQBuFilNUD6wmEAhSXZ9EjBrFQhFgoTCIsSIYdkvEi0fgk8cQI0USOSMzBDLuYsShmfDXh5FrM+CrCieWEon3oGhzruVVHA7XTyGYSPQs9pn4+MoaUGFIojj4ONdMJKeXehh8Ocx3hpFAoFArFvOCNb4/hFeB2eJ85PP50aHwHAfCdTEJ0x0DuaxJjtad++WIX5fKf0RPfgTb1wfrTQi2HANwdL4ZkT5t8rFbVWjNUZrUSZJjqROAY4EhUYs1FYlUqsWqFVifUSixDN+jVe+nX+9FTOjYl9KjORSdewKWnXNxSbum6zoeN99ZVR5ScEgW7QPdnuwHYObGTXWO7mcpMMZWdYiqbplgs8cKrfo9itshP99/A41O/I1vKki1lKdhF9JLO6ZefTCFTZM/xTzLctw9bs6uthdHROMmv9QLw20vvJr2yPq8tMZDi9C9dBMD2q5+hmChUK7A0SycxkGbdPTbwHHvP3oFruBiuQdANEiREsphiRW4VoYhJod8gaq4hHjmJZDRBVzJBImkS79KJRB3MqI0ZLhOOFDEjRcxIHtPMEo5mMM00urb4cqsWkpnG1M9H5ZAaU69QKI5GOpVOe4UQFwBSeLNR3w88cfgOS6E4PHzuc58D4EMf+tACH4lCoVjM1IfGJ2fb3bvPHJ9DStcTVP7UwuGd+4Fhlq06B9F1bn311YpHgU9B8QUQXtdagrnjTTLs0ELjOwiAb5qGOFsel6mmYB2FLLTEatxWLBYPWWLVLr16D8vNfi8va2V9hdYHzntfyyotXdcRFBDO68HegWM9SbH4NPniUzjOML1/+wilgsZ9B5IMZDYyVeoiXYiRLoWJHL+C511+OdmJLN+d0hiyBilYBQp2gaIsEjcjrJlYSSlf5sHn3U4+mpvOzAL6nloJN3pfi19f9n/YwXpZtOKetWy55VQkkgffege6PR0Qr1s6PTuWs+zJVbiay77zBgnKIEHZjamFMEWIPquHPlKYMUm5O0sqapCICXoSEI+ViURLhCL7CIefxAxnCEdLmBG3uoSjLoFg5Wjb51aJSutfi6orRLztVNWlMqY+GAyqMfUKhaKOo/VctVPp9G7gH4FVwH7g58AxkeekOLr42c9+Bhx9/5EVCsXSQwjNb7mLADAytg+Exqo1FyCCDWJm1RnAp9BKL4DEGzp+jvrQ+LlMQqy5DwWvVVFOgjvQ9HhzDY2XGLNWaLWXWrXB8eG6VsX6+6gTsaXMfEusSmVKp2HujetLpRL5fH4GiSVBlvGy7MogS951LHStjKGV0bQguv48dOMiDCPORKALPdDNupVdbDKMuiysWnH1Mv1Fde2GzZUn/4bjOtWsrKncFLIIqX/uopAtcuuuK5nITpLJp0kXMmQKGZZ197P+tM1MTaZJhw+QdwqU3CIlWaIsSgSKGvHhGDmy7D7vqab/4evvPo61922hGC/wmz+8dXpDCbS8xsbbT2TlI+spJEM8+bLfVVsLK3Jr+fa1pAa6cVNlRk7cT0i4hESGsJ4nrA2zwknQFQygx220uEMiGiQaDmGaQQKmQcA00ENBguEIuhkhEPIu9VAEYYSQMojX7qx7l+j11xuYqY0sEAgckhRS+UIKhWIuHK3nqp1Kp+OklG+qXSGEuBC4e/4PSaFQKBSKYwspJel0mnA4TLBROMF0kPjERPO2GTgyofGlWWVWXfVV20D5xtD4itQ6lND4zoLgxQyVWS3vOw+h8YojhxACwxc7h4KUZbCfQ1o7sEs7cMq7sMv7cKxRHDeA4wZx3DAOq3FYicNy77rsxnGjOI5XKVNyHJy8g+NYOM5Ax1k77SqxWlVZlfUiwS6dl/Ve0dRSWCuxPize2/b5XNfFsi0m81OMjY8xPjnORHqS4ItMIuUIY1Nj3DN2KulClmwxQ7aYI2tnWXPSerp6exi2hxkMPkc5WKYcK1PUili6Rd/eFcgBmIpmePLc3zU974k/OYveZ5czvmGMx151v//mg5bR0McNTrzheST39zC5ZpQ95z1TV6Wl2TrrH9lIvBSh2J8hs2qcsK4RMTQiAZ24CWuNON3JEMG4IBwPkohFicZjmLEYwXgCM5oiHE9ihrsJx3sx40lCsT50vfOpsgqFQqGYptPfvl8EzuxgnUKhUCgUijmSyWSwLIve3t7WO1Sk0/j4kTuoDvDEi+nJmE7vM8fnqA+Nby+z6kPjW1V1FbwQZXeoYVsBeRCh8XLGXK2abVTEVgcyq06ENVdkKI4MUlrg7Ab7GaT1DNg7wH7aW+dHmhroGPo6QrEtYFyCCGwBYwvo6zzZO6fnm3slVmWbbduUy+W6/Wonic12WZGntRK1klvUuE0IQZgQwoCykScRjfDilS+sbm+cXqjrOn+q/1FzBdCHvEo2u2wzlUuTyWfJ5LJkChmy+SzLTl9OqBziQHaAh7Knky1lyRSyZGWOvJvnxFNOJrA8zK6wZCC6C0uUKWkFbMPCMRxWPLoWIwsHNo2x46zHmt7vs7/yfMJTBnvPepadlzwBGdD36NXphad/+yKChRBDJ+5jdMsAmu2tDzg6Aalz4mNbCJsG2ZVTlLtLREMm8VCEeCRGVzzJ+sh6wrEERjRKNN5DOJYkEjcxo9PTDM2YSTgawoya6Ib6v65QKI5uZpROQojzgQuAPiHEn9RsStCqPlWhUCgUCsWcOXDgAAD9/f2tdwgGIRKZc6XT0cDChca3n4444yREd7R5W0NofEfHRWBmmdUkqToQYLWii9AxX60lpQPOXrCf8QSTf4m9E6p5aAL0tWBsBvPFCGOLd93Y2FE+WSdj6g9lKlmrfCEhBEKIqjiqvay0e1WWdsfcuFQed6ZL8KqjGnOGKs9VaZusyKdQKEQilWg5obAir/5AvGXW97gWx3EofrJEIVtkcmqS4YkRJjITTGammMpNkc5l2LBtE07O5anckzxe/B3ZYpZ8OUfeLlB08qxeswwn4zKWgnKqiK3bOIaDG3BwAjYrbzuOtIQdW/Zw4Pjddc+vORoX/f1LAXjqJb9l6MR9dSHwoazJaddfAMDes54lt2wKwzEIyAAhGSTmxDjxwCmE41EmVo6jJQSJSIJEJE48HKcr0sWK+ArMaKhOYNUKrcplIDg/7akKhUJxqMxW6RTE+5RnUF+bnwZec7gOSqE4XITDqjRaoVAsPkZHR9E0jZ6envY7dXUdk9LpcHPEQ+PdPJXw+LZthrKIbKrqqmzL+2KrfttBh8bX5WPN3GbYug2xfdXWXCt+DhdSuuDs9yuWnkHaT/vXnwVKSCm81jixFldsxtFehCvW4bAGVyzHdQ2cQqP02d1x8PRcmClfaD6Cpw9GNNZOazuYXKxSqdS0bS7vRSsp1aqlsHadEdHpj/exct3yOol1sK+/XCxTzJXIZwoU3+FJreHJYYamhpjMTpHOjZPOj5HPp9ny/rXkJjP0Oxb7Rnoo2CUKbomStJBFQTgmKRehlMiTWT6JE6gILYfwRITYL70/Pjxyza+Z6qupbi1CbHeSM791MQAPv/Eu8t1ZX2p5lVrJA91svvUUAHZd+gRuxCVEiJAIYeph+uxlHFc+kWgiwnDfAOGwSTwcIx5OkIjG6Yp20Z3orpFXzTIraKr2YoXicHG0nqvOKJ2klHcAdwghviql3C2EiEgp80fo2BSKeeemm25a6ENQKBSKOorFIrlcDtM0CYVC7XdU0mnJUhcar3V3dp85Pkfr0Pj24fGtWxArlxPgHmiq5Dq40PjZJhpOb2vXgigJIzFxnBCODOG6QT9DycB1Zf2kOnsSxx7EsUZw7HH/dg7HEbjS8O+3GleehCOjuNLElRXp2BhAn/GXhq9NmzH1gUBgTmPpl8qY+tpMrBl/RnXIQkusdrJqJoml6zp6SCcZidOtpzAMgxO0LYf0tXJsh0I2QyE9SiEzSj49SjYzhvPyDIVsml2TfYzlJkjns2SKObLFIm5AsvLFOXIZiZXpY7IQpyRdSrhYmoNRmj61m1w+TrErjxOwcQ0HKaD3mRUUbvLaiX/9npuxdcvLvC8DU9D/+GqO+7/TAbjn3T9HuBq6raGXvUqtvqdWsvqRDehhg2cvf4wQJqZuEjbCRAJh1rGBTcHNBCI6Q4kBT2ZF4iSiSZLROF2JLmKxaJPQMmMmoXBQTeNTHPMcreeqnWY6rRRC3IRX9bRWCHEa8C4ppZpgp1AoFArFITA6OorruqRSqZl3VNJJMQNHNjS+RWWWm8N1SjhOwbu0y9hOEde2/MBsG9f1pIHruDiui+NIHEfiugUct4Dr6r4UCuD6l470rks508lo5dVMSzFNs9A1iaYl0PUkuqaj6QGCoTC6Hqze1nUDXQ/410PoRghdD6PpJroRQdOCdSJCjak/dBaLxKpsWzCJpevowSCJ/jV0r9owJ+HoZd1lwJ0CdxLkFLhTSGeCcmGCfGaSYmaVJ7UyGfKZDOlMjty6IuLCfRRyGpcUNpEuSjJlSbYImZJLyI3RdaJFPq+xdu8qyjiUhY2te5VYAoGUULKKDKzeixOwcQLT79e6e7by3D37KceK3HvtL5q87YZfncCaBzZRSOZ45HX3VKu0Ku2H67ZvYeXIGmSfzZ6TdxA2woQDYaKhKNFgjC3iOFaEV0BMkglPkYwmSUQSpOJJkrE48UQcM2r6LYfT1Vm6rlJhFIqFpFPp9AXgxcANAFLKR4QQlxyug1IoDhd/8zd/A8Bf/dVfLfCRKBQKhcfw8DDAzK114EmnXbsO/wEpjloqJ+dzzQ2afRu4bhgpTTpuUWzVRhbU0DRJQJPomoOuu2gih8YYOiPojKIx4l3Xcr5YstA0PGGkB/zHquQVtcjq6iQ0XgK2v6A1VWa5LbOzKllZJkLzLmeq6lKh8fPH4ZRYB1ONdTglVvM2E11fhWGsm16X0El06XT5+V2Nrw2Zq0qqWmGFO4l0p/zbk+CGq9ed8iTFvE0hl6OQe5JiXqOQ20Ahp5HLaqRzOlOFEPalEcQ5gkw+zkmTzydTluSKDtmyTd4ukyj3Eu4JI4VN9+4+LyvL8LKy7JCF5ZbJTuZImxM8ueYxHKP+vTvxxufR9/QKxteOsP3q+2C0/j08+Ufn0L1rGRPrRnj2+Y+h+VMNDSdAUAY5+Xdn0uv2UViZZWj1fiLBKJFAhGgwSjQY5WTzFLqiXTgRCztik4wmSMaTpOJJYvFoU7uhETi0iZgKRSNH67lqx/9TpJR7G35wza1JXaFYBNx6663A0fcfWaFQLE0sy2JychJd10kkEjPv3N0NDz98ZA5MsWC4rjtvUqjVvnOhto2ssS0sGAwedAtZq3wh6ab9EO8dNYHeO7z8quoBxcDYCsZxfqC3v2i9HVWIzB4a3xwOL1vuVwmNH2m+70GFxgdb5GO1z8wSLUVWuwD5MCo0fm7USqz5YDFIrPYiaxmGsbK12ArWr4tqFrGKoKqKKe+6rFx3p0BWrue9/WSu5qiGa94XKBUCFAt9FAtJCoU4hbdEKeSjFPNrKeTPJZczSOcgnXdJF230S6K4Z4YYL6ZZt3M1uVKOnJWj6BQoukXiGe/3qF42iI4mcAyvQqscKlII5Bgfm6A06jAY2sPTz3t0+r3Cc81n/dtlRCZi7Hveczx36eN176fmaJz9lecTyoYZOHU3gyfvQbcNgjJI0M/NumDHZSRiCUaXDzKVmvCEVihKLBQjFo5xRvRMwvEwZbNEIKKTjCXpSqaIVlsOPZkVCAXU/9ljlKP1XLXTn6Z7hRAXAFJ4qZDvB544fIelUCgUCsXRz9jYGI7jYBgGsdgs09m6umB8fOZ9FIed2mlkByt/am83rm81jWwmaiVO7QliIBDANM2DDpyuXM77++dmvQDv0jO4Vbn0DLhD0zuJCBibIHQpwtjsi6YtoPUf0onYwoXGt5l0WJ2G2G5S4nyFxgs/NL5GTtE+AL6zaYj12xdLaPxiZDFJrEPJxAIaxFQPur5s9pZCQ6KLErqWQxdZdC2Lrk2hM4UZm8KsSqqKsNrvX0/DTApXxEBLgUiCthK0JIgUthOnVIhRyEco5MMU8yGK+RCFvEHhxQbFnE0hWySXyZHOZZjKTZEpZMkUM4TPjWGlLbrdOMse6CPvFCi5RUqyiB1wMEre97leNgjkQzhBm0IwTzaQwQk47HxkD5qj8+zlv+PA6p3TX7MSiILgor9+KQLB07/3CIMn761u12yNYM7knK9cDsCuC58ku3aKoPRkVkgLkZIpLhp7PuGYye7enZTDJeKhKFEzRjwcpyfSzXGp4wnHTOyQRTQWoSuZIhKLVNsNzYgS0IqFodOffu8G/hFYBewHfg6893AdlEKhUCgUxwKjo14VRyKRmD1zoqsLcjmwLAioE7yZmOuY+rlUE7UbUz8T7cRPKBSaU3VQq9uL9QRCyqInl+ynkfYOsJ8Ga4d3Qlkl5Mml4Hn1lUv6Si98fQlyZEPjZ5ZZVUk1U1WXOw7MR2h8YIYKrWZZJTqRWZhQbVU0l+z3xHxzuCXWXEXW3CWWBnQBXbPkX2nomo2uldG1ArpWRNfyGCKLrmXQRBpdTqGLCXR3Ap0nEUxhuFMYukM0TpuIO9MTVFVhVVn6ENXbF9VsSyFJUCoaFHMlitkihYalmC1SzBUp/J13O5u9gkw2TbqQJVPIkClmyBXyxI9LUsgWKe3eTHKsG0uUcQIOjuHU/RwQrobjOGSDaab86YYD+RCRX/QiNMFvX3U3k9FRpAVYQAaiI3Ge941LAXj4DXeRWTEJgG7raGWd5P5uTvzpWQTDQZ75vUewYzamFsLUTEw9zEp3FWfZ52JGTJ5OPo5hGiTCcWLhGIlIgv54P2u71hKOhhBhQSKeIBIPezJL5WYpZqGjn1ZSylHgTYf5WBQKhUKhOGZwHIdxv3Jp1tY68KQTeGHiy5YdxiM7MjSe6MxnC9lc/nIP021kraqGFmpM/VJByjLYz/ltcU9PVy45e5muUgiAsRGCpyOMa8DY7MulNSrP6CA4cqHxM8us1tVaLUSYO9lCapXneFQgffnUvkKrft3c2xCPzZampSOxdLzv+TiwouVzT//sBV13fWllYehlv9qqgCby6FoOQ0ujiwy6mEIXz6CLMXQt70uuMrpmIcS0fA0RIKQlScaTkKyXVkJL+tdTdVVX3mW8rTC1LZtirtQksFrdLuaKFN5dpJAr8rz8KWSe8WRWtpgjW8piZS3MSIhSocyqhzZSihdw/aB3J+BgpsMAlAtl8naBgsgybji4QW/73r17yd3k/VHl7nf+H2WnBDWdkcueXMXx/3sGAHf/v5twDQfN9kLg9bLOimfWcuLvTicUC/HA8+8kJELeZEM9TMSIsFlu5aTgKRhRnafCjxMLx4hHEiQjcRLRBCuSK+jvWkYo4rUYVoSWys06OujoqyiE2AD8P2B97X2klFcdnsNafAgh1gM/k1KePMt+ZwFvkVL+8WE6jq/6x/GDw/H4Rzs9PT08/vjjs++oUCgUh4mhoSEef/xxcrnpT3O7d+8mmUzS39/f/o6Vn13Ll8PatfDJT8KbDt/fg6SUdScP850zNNd8ocrUsEahEwgEDqmFrFItdKydbLr5GyD7eXAHQFsBsT9Bi7T/WCelBc5usJ9BWk97eUv2M946ak4K9fVgnAjmVYjAVk8w6etU+9USwvu/4AueTu8zx+eQ0m4htNoILorIplbF2vtMee2ZjW2LnYTG16EjZ6nQam5BDFPfqjiz6FrsknWuPxdasdgkluU4FEp2C4nV8tkAB6QLOOiai67bvrwq+UvRbxX0F20PupbB0MpomoVRkVZ6Cd0fdqD70zCFXiunkmgiSTSQItqThN7p9WgrQCQQYu7voeu6lArlllVZg/sG2b1zDy+aPAdpjRPVn0J3SxSyp1KM9FN8iSfAVv6uj0wxS7aUJW/lKVgFtPT09+7ae7biBG3cgFOdYGiMh0iPZ3GnphhzR6syy6vkstn54F52/HofhUCBe//oFmgYxrv+ruNY+5stFBN57n/nL6sh8LptEJABTnjyVDaPn4DTY/HICb8hrIerQisSjHBa4AzWRzbgRGz2BnaTiCZIROKk4ilSsQQrulaQTCSr2VmHmpt167fv5L/+4tuM7B2jb00P7/i7N/KCN1580I/3oyd+xId//GfsPP9ZmBBccsmLue7df3lIj7mYEJ2UiAshHgG+AmynZuyHlPKOw3doi4tOpdMROI6vsgik01lnnSUfeOCBhTyEg0YIMefWCIVCoZgPhoaGePjhh7Ftu2mbYRicccYZrcXTt74F73wnlErT6yIR5Je/jPv61x9ydVC7+x5MG9nBip/Ztqkx9fOHm78B0n8JFGvWmpD4W0T4Sq9KyX66pnppB9g7oZolJEBfW22Hm26N24AQwSP/ghSKBqZD42er1pquzJIt92t33wJQmu0wWhCcVWZ11obYpuLrEELjZ/q5MFfxtJhpJbHmKrIa13uyyhNVFWEFLkhnej0OmrAwquLKq7iarqwq+4Kq7MstC13XMPQQuhFEN8LeosfQAzEMI+FVWDW1CqYQonmK49DQENu3b0dQQJPDuNJASo2T1v2A/tTOWb/OVtmqq8ryWgrbVWkVvMucty6fLZDPFijnLHK5PKNimFw5R8Eu4Pjtg5GxONGxOJZZZv+ZO2uklietVjy6jr59K8j3Zdh+5X2+0LL9CYeS4288k76nVjK5ZpRHX3tv0/Gf9OOz6HluOeMbhnjypQ+j2waG6wXBB2SIC565lJXuaqaWjfP08sc9mWV4QfCRYIQLYhfSF1tG3szywGMP8evrH0Dm8MSYZRDWIvy/f34nL3nb5XP+P/ijJ37EO37wDvLZAjgCSy8RkEFO+fm5fOYjn1xS4kkI8aCU8qym9R1Kp/uklOceliNbItRKJyHERuCHwLVSyvsb9rsM+JCU8mVCiG3ABmAjsBb4IHAecAVeNtbLpZSWEGIX8D1/fQF4o5RyR5vj+CqQBs4ClgMfkVL+QHjf3Z/xH0MCfyulvN4/no8Dk8Ap/vNsxwuDDwOvlFI+67++/wJ6gRHg7VLKPe3eDyWdFAqFYu7cfffdTE5Otv0ZZJom69evb8okOu7FLyY4MNC0f7Gvj/u+8x1kh1kKLcfUH4QQOhbbyI4m3OHLwD3QYouB18JSczKtr662w3lyaSsYGxFzqIJRKI5GqqHxdSJqhjbDummInbUtQvMfKGZGtBZahEHzL1u2IZrI7D+DnGx+SG0l2rLbD/HdOno5NIllY9tFHLuE41j+0iCucBrkVUVmgaZZ6FrZq67Sa+WV62Vi6Tq6HkA3gjy3fxOWHUAXWYSw0YSD4wYwg1Ocf/w/L8jXuVqV1SYnq1AntgrT++Wm98lnC2QLOUrpEqWMRdbKko5NTgurgIMbsEnt7sPMhMn1phk8ea8nrIJee6EMuGy9+1QSkymGNu7jyYsfwTFsHMP7/yeB5339EqKjCfafvpNnL/9d02s5+yvPJzwVZf+ZO9l/znME3KA/2TBISJhcsecVpMIp9vbu5EB8H5FAhFgoSjQU5Yf29UzmJsH2/rhWpoihBzHTYa666Q18a9e/HcGvyqHRTjp1WrP3j0KI6/ACxKufRKSUD83T8S0ZhBDHAd8F3ialfKSDu2wCng+cCNwDXC2l/IgQ4n+AK4Ef+/tNSSlPEUK8BfgC8LIZHnMFcBFwPHAD8APg1cDpwGl44uh+IcSv/P1PA04AxoHngP+UUp4jhHg/XtvkB4AvAl+TUn5NCPEO4J+AVza89muBawHWrl3bwUtfPGzbto2Pf/zj1duVE6PrrruObdu2LdBRKRSKY418Pj/j9mKxyJNPPlm3TgjByYODLfc3R0a49IUvxAmFcCIR3GgUGY0i43FIJNCSSfRkEpFMoiWTiEQCkUiAv5143Ftisel1oRAoebRkkVJ6J47OoLe4g8ia695lK+EEYEPk9xGG3xZnbEZo0SN5+ArFkqEuNL7T+8zxObzQ+NaVWW0nIbpj4Az4/98HQGZmfo7ZDsJt/oOHYpq5tBNK6XhfN0r+168IMgRy+raURRynjGNb3uKUsW0Lx7VxbBvHsXEc15NVTgHHLuM4EscN4rgBynbUu+4E/XVe9Wm+GAJcbOFNyjWDU2jCIl/q8Q5uAb7OmqYRjpqEoyZdM6QLzJVWVVntcrOKvsAqvLCy/ngueOSiqujKFXJky1nsce9/Su8zK4iOxatthRW5Fcx71WUve+lLeMh+gIJdoOAUKLpFbwJiusyB/YM8bP2Wp2OPYds20pKQhXKsCJUOdN8z206ZbKrMvbt/1eIVLj06lU6nAL8PXM50e530bx9L9AE/AV4tpew0GOgmv5ppO96fD//PX78dLyOrwndqLv9hlsf8sZTSBR4XQlT+i14EfEdK6QBDQog7gLPxqqLul1IOAAghnsWTh5VjeL5//Xw8cQXwDbyqqTqklF8GvgxepdMsx7io2LZtG9u2beOyyy7jjjvuUJVOCoViQYhEIpTL7QN0dV0nEolUq5wq2UfFvj7Cw8NN+5ejUXa+4hUYhQJGPu9d+os+MUEgnwf/tlbbmjcDrq7jRqPVhXgcGY8jEgk0X2RpqVR7gVVZEgmIRkG1xc0bUrrgTtTIo4pQGvAybSpyqantRwNtGejLwTgO3GGQueYn0FaiJf78SLwUhUIxA548zvl5VZP+MlW9Ld3JFtv8y5mqo0Skrg2rGnatJSH/XZDp5vtorUO7lzreqVRF9tRKoBL1Uqjmur9eVteXWkikxseqXC8z3aI8M7q/1K8IQrASph/yM9f8y9p1IoSXM+aAkIDAkSHufVhSLOvoTFK0YpTtCAG9QCQ05j3HUfR1DgQDBIIB4l2xeXvMYr7Ez770c67/9I+Z3Nu60nfZ2l4+84m/nfWxpJR8967r+eIv/4Xf5h9CuAIJGNLAwUHiepVOk2HOW3fJvL2GhaRT6fRaYKOUcu6jJo4upoA9eIKnU+lUApBSukIIS07bDpf691+2ud72MX06+aNJ7f5uze3GY1AoFArFYWTz5s0Hl+n0+c/DtddCTaWUjERw/+mf6LnqKkqlEsVikXy5jG3blP3L2lJ+17LQ8nm0bBYtl0PL5dALBYxcblpU+ZeBfL563SgUMIaGMHbuxCgUEJWlwyBwJxKZrsKKxbwqrFgM4VdgVSuxfIklksnWAiseh8DRG0btCaXRaaHkDCKrIqlStTBE80mLAVo/6P0QOAlCL0Doyz3BpK3w1mu9dYG0bbNbYn9yBF6pQnHscHDyaMqXRzMIikZ5ZGypyiOhdbUVS62yfiq4+tYF+7ngnR6VG6RNrbBpL3Jky/Wt9i/Vrz+ICYrTBGokT638CXmLlmwphUTd/qEGWdROIplAsO0EvE7QgK3He5lOEoGhpbHsKJpw2Lj8VtTP//ZkJ3P89N9+zv/8041MDE2x9axNXPb6C7npK7dSyk9/D4UiQd7xd2+c8bEee/pxnvjps9x2/V1894T/phwrcUr2TE4+6UR+UPwuhXIRiQTd84Vb7zl11sdcKnQqHB4DUkDzn1mPLcrAq4CbhRBZKeW35/GxXwd8yr+85yDufyfwLiHE14Bu4BLgw3gteJ3wa+D1eFVOb/If76hk3bp1C30ICoXiGKW/v58zzjijaXpdNBrlxBNPbD+9rjKl7mMfgz17YO1axCc/ifmmNzEfyTpSyqqsKpVK1SVfKmFZVrPEsm1kjcDS83nv0hdYem3VVWMFVjpNYHCwKrW0QgHd6uyvv24wOC2xYjFPYsViiHgcfHGl1bQSNlVk1QqscPiItRFKaXtCqabFTda2uzmDXvVRU4VCwJdHyyFwBpjLEVq/t66yXuud88mIFrnKK1s/xClVCsWxQr08mvIrDlvJo8Zts8mjcI0USs2LPDpYmn8uLIfotYjgmUh7xwzVQLWtYZXKnxbip07+NMghSnTQ6NcGvabCp4XI0WJ4lT8NQocaCdS0rXZ9sxRa7FMIW1H5fLFjxw7yOdD1EuHgKMu6piB+dIXFzwej+8f44T/cyI1fvoVCtshZLz6N133klZx22UkIITj+3C0dTa97dtdz/MMPvshP99zAiBjivC+9iBNOO46/PfnvecU1L2XVOq/C7MonXuxNr0t70+vOe/wyrvvI0TO9rlPplAKeFELcT32m0zH33SmlzAkhXgbc4ounG+bpobuEEI/ivb9vOIj7/w9ei9wjeD+1PyKlHBRCdCqd/h/w30KID+MHiR/EMSwJ1q9fv9CHoFAojmH6+/vby6WZeNObpuXTPCOEIBAIEAgEiEYPPcPHdV1s264Kq4rEytZILMuyqsGqbrEImcx0BZYvtGoFlt6qAqtQwDhwoP52odDRMUpNwwmHcaJRHL+VsCKx8FsJhS+xqgKrRmyJRAISCWTMhEgeGKlpeRtqyFAawQuArSUE+gpPHgXPBn25V6Gk1QqlrkP66/ZMaJGrQJ1kKI4xFkYepeq3zVEeNeUAOft9uTOT4PFbwCg1b2snfirVP7IISE88ZT4+WyRUC2YSOUnQWrWCmd570SiBMEEE2wihSvXQ0VsBO9/Ufv4YGhriiSeeYJRr6I/MY6DSEmf3E/v43md/wi+/dSeuK7nsdRfw2g9dxebTN9Tt94I3XtxWCKXHMnz7+u/xr9v/hWfMp3B1lz67nzevfAsffuRP2XL8pqb7vPqEV/PqE17NZZddBsDtv7p53l/bQtLp9LpLW62XUt4x70d0DOJPrztLSjm60MfSKUt1et2b3/xmAL75zW8u8JEoFAqFolMqEqsiqyoSq1wuV9dZluVVYlkWZLOQySAqlVi+yKoKrHy+uQKrjdTSnEZZ1BonFMSJmNiREG40hBsJIaMmMhFBxKKQiCOSKbREL6JrOSKxrFqVpSWT6F1d0xVZofmvYlAojiaa5dGkt7SUR7Xb5iiPhH/pyyMpkn5rW3hafBBAUJsP1FrkyKb1LSqBWq3vMAeoNcEWIqeheqdO8FQqeWqqfFpVCTXsPy2EgmqK6RJBSsmDDz6I4zicffbZaMd4/uLvfv0U13/mx9xzwwOEwkFe8o7LufpPXsaKDZ0JuVw6z3e+930evOlRdv50P1OpCZ5644NckryM973kPbzw/M6isJf6uWq76XUdSSfF4UVJJ4VCoVAojgxSSlzXxbJylIsDWMVhrPIY5dIU5XKOcrmEZTlYlottC9yChsy6aDkXchZGzkLLW+j5krf4LYR6odi2pbCyTp8hRL4W1zCwK1VYfh6WW5lK6OdiVdoG66qxKhIrlfJEViqFiMWOWBuhQjFXPHmUpxqCPV/yiJAvh6INsiSANyZKx0u60fywZYk3pt5uIYXmMwco2F7YtMkHEk3rW+3fSgqFDlulpOLoYHx8nEcffZTNmzezevXqhT6cI47rutx340Nc/5kf87u7nyLeHeOV77uCq977YlJ9yVnvX8gVueUnt/Gft32FX1t3kemdYsPeLfzp+o/w/NdfyLpTVxPQj61KvHbSqaP2OiHEecAXgROAIN5P6pyUMjGvR7mEEEK8GPh0w+qdUspXzfWxpJTrWzz+x/AC3Gv5vpTyk3N9fIVCoVAojiWkm6+b8NaYoSScQYJykmDlDkF/EUm/ta3fb3dbMd3upveDthyh1U/DmZZYVl3VVc6/XrvOKhSqFVhkMvWh7pVKrEq1VWMu1tgYxr59dSJLdPCHQymEJ7D8LCwnEsH1M7HcWAz8dkIRj3vh7jUyq9JWWBFYeiqFFgwe838RVzQjpUS6U142mTMC7hjIcXDHG9rUMiCzfpVSHmSB6cHYrdCYFkTVZ2P2/J9K5dBE+8edSeSI7raCpzkHKDTD40xLodowf4ViMdDV1UUqlWLPnj0sX74cwzg2vketssVt37mb7332J+x+fB/L1vbyni+8nZe883LCUXPG+5ZLFg/832+57fq7+a+pL7P/uF2ILsHG4EY+eMb7+aNPvIvuSPcReiVLh07b6x7AC5n+PnAW8BZgq5RSzdU9RlmqlU4f+MAHAPjCF76woMehUCgUioNDutmGAO5BpDPgX/ezlFqN/RZddQHcojaM2xdNQosc+RfUgJSymnVVaR+sE1d+G6FVKuFms8h02hNZNe2EFYll1LYUtqrAqrmttZio2AonFPIkVq3IisW8SqxodDqw3c+/ahRadS2F0Si6YaDruhJZ84yXAzRTcHOr9SWkLHhSyE2DzICb9eQQ+YY2MAsv+N7Bk0aH2jlh4LWCVap2Ki1skRnygUxE27yfVvvXSqKAagNTKIB0Os1DDz3E+vXrj/rc23ymwP/+xy/40RduZGTfGBtOWcvrPvJKLr3mfIxAe+FmWzYP/eJRvvvjH3Dzczez4tYNJHsSyLfkWXFqH+95ybs5qf+keTnGpX6uekiVTgBSyh1CCF1K6eAFTj8MKOmkWFL89re/XehDUCgUCkULvDabdIvqpCGoSqVBr0KiEa3Xl0drIHg2olqdVKlUWuZVJywBhBAYhoFhGJjmoR+z67o4jlNXdVXwLyth77ZtY+dyyHTak1jpNCKbnZZY+TxGpRqrVlZVhNbwMKFakVUqzX5ggKvr2OEwpXAYuyKwotHpSqxo1GsnrAl2rwS4N7YW6skkeiCAruvVRQixKMSC9wfednk/tUHPzXk/rXOA2kz/mrccoJnQmG4TiwBhTw5pERAxb9ESNblIXaD1eBWC7aSQygFSKBaMRCJBX18fe/fuZeXKlQSDwdnvtMSYGJrkx1+8iRv+9WaykzlOu+wkPvDv7+Lsl5ze9meP4zg8dueT3PC9m/jR4z9i97od5JdlCZ9nct17P8arr7xqRlF1sByt56qdvlN5IUQQ+K0Q4jPAAPV1rgqFQqFQKBQt8YTShF+dNORXJw02THgb9FttahGg9XkCydgE+oU1E976QVvhC6Wj70PyfKFpGpqmEQgEiEQOrZJLSomUsm4yYUViVdZZloVdKuHWCKzaUHeRzU4Hu1fzsGpC3DMZgkND9W2E7kztV9PY4XBVYjmRCLbfSlgRWdLPwyIeg3gUEY8gElFkwkSLmYh4EJEIosUDaKZE1yx0vYQuihhaEaEV0SgiRJvqoaYcoNpx8AeLjteeFcSTPYa/ToAAL4tIMj0dUff2kZUKpHaEQIuDSEyHZmvdILoQerfXato0bS3V0bQ1hUKxtNiwYQOjo6Ps3r2bLVu2LPThzBsHnh3k+5+7gZ9/7Xasks2FrzqHaz78Ck44t/VrlFLyxL1Pc9t37+ZX37+H3XIXj7zx1wQuNji5+xTeefHbufrkq0mZqSP7Qo4COpVOv48nmd4HfBBYA1x9uA5KoVAoFArF0kBK189tmW55k1WRNDTdBtd04q2DtswTSoHjQbu0RihVWt761DjsRUSlcigYDBIMBolGo4f0eF4rYRnbymGV85StHKVygaxVwiqXsC1PajnZPDKdg0wGMgVEpgC5AlqugJYtoOWL6PkCRr7oTx/MY+S9YPfg4GBdG6FudVYB5AQC2GETJxzGjpgUI2GcsIkTMXEiIdxIEDcWQkaDEPMWkeiGuImImxAPI+IRtFQULWKiGwF0XaBrDpruoGtldFFG10toFBAU/IyjvN/SlvEq/9wpvNa2vP+mNR6pWZ2uVi+Ikgitq408Si6Zyj+FQnH4iUQiLF++nAMHDrB69WrC4fBCH9Ih8fSDz/K9z/6EO39wL7qh86K3XMpr/vTlrDluVdO+Ukp2PLyT266/m5/c8jMe736USD7GNRe8jmuveQv39/+aq09+NVt6jh4ZtxDMKp2EEDrwd1LKNwFF4OOH/agUCoVCoVAsOFI6XiCwM+BLpaFpoVStUhqiuZUn4Fci9UPgZAi9sCFDqd8XSvpCvCxFG6R0Z8z78da32EZjG9js+1f20bCrOe5R8P7E6ecyV2k7sTpU16olMXFkF7azGsuOYzkRSk4Uy4lQtk1sO4Rd1JAZB9JlZNZCZIuQLaFlC4hc3hNZ+aKfhzVdiWUUCgSm8oQHRuuqsDp6XzUNO2z6WVgmdiRMORz2BFbYxI6GcH2RJWNBiEUh3gt+JRbxOCKeglQXWqIbPZhAD8TQjTiGEa5rKawsmqapljWFQtEx69evZ3h4mJ07d3LiiScu9OHMGSklD/3iUa7/zE94+NbtRBJhXvuhq3jV+6+kZ0VX0/67H9/Lbd+9m5t+8gseDT3E0En7sa4oEI1EecNZr+a6F38IgBdw8ZF+KUcls0onKaUjhFgnhAhKKQ9lTqhCseBs3bp1oQ9BoVAoFgVS2uCO+vJooGHCm1+h5A7jhQXXEvDl0QoInAlmf02Gki+VtB41qvsQqc8Bqm3Vmq21q+QLoNlCo1vkAx1SDlCg5ch273rYy/ZpkekjZp3+1SoHyNu/lVTRgU6aLb2WzzzeRLVJf7qaf+lOIt1JpDuFY2W8SiyrTNmyyVkSyw5iO2Gssomb05EZCRmBzLqIrETkJSJro+XLaPkyeq6EXqiIrGJVWIXGp6pCyygU0BxntsMGwA6F/Aosr4XQCYcp+Zd27ZTCaBTpTyckHkfGYl4mVm2we7i1tGpcDMNQIkuhOIoJhUKsWrWKPXv2sHbtWmKx2Ox3WgQ4tsOvfnAv3/vsT9jx8E66V3Txh59+M1e+60VEE/Ut5ft3DHD79b/ml9/7FXu2H0DTBEN/sJPhVXs4d+3ZvOmMN3HVcVeRCCUW6NUcveeqnU6v+zpwAnADUE3wlFJ+/vAdmmIxs1Sn1ykUCsWxgJSWP7p8sGbCW2OG0gjNmS9mjTzqB31Fc8ub6DrmTjy9z0pWm+yehgqfBsEj24qf8uxC6KDR20ztqhVCDRJH+KPgZ9zf9AOkG4VQaMGq1jqRR+22zSzZzJqso1Rdm5qoyTia3paatW2tEupemUxYycAql8tY5TJOPo8zMQGZDG46XZ1IWJ1MmM97kwlrphO2m0yodxrmbhjVLCy7VlyFw9jRaP2UQj/gvTKhsCqxKsHusVh1GuFclmPt54lCsVixbZt7772XRCLBqaeeutCHMyOlQomb//t2fvD5nzLw3BBrjlvJaz90FS948yUEQ9Nt+cN7Rrjje/fwy+vv4qH9DzF80j6mzhjlk6s/zetfdzVjgVEEgk3dmxbw1Rw9HOr0umf9RQPi83lgCoVCoVAoOkfKclNektfyNjC93h2lKfxFRKblUehC0FYg9P6alrflIJJL4gRQSrtB8jRUA7WRQrKDaWHN6ytyqLMw62ZETdVPi0oeUqC1Wu9LoKYKn9klkhDzP1HncOPJo4IvhSZbyKOpttvmJI+0jRCYSR5VtrWXRwdLbaj7oWamSCmbJFauRmTZxSLO5CTu1BRkMkh/ImFlMqGWy1UnE+q53HQbYT5PIJ0mPDRUV4UlOvgjtRQC2zS9EPdKJZYvrYoVcVUrsaJR7HAYkUh4FVnxuB/07i16KITRQmJpmlatvlIiS6GYPwzDYN26dTz77LNMTEzQ1dXclrbQpMcz3PAvN/OTf76JyZE0J5y3hXd97i2cf9VZaJpXYT0+OMGvvn8vt3/vbh65/zEGTt1D5vxRCr05YtEYbzj+dbzo/Evp6k7RRWphX9AxQkefSqSUKsdJcVRw7bXXAvDlL395gY9EoVAompGyUNPaViuUhqZzldzx5juK+LQ8ChwP2nKEvqJBKMUOy4nYdA5Qu1Hu7UVO0zj4thKpYX1Ty99cqK/uqRdCcdB6W7Z2ibr924ifupayyu3AMXUC3FoeVSqNWsmj6W2HLo+Sfhvf4ZVHiwEhRFWwBIPBeZlMWJFYleqrvH9pWxbW5CQyncadmkJmMp68qlRi1Uis6mTCGokVnJqarsLK59Hszv7/OsHgtLiqrcaKRChHIhRqBJbtTyi0w+G6tsKKzNIikYOqwmqUXQrF0c7KlSvZt28fO3fuJJVKLZrfX8N7RvjhP9zI//7nLyjmSpx75Zlc8+FXcMrFJyCEID2W4a4f3cdt19/Nw3c+SjFS4KR1J/Kmv3oNf2N+jLNXnck1J13Dy7a+bEHb52bjaD1X7Ug6CSH6gI8AJwHV395SyssP03EpFIeFp59+eqEPQaFQHKNIN1cz4W1ouuWtNphbTjbfUaS84G19OQROaTHhrR+hedkLXhtYuVn8ODtrsn5ai5zWOUANj9VSIB1qDlCjsKlInNocoHrBI5r2b6wGaieEgiprqkOm5dEUuBNt5FHrbXOTRxuOaXm0WGiUWPMzmdCpSqySZZEulbxKrGwWd2rKE1jptFeFlclApY2wUoVVK7F8YRUaH0ffv39aYhWLHR2Pq2lVYdVKYlnhMEU/I8v1K7Acv73QjcVwIpGqwCIWQw8EDklgKZGlWKzous769et56qmnGB0dpa+vb0GPZ+dje/jeZ3/Cbd+5G4Dnv+FCrvnQVWw4ZR25qRy/+MavuO36u3nwlkeY7Bsjf/EEo38+yPErjuPf3/U5AF6Vv4KeSM9CvoyOOVrPVTutv/4WcD3wMuDdwFuBkcN1UAqFQqFQLCWkm62Z8DZYk6E04K8fBplpvqOI+yfWcTC2eC1wVXESBKEDzrTgcQ4g7edozg2qtICVaGqr65h2OUD+pRajVYVPfQ7QbAHQ9Y+vptcdfg5OHvm3Z5RHofq2NL2NPBKpat6RkkfHDkIIDMPAMAxCodDsd5iFisSqtA/m/EurWMSemsL1WwllOg3pdFVgVSWWn4ml53KewPJlVmhsrFqBZRQKCLezNtpKDpbTkIVV21ZYapRYkQhOLIbbEPaumWZTq2ClhbA2yH0mcVW7XQixaKpTFEuT5cuXV6udent7j/j3k5SS7Xc+wfc++xPuu/EhzGiIV7z3JVz9wSuJ98S572cP8rVt3+M3//swVsmifHGGAx/dSToySTQc5TVbXs3rTn4dUkqEEEtGOB3NdCqdeqSUXxFCvF9KeQdwhxDi/sN5YAqFQqFQzCdSOi2yexqrduqnhUnXP1mXE9Mn5W4GZBYvvNhvFTvYvB+Z8Zamu9fmALUSNqnmHCAqeT6zhUabIIJMC6GKAAo0HoRiEVEvjya95bDLo+mAbCWPFAtJrcQ61DwsqA91tyzLy8Mql7H8FkLHbyeUfiZWVWL5Akuv5GFVMrEKBczaHKx8Ht3qrArUCQSa5VWLqqxSTRaWU6nE8sVVVWKZJqJBWM1XRZYSWccOQgg2bNjAY489xsDAACtXrjwiz+u6Lvfc8ADXf+bHPHHvMyR747z146/jij94AU/9Zgf/8dFvce8ND5Ar5ymdneGV776KK1/3Yh6JPsj3H/8+15x0DVduuZJ4SEVQLzY6lU6Vn5oDQogrgQNA9+E5JIVCoVAc7UjpUi94Glu72gc9N+UAtWonm/ccoEb8wewiDKLbq1DSYiASNSfn0elx8C2rgdoJoWMvB+hYonN5VLutEphdnuGRG+XRegik2sij6fY2JY8UxyJtQ90P4uS6MdS9WJlImM/jTE5WA92lX4klsllPZGWz6L7IqkisSgVWYHKS8MBAXRVWR8eiadNVWLXTCCsiq7ESq7JfC4HlRCKge9Wote2XSmQdG/T09JBMJtm1axf9/f3o+uGrTC6XLG795q/4/uduYO9TB1i+YRnv/ce307eml7t/8hveccL7yaXzuCeW4D0lnut9hrJeYuWL3saJp27lBLmFN5zyhsN2fIpDp1Pp9LdCiCTwp8AXgQTwwcN2VArFYeL0009f6ENQKBYdrXOA2uT3NOUAtQl6brl/zXPMePI8G405QA0j3LUkUGnncEHaTIdc50Hm/GqlNM0iSgOtBzQ/Q0lfAdoqhLFiOkdJ61VVQYpZ5NEUskEmdS6Pgr4Q6mojj3xhpOSRQrEoaMzDqmPdujk/XmOoe9GyKPtthBWJVRFYtZMJRTZb30ZYk4cVHB+v5mIZhQKa43R0LHYoNF1x1SCvnIaKLCsSIW+aVYFVK7HsSAQa2iyFEB1NImxsH1Qi68gghGDjxo08/PDD7N+/n7Vr1877c+TSeW7891v40T/eyNiBCTadvp43fexqxocm+cYnfkB6LEM0GeHcq8/keyd9jWE5RCQQ4ZVbX8E1J13DeavPqx7r0cLReq4q5AwjUIX3CebdwGZgO/AVKeV8/qlYsUQ566yz5AMPPLDQh6FQHJVIaTVU8sxUDVSb61OaYf/SzI9z0DlA2gyBzo35QLONg59h/9rnAHBHaya8DfkT3gb9/KQhL6i7qaUo4AVya/2eTNKXI7Tl/rpaoaRyho4lmuVR/XQ12SCTvG0HIY9qArKVPFIoFEeK2lB327Ypl0pY2Sz2xIRXhVUzmbBShSUymWorYcuphDUCSy+VOjoO1zCq8qpWYtXKK6dGYlXWVyq3qlVY0SiO30bYSK3Ims/laJIac2X79u1MTU1x7rnnEgjMzx/cxgYm+J9/vJGffunn5NMFtj5vI72re3ji3qeZGJoikNTpel2E7rMS/H+//1mCoQDbbt/GiX0ncuWWK4kGD23QgeLwIYR4UEp5VtP6WaTT9Xif2u8ErgB2Synff9iOUrFkUNJJcazQPgeoPIPg8VvAmlrEZhA/tRKJzv4C2Zq5iJzGcfC160MzPE7tbWNeP4xJaYM7UiOUaie8DU2Hcje9R0FfGi2vTnUTdRPeloPWrSaXHcV4n2eK05VFjfKoturooORRqkYQKXmkUCiOTSoSq5KHZRUKWL7AciYmpgPdMxmoaSecaSqh7gsso1BAzHBuWj0GIXBMc7plsCKkGtoFG6VWRWA1thVizNz8M98SaymJrGw2y4MPPsjq1avZtGnTIT3WvqcP8P3P3cAtX78D23ZYvWUF2ak8E4OTGCGD1a/pY+qcYR5yHyBv59nUvYlfvuWXBHRVXb5UaCedZmuvO1FKeYr/AF8BfnM4Dk6hOFK8+c1vBuCb3/zmAh+J4mBozgFqFQDdWuQ05wC1279xRPyhjIOvbfsKNuT3RL02rha5PqJWDrWYFtY6H8hrM1vMH2KkLIMzXDPhbcif8DZYs26E5lRt069M6ofguZ5Q0ivtbn4bnOha1K9d0Tmt5dF0QHazPKq5PRd5pK9vMW0tpeSRQqFQzEBtqLtpmhCPw7JlB/14tXlYhXIZa2rKq8KamMCpZGFlMuCHujdNJaypwgpNTk5XYOXz6HZnDTpOMFhXXeU0LtFo3dTBiqyqZGNZvgCzw2HcYLBlFVYjc51W2Ekr4uH4HBSLxejv72f//v2sWrXK+5rPkSd/8wzXf+Yn3P0/v0FoAjMawkrbHHh2iLNefBqXve5CHl//CJ+67++JEuWq46/impOu4ZxV56AdY38sPFrPVWeTTtWzLSmlrT7QHzmEEOuBn0kpT16I+x+t7Nu3j127di30YTTh5m+A7OfBHQBtBcT+BC1y1UIf1ox4J4ZWQ/VPq1yf5nwg2Xb/dlPEaoTQQWPMLHK0ZMt8oGoLWKv2sXbVQNX2saXzi/JQvwelLHmVSNU2t8GaljdPMOGO0tTGJ6LT1Umhi0BbjtD99rfKepFQQukwcTh/9kzLo8aJavMpj5Kgr4PAqbPIoyRCHPrEK4VCoVDML02h7skkHGR+UG0eVsm2sXI57IkJ7PHx6kTCSqh7q6mEtQIrMD5OeO/e6XbCYrGjY3A1rSm4vVFWubUSKxqtC3Avh8PkKzlZoRAunWcWHUpr4dTUFOWvfpX1X/4y5sgIxb4+drz97aRf/nLWrl2LZVncddddSCmJRCJs3ryZ/v7+6nP/03v/kxu/fAuu46LpGi/9wxdy/svPYtuX/oY7V/6S4pY85rURNt5xApevfQHmlYLHu7Zz4bmn88Itl3BiZjMru1fw0i0vJRKIMDQ0xD2/vod8Pt/y+Y5WFuu56qEym3Q6TQiR9q8LIOzfFoCUUiYO69EpFIeB3bt3L/Qh1OHmb4D0XwL+LzP3AKT/EhfmeNLfKgeosWqnubJH1ub6tA2BblxXuc985wBVbne3zgeqywEK1q1vnSdU2RZCiE7nJhx7zPY9KGXBb20b9OSEM4isFUzuILjjzQ8sEn5rWz8ETkDUtb95UklosSP5UhU1dPqzp708mvSmrR0WeZSs31a5ruSRQqFQKNrQFOoeiUBf30E/Xq3EyhWLWH4LYe1UQndqCirthH6Yu8hk0PL5ulbC0MhIVWDp+Tya21jV3Rq70kbYEOBem3Hl1sirymKHw9V15Uo7oa7jOA5uw3NblkXvzTdzyj//M4af0RUeHuaEL3yB7bbNI5ddVt1X0zTS6TQPPfQQfX19JBIJrv/ET/nVt++t7uM6Lj/70s/5r9v+iyde/hBSQIAgznKLp9/4W4ZCO9HKGutL67FdrxptZXwlrznxNQAMDQ2xffv2alVdsVhk+/btAMeEeFps56rzwYxnYVJKlaa6CBBCbAR+CFwrpby/YdvbgFcBSWAV8E0p5cf9zboQ4j+AC4D9wCuklAUhxOnAl4AI8CzwDinlhBDij/GC423gcSnl6w/7i1N4VQaVk74qRcj8NW75Vy3ET5t8oEPOAWqX95MErXXeT3MOUCvxU5sPVLmtxsEvKtp9D6Y/ipv5Wy/7phGRms5LCpxaI5T6qxlKQlNBj4uatl/3v8QtXH8I8mhtR/IITPVzQKFQKBSLliaJlUgcdBUWTOdhWbaNnc1ij49XA90rEot0upqJJSoCq5KHVWkjHBrysrAqEqvcWSeAaxheG2CDwCqbJsvuv78qnCoYpRLHf+Mb7K+RTpX3xbZtnnnkWfIjJX71HU84SSRO0MYKl7EiZZ75ve2IMMSCMTRNMGVN4TgORavIZ0//LCelTsKYMnjooYfqWggPHDiAbdvouqcidF+W7dix45iQTkcj6k//ixwhxHHAd4G3SSkfabPbOcDJQB64XwhxIzAKbAHeIKX8QyHE94CrgW8CXwf+n5TyDiHEJ4DrgA8AHwU2SClLQohUi2O5FrgWOCxjMw8n27Zt4+Mf/3j1duVE57rrrmPbtm0LdFQ+7kDr9TIPxRsO8kED3sSk6tLthSjXXEd0+9tSICIgIkuqHUwxj7T7HsRuI5ySoPd63zdIkDmkOwyyiJDj4OwDLYEUCdDiXsWTlgARQ4hg8+MpFoa2X/ciWPe33iS6wNgIxiaEscm7rq8CrRdEUkkkhUKhUCjaUJuHFTJN6O09pMerSKxioYA9MUFpdJTSyAjOzp2wYwf6rl0E9+whvH8/4aEhNNsmmE4TTKdnf3DAFVBMD3P9R26kmC4xYg4zkRqlFCxRNktYkTJOwOYkeTYAT7/kEYZO3Fe9fzlWRBMagYCBlJJ4II6QgpJbYktkC+VymXILYVby5ZfrugghCIfDaJpGPp8/pPdrMbOoz1XngRmn1ykWDj+T6T5gAni1lPLxNvu9DbhcSvkW//YngHHgx8AtUsot/vo/AwLAF4HtUsq1/vpNwPellGcKIf4PyPr3/bGUMtvu+Jbq9Lo///M/51Of+hSL6fveHb7Ma2tpROtFJD+HN8o7DzLnXxaQldtuZVtle+1tf5lLC5wI+wIq7GXt+DJqen20elto0bbbqre1CKqaYfEz4/dg4pMg0+CmQWaQbtq/nWm49LbPWnEnwiDivoSqlVLepdASbbYraTXftP26i25E/E/BHUW64+COeXlc1esTNIe9Axi+1O7xl27ve6hyW++p2dajvpYKhUKhUMyA67pYlkU5l8MeGMA+cAB7/37k4CByaAgxMoI+OooxPk5gfJzg5CTByUk0p/mzmCsE6XCUfYkwu8MB9po6+4OCgRBseqyPd+cf487jSnzjVBiLwFgYxsNgaYIT/vkqAlaQXZc9yZ4zdyCEIOAGiLgRuoJdrPr/TkA4grGNQxS6swTyQQKFIE++9GH0fkFQn/59b7kWfaE+vnHhNwgGgwQCgabLp556inK5jGFMT0h2HAfTNLnwwguP2Pu/ECzGc9W5cLDT6xQLyxSwB7gIaCmdfBq/Kyu3a2skHWC2IIwrgUuAlwMfE0KcIqXsbOzDEuHv//7v+dSnPrXQh1FP7E/qc1UAMCH2UUTogpZ36VThTGex5JtlVItFttvPHW1YV5iDyhLIJnlVkVT+bc27Leq2R2bcd7FPaltSzPQ9aD6/bteZ3nEppf/9kfElVLOUapJWzhjIndPbZ5FWUkmr+aPd1z3+Fwg/06nV11tKx2+7q5dR0h311417661d4Iwim1r4/McR8ToJVZVRevM6FSavUCgUiqWOlBLbtj2RNDmJc+AA9oEDOAcO4A4MIEZG0EZG0MfGMMbHCU5MEJycJN6mMqkQ1NnXFQM3SskN80SsizuOizAYchkNSsZDLumww3G3nIwc7+bAlj0888LtdY8hEFw4cgbh8SjL9bso6y7rJ+F5ByBV0pk67WLO+tYbiZpR0nYa27WJG3EC2rQk+r+n7uDBnzxGz3P98Nx0+9srrKu5OfBTXOkS1INYrkXQCPKZl36G8088v+37JIRg+/btuK6Lpmm4rouUks2bN8/L12ExsyjPVecBJZ0WN2W8vKabhRBZKeW32+z3IiFEN1AAXgm8o90DSimnhBATQoiLpZR3Ar8P3CG8vqo1UsrbhBB3Aa8HYsDk/L2cxcF111230IdQhxa5yqsZOAwTpLyTtDDoYaBn9v07fFwp3dZVVU2yKu9XZbVa0t5EM5kH16vikpRmf/IqWo3MarFo09dFB/tM73vsSYn5+h4UQvhCMOrlOrXaZ4b7K2l1ZDnYr7sQule1pPcAW6fXt9lfurkaGTUtqmSttHJ2Qvl+kJPIlko7gKyroppBUGndR9XXSaFQKBSLF8dxsCwLq1zGGhnB3r8fZ2AA58ABGBqCkRH0kZGmaqRIodD0WLYGu3tN9ifD7I8G2LfK4MDGGOv3rMEcjvG7lMXPLtlNNuyQD1tYIQcocdKPT6XnuX7GUkP87vz7EVIQLIUIW2EiMkn/+VvZGNtIecUpDPecwfLefpYvW04yFCemxUhcmcC1XXp//nO+87WvER4dpdDby1NvfSvDL3whXV1d6LqOOWliWRamabJmzRr6+/sJBoNceumlfPF9X6mbXnfltS/ij//lD/jREz/iE3d8gl2Tu1ifWs9fX/rXvPqEV8/4nlZym3bs2HHMTa+DxXeuOh+o9rpFit9e9zMp5cl+vtItwN9IKW9o2O9teKIpCazGDxKvvb+/34eAmJRyW0OQ+HPA2/Ha6m7zH0f4j9NWsy7V9rqrr74agB/+8IcLfCSKVkjp+DJrupWw7ro73WYoW7Qd1rUZVqu2coA1h6MwGtoKozWCqr7tUNTdrlRiRZvvK8IIEThcb5vCx5NWhdZtf23bA2u3p1HtgQuLlLZfRVVfNSVrK6jcMXD86+1EtUjUiyi9Z7rNr27p9b8uqopKoVAoFN5nCcuyvKVQwB4crFYkuQMDMDzsVSP5bW2VaqTg5CSaPd0gIoFsEEYjoAVjRGWCATPEt44rMhiE4aBkNOgwEXLY/PBqun63mn09Ze57611Nx7TlF6ew+vENlFYU2XHpdqIySlxLkAol6Yn2cEbXGWxavZHI8hBOwCZqRNEaclqFEG3b2RovA4FANcRbcWRZ6ueqqr1uiSGl3IUXDo6UchI4e4bd90kpX9nu/v7tz9Vc/y1wXovHueggD3fJMDY2ttCHoJgBIXQQMbwiu1n2ncPjSmk1S6lqhVV9LpaULXKy3Dw4ozTmZkk67z6VBOoFVaVNsEUulqjLxWrTkuhfF0J9KKjgVVpFgMghVFrNUVo5YyB3VaWVqrQ6NIQwvJB6vT5ctXWbnxdiX19BNeZXUdVIK3sHlO9DtgrFB7wqqp4OJVW3EsgKhUKxxHAch3K57LW1pdO4fiWSXalGGh5GGx3FGB3FmJggODFBaHKSSDqNaCjQeK4LhuI6gz0RBuJBDvToLJtMcNzejQw6Gn/30idJhxyyIQtbl0gEq+9fx4Y7T8AOWfz6mpvRbI1AIUSwECRUijAVXkbv5vVs7TVIDifpjffQ19XHyv7lrFm1gu4ru1v+caQiiDqRSbquqz+wLAGO1nNVJZ0UCsVRjxABEAEgMfu+c3hcKcstWwpb5mW128cdbN63ZUhzm2MgVFNh1S4Tq6bNsEVLYfMSPiYnGS68tMrMKjIlpi+g4g2XnqASTaKqcfvRI628r1cMtBhQP1G1taSyvBD0hqopr4rKX5wxsJ/x1tN6BLUUqenAdL3XnwzqV01VWwB7/SyqqPqQr1AoFPNMpRqpXC57bW1jY7gDA9j79+MODcHgYH3Iti+SIhMTJPy2NkfARNgLzAbYmA9TTCT5t1NtntsoGA4FGQl2Mx50WD6Q5Jzbj2PUMvjum35FOWTjVdF7lfTLH0uy9T7v91B2bBDTDtFlh4mKGAk9wZrUGja8cSPJ5TFev/LlLF+9jHhvFE2r/6yl63pdtdFsMkn9flEsFZR0WiIIIV4MfLph9U4p5auArx75I1IoFEIEQQSB1Oz7dviYXstz2a/gmA5un24jbJRZhdb7uhMNbYf5Nlk5bY5jRoE13TooZpVY/r7HwCTDBZFW7jg4u5W06gAhAqAv85ba9S32na6iGp0WUo2tfs4oWE95lVVtq6iC01VUNflTora9ryqqur1KL4VCoTjGkFJWs5HK5TJWsYg9NFQN2JZDQ+BPazMqIduTkwQnJghPTqJb0zEKu1KwLwEjERjuNhlKhdATJlfbq5iIreO6s3fyu94M2YCNA7gSEge6OeW7F0IRHlx5B6V40ZvAlg8SmAwhB3v4rd1NMBLgzAcuIhqO0B3ppjfRQ3/vMnov7abn97tIrYjXiSQhRMftbJVqJIXiaER9ulkiSClvBm5e6ONQKBSHF0/KhECEvJPR2fbv8HHrJxm2ysGavi3r2g4b9nXr2wylbA7CnOlom8PfG3KxqpMMm9sO2+17tEwyVNJq8VBfRbW+fluL/aUs11RRTS+yUj3ljtVIqjFkm5w5r4pquoLKE1QtKqi0blVFpVAoFjWu61azkcrlMlY2izMwgFtZhoYQQ0PepLaxMa8aaXISc2KCRDpNSXMZC8NEBNIhuGgPuIbB984Mc9c6jeETNIZDkrFgGNwoH7zpPIZLOl+/+BF2rR7FBSQgZJnYsMntN20EYHdPjsBQkmWFIKGSScSJkHRSrDy+n1hXhDMmTyIVjJNam6RvXRddK5MYwelTZsMwOs5GMgxD/ZxWKFDSSXGM8YIXvGChD0GhWBDmMslwbi2GjZMMm3OyKrlYM08yHKxrO5zbJEO9pjKrVbD7dNWWEI1tiNEagbW0JxkqabVwCBEEvd9bate32Nd7nzNNgqpJUllPeutk61HZYHpVVHqtkGrX6pdSVVQKheKQqFQjVbORSiXsiYk6kVQJ2dbGxgiMjXkh21NTxCbGCeTyCLwqpKd6YTwMYxEYiRsMdwW57sAappI9fOEs+O66EnndxZXgAq4reOmXryRd0Hkq/iijPQME8gaBiRCBQpBQxuQ7u7w80NRdJ3JGBGIiRiKQIBVNkeiJkXxrnK6VSXrXvZaetSmCpvf7RNO0OQVsN7bEKRTzydF6rqqm1ykOiqU6vU6hUCwNpLQb5FX77KzWMqtN2+GcJhkGaJmT1VJQzb7P9L5H58n/oU8PzMCs4fxHp7SaCa+KarxZUDnN0gp3nNbf4wJEyq+g8iultF5fUHXXV1BpvV7brEKhOOqpVCNVRZLf1uYODnoSqRKyPTKCPj5O0J/WFpicoFiYZNKwGPPl0QV7IVGCe1bD158XYDQZYDSqMWZKxoIO/3TvBeiZONev3sWNxz+FI73WNmHrGPkgZ3zzIoKFEKObBplaM+a1thVCBPJeRVL3RA+hsEk4FiLSFSbWHSHZH6drVZLu1SmWbejGjJnVlraZ2thq12uapqqRFIp5ot30OiWdFAeFkk4KhWIp4oW/Fxpysgr+JMN6QSUbBZbMg9uq7TAHs0ytqyc4i5yqycxqzMVq1WZ4lEwy7Eha1QqqVgLrGJdW3nuY7lBQjfmirwUiXCeh6lv9GkVVasl/7ykURwtSSmzbroqkcrmMlcvh+LlIFZEkRkbQRkcJ+BJJnxzHmJokMpFmMuTy6zVUZdJYGEYjcO2TCbbIPv5vi+CDp+/FEuAi/GokwTW3XYyxr5eH+/fzxPMeI5APYOSDBApBAvkQqx/cQDBvUooVKMWKBIsmYSdM2DAJx03CCZNYT5TEshhdKxL0rO2id1038Z4ohmF0XImkArYVioVDSSfFvLJUpdMVV1wBwE033bTAR6JQKI4WvN+jVn1rodumzVDmkXWyq1VLYs0yh0mGYPqyINogsJrbDkXTtMNom32XziTD6dyy9lLqyEmr+vUVibXYpJVXRdUwva860W+0ocJqnNbvjwZaV5OMEnViajpMXYjwkX6ZCsWSpi5g27+0JydxDhyA4eGqSNJGR9H9ljYxOU62MEa2NEWaPGNhOGEUto557W0fvxRGYxqjcZ2xiGDShG27TuLCyQ3cHcny0ePuxJXgSNBLAfR8iK23nUZ8Zxe5RIahk/b5lUhe2HawECI8HsVwA+gBjYAZwIwFPZHUHSW+LEpqeYKeNSl613XTtSJJKBTquK1NtbQpjhWW+rlqO+l0dNb4KxRtKBTmEnqsUCgUs+P9RbUyybBr9v07fFxPopSa2gnbLbLdftVJhjVVXHN4fbJOXjUKqunbs08yrMnYOgyTDOtzy/pb7zPT6zwoaTUB1p7p7bNmWoU6kFbN6w+XtPKyqFZ4S+36VscuXf911sgopyKoahZru59FlW39HohIm5a+hgoqvQdEaslIT4WiU6SU9QHbflubMzpandQmBwcRIyPoo6MYY2O4U+OI9AQ9I1NE0hP87/pytQqpcvmSHfDq3TH2rohz4atHkJqGFBpShHElvHrfGZzx3Ek87eT42epfouWC6KMB9GyAaC7Afz/Ty/dHNBwjwvF3XoxR8KSSJjX0gE4gZBDqC9Kf6OEU60TiK6OkViToWpVi2fpulq3rIxwxO5JIuq6raiSFogVH67mqkk4KhUKhUCxCvA/kJghznicZuiCLs0osZMGfZNhqW65mkqG/7yFPMmydiyXqqraibffzQtQPfpLhwkirSbD2LglpJYTm5UJpqY7eEymLNXJqWlTJOmm1D6xHwR1HtmxR1ZDVQPTpRTRUT1XXC/OgX59CcSjUBWxX2tryeVxfIMmhoWpbmz46ij01SrowSqY4QaY8RdrNsjwjef4u7/H+4CoYiHlCafQ4jVxQ8NoDvfzl8GkUU0nes+VGHEBIDbNsYhRDPGtt5YcTG8mPFEje/Th61qjLRXoma7KzPAHAyfdehG5oGCGDYDRAOB4isjZC/HlRUv1xUquS9G/oYfmGfmLJaDUHqTEbqfZSSSSFQtEOJZ0UCoVCoTiG8OSBP+Vutn3n8LhSOjVtgrWZWY3B7gU/L6s2F6tye6pmkqHXdjj3SYatBFVz26Fo3F65rTW3GXYia5S0anw/TNBXektg5vfAE6GT/jTEStXUKLLa3ueLKusRv4oq1/r1iWiNnGrT6leRVCKpqqgUbalUI9WKJMuyOy9VDwAAOLRJREFUsKamkH7ItvQlkhgdoTQxhJ0ZZ/VwHnNigju7RtgXKtRlIm2cgE/+EpxgkPPe6bIvLpGaBpoGmsl5xbWYI1cwXNR5ZNmNFCyJzIUwhw3CaY379sV503MJkJItyUsJFIPoJQNR879qSs9ghHROeOpUzFiIaCpMbJ2fk7QqxfINvSzfvIxkdwLTNJtCtRurkRQKhWI+UNJJoVAoFArFISOEDiIGxGbfdw6POz3JsE1OVq2gapGh5bUYjoOzv74dcQ6TDCWB5pysNrlYouG2V4nVbt/pj2ELL60ys74nh0taeSK02xNFxuZZX6+UBf9rWps71SCpnH2+pBpHtsxG02euotIb1ovQjO+NYnEjpWyZjWSVy9ijo1410uAgDA8jhofJjw8wlRsiXRgnU54kbafR8jn+4H5P7H7iUrhjHYyHYTwOVpdgczrIDQNbKGzYwL+fafHbmCBEkJgTJmxHmMqu4DrtEobGS5iPP8rqYgkxpaGlDYx8gHQ+xF9b+wBIcTIp/9iFLjCCOkEzQGhNiEjSJNYTIbEsTs+qFH3ru1m1dQVdy1KEw+FqVlKjRDIMQ1UjKRSKBUFJJ8Uxxcte9rKFPgSFQqFQzAEhDE9iEJ993zk87vQkw9r8qxnyspqysvLgjjTvO4dJhrI6yTBaU2HVehGt2glbtiX2IsTRLa2ECIO+yltmeX1eBd5UXQUV7nhzWLq121sv862PXcSaBFVVUjUIKq+KSp3cH25c123ORiqXsQoFHL+dTQ4NYQ0PkB3dRyYzzAmDFqGJSR4MDPBQbIIpCoybkrEw5ILwf9/0Hvt9L4UfnSi8XCRNAyGIEeaKc99KIZJkWPwG5Ci9pQjdWRNnykAb1nnn0DKKz5UoPZDixJKG7kxXC1nAr3kagLCWIhbQCZiGF7i9yiTWHSGxLEb3yhR9G3pZtWU5PSu7CIfDhMPhpsokFbCtUBx9HK3nqmp6neKgWKrT6xQKhUKhOFzUTzKsTChs0WbYKLPcdi2JNW2Ic4p/N9vIqea2Q9E07TDaZl9zxna0Q58emPHeuxk5FGkV76haSbr56Wl9VTE15ldRjdZsG/VC+lt+XQy/vW82QdULWveim2q4UFSqkaqZSDUyyc5kcAcHPZE0OEhuZB+DU7vJ5MfIFMbJWFNMOVned59Lz2iGb58s+dezvUykdM2X/bff6cGM9fDps/L81/oRkoTp0mMk9ASmE+WdmdcwmNG4v/gcA/lhnFGJMyKRY8CUPuO3qBB4gdumQTDqTW6LdoWnRdK6HlZu7qd/Q19VJDXKJNXSplAoljLtptcp6aQ4KJR0UigUCoXiyFA/yTDXLKQabsuGtsOmlsTa6qy50FZg1eRgaRGvEqkhF6tp8mFFdhFCCDH9GlvJqCZp1Xr7oUmrWAeVVvXSSkoH3Mn63KlqWHqtnPJbASm2eV/jrauoGiuotB4QiSVVReW6bpNAqrS1OePjOAMDFAb3Mjmym/TEfjaMufSM5dhd2s9NiX1MkmdKFJkIOoyF4b9+AieMwtdPg4++EBACKQRoGprQ+MHOS1mfWM+t/WluMvcQcuIIK4pbiFCeDNKzczm5oTyTU1OU0iXsgoNjt2q/9BFUA7dDkSDhRIhIV5hEb4yulUl61naxYlM/Kzf1E41HMU2TSCRCJBIhHA6rljaFQnFM0U46qfY6xTHFZZddBsDtt9++oMehUCgUCkWnLMwkw3pBJd0WwkrmQWbBHa5rO5Tt5EpLvJHuzYKqzSRDo7dZYIkIkjBoBkgHsMEtIMjMIq2mwNo3vX3W9sDgLJVUvpwyjmsprZB2g4wa81v9aiSV8xyU7wc5iWxZRRVonUWl99ZUV1Wuz38VlZQS27Zbi6Ri0WtrGx6mOLiXZ0efIJ0e9KqR/FykVzxtcOauAtvNCd5zhc1YGEqVsxEBX70LThhN8tCJJl8/Y4ouJ0RK9NIVSHB8qIvRv7qSh+UqyIxzTXYfpVENe8ihNGBTGrL4VKZIqZDGsR2Qte2XJaDEMBkANEPDCOpEUmHMeIhIl0m8N0ZqeYLeNb5I2tpPPBmvViRVZFIgEGh8WxQKhWJeOFrPVZV0UigUCoVCoTgGOTKTDNss7gx5WTLvCSF3ANzptkNJeQ5HUZlk2FpgofeD2FCVWZIw1AkaF/AFliyDLPmCLnfQ0oqZpJW+CmGcUN0uRdR/1yvPX0TIKT+LqkZalZ/zQtTbTHmUIlEvqPSasHR/cWQXlpPEsoNNIqmczTC5bwdTQzuZGt1L70SZDWMuhckh/jPxKGknxxR5JvQyEwGbD94Lb3kEnuyFP34r3plGAqSmYbo6J2bWsbn3JFhucnrPLlLRHlKxfoIihVOK8+Qb1/DwPoexA2O85JYM2fEc+XSBUr7MfsvmE3I7sL3la9V0gRE0MOMhzHiQSDJMvDdKoj9O75pu+jf0sHLLCrqXpQiFQlWJZJomoVBI5SMpFArFYUJJJ4VCoVAoFArFvHFkJhk25GQ15GLJFhlayIIXKC731rUkSuw5HEWgQWRFQV8GhL1KNKHjfbyuCAzpLw5ICy/zyxdY7ig4e/xqsYOptEpBcA0QB82k8rFeShfLlliWi1V2KJcdLMvGshxKpQxuego5soOHB/YyNZUjnc2QKabJWFlOGzF4zVMGofQUl1w1xGRI4tZ8kd77G3jhnTCWNLnpbRYpJ0hKmvRpPWwJJoldeRr73342ek+SvyvtwyrGyI0HKewtkT6Q476hKW4Zy5L/TYFS/jj2lB2kWwKG/GVH3WsWmj+5LRrAjEYJp8LEusPe5LbVKZat72HlluX0ruyp5iNFIpG6CW6qvU2hUCgWFiWdFAqFQqFQKBSLniMzydCXVG7t7Zo2w8ZcrGrbYfMkQ+YwyRACQNJrGdRCgAHCAAyk1HBdnbIdxCoFsewAZcvAcgJkS4LR7ATjwxmmxrIE04IzJrowJrP8u/YQ++UUU7LApCgxEbC5bKfkSzd4GUaved90yLYIQhKNbisKxmrsTau5XAaIEyRlhkglTLq7gvScZvLLN0Y5MBjgXXuDjA0aTAxrZMZhJO3ylbzNl0p3I932mbFCE+gBjYAZINoTIZIwiXZHSPRFSa1I0Le+l1Vbl9O3uqcubLtWJAUCASWTFAqFYomgpJNCoVAoFAqF4phFiKDfWpecfd8OH9MLRi83tRNOZ2Tlscp5ylYJq1yiZNlYlk2uWEY4Blbe4bHdT7N/ZJDJ9ASZ/BTpcoZUzuUjTy/DnMxw7enP8nB3EWqGAp2zH970Xe/6ztfBeMygyw1wHBFSJZMT+7vY/761yJ4An+/KEOsJYEZ0MmmT4f2CYUvwD1JjYlhj6ucb2Z+GUk5ilSRuk0NzvdfovzF6QCMQMkgkTcKJINGuEPFek1R/hJ41YZZvDNK/1iAWhVBIIxQKEgpFCIYSBEMpgqFujOAyhN7tCUaFQqFQHBWon+g+QojLgA9JKV82x/tpwBeAy/Hqp4vANcB3gRDQDYSB/f5dXgnsAwaAr0gpPyqE+BjwWn/7KUw3q/8XkAY+W3P/f5ZS/mfN838A+BTQL6Wcmsuxt3k9l3EQ78NS4ZprruHGG29c6MNQKBQKhUKxSBgaGmLHjh3k83kikQibN2/m7vG7+cQdn2DX5C7Wp9bz1+IyXv33P4Y9e3BWrWLHO97Bnosuqu6/bNkyHMeZzkLyl4n8BCPZEUZzI4xN7Cc3eoAXlTahjY5yQ+ZX3Oc+y5SbZZI8k3qJZAEe+O8ggVyOz74KfrHRO8aAAz0FOHlUI/V4jnJXiivSKzlPBIgHk5ihbiJmD91nLufp16xBX6bxwZEigzvTDO3JMbovz/hgmV+PWdwy5VDMOlglE8duV5HkVUPpAW9yW6wngBkPEE15Iim5PELXygj964MsX+8Sj2UJGRmCgRxBI0vQmCAYyBI0vNu6VvYrk/Sa53CgEpZe8hd/jRQx0FJ+IHovaP0Ivb8hLL3Huy2ic656ckffCvY90yuM89F6vzanx1AoFIr55mg9VxVSti9/PZY4BOn0BuBq4BoppSuEWA3kpJQT/va3AWdJKd9Xc58rgL8ElgObZc0XQQiRlVLGam433b/h+e/D+zPTf0kp/7vDYzaklC0DDDp9H8466yz5wAMPdPJ0i47p0cwKhUKhUCiOZYaGhti+fTtCCDRNw3Vd7hy5ky/u/iJCCAJagHI+g5bL8aUb4PJdkCiBDIb46R+/kXs3h8llhimWJ8kUJ8hYU/zjnrOJjE/y+Z5H+faqIXBdhOtJHE3C7n8AXcKnL4Tb10OXZZCSJkkipEScC+9LsWN3gWeTgrQIUsrHyJYjnPzaS7jsXS/iwDNDDO0cYWTfGCN7RhkfmqSYLlHKl7FLNo7t0nLwnY83uc0gFAl4k9tS3uS2RH+M7pUJetcmWbGpi3gqSDAgCQZtggGLoFEiGCj6IilHMJBBF7malsScl09VydiiCLOGq88HGhD0pxnGQE+B6PHC4vVVoK0BYw1oKxB6F3LsnfXCqYISTwqFYhGwlM9VhRAPSinPalx/zFQ6CSGiwPeA1Xh/ZvkbYAqvSikP3DXL/bcBm4DNQC/wGSnlfwArgAEppQsgpdzXweG8AfhH4I+A84Ffz/kFece0CS+l8z3Ax4C20smXV6/299eFEC8FvgicjBcksE1K+ZODOY6lRD6fX+hDUCgUCoVCsUjYsWNHVTiVy2WklHx9z9exLAshBBk3A3YZJwRveA30FuC+/4A16RL77vhvvuG5JOIlrxKpJw+9P36WSLiLF281WZlfSSKUIhXpIZVYTqp7NQe+tBl95Uresnw571ixgmAsRiAQ4KGHHqJYLPKJH34ZKaRX615BwNAPHubWHzzc8nUI3QvcNuMhQtEgkVSYRF+MxLI43SuTdK9N0be+h1RvopqLVJuR1Lhuvia5tZ5kWJOL5U7flm4a5CS4aZAZP2Dd35ciuEW8v7Pa1Fs119suiyAnwN3b/nhmOthWIkqhUCiOIEfrueoxI52AlwAHpJRXAgghksBjeG1xO4DrO3iMU4HzgCjwsBDiRjyRdZcQ4mLgVuCbUsrWnwi85zWBFwLvAlJ4Amo26XS1EOIS4Gngg1LKym/T1+O18d0JHCeE6JdSDs3wOGcCp0opx4UQfwf8Ukr5DiFECviNEOIXMx2EEOJa4FqAtWvXznLIi4tt27bx8Y9/vHq7UoZ93XXXsW3btgU6KoVCoVAoFAtJPp/HMLyPw47jhRYNl4cJiiBSlwgp0FwwJLgCPnEbxP0Yozc/Cqee+WYiyeXI3h5WP+95aCtW4HxhGSXT5JJgkBcEAui63u7p6ygUChiGMWMI93mvOJNla/pYuWk5605YzZ7xXURSJq7rVuUZeJlSp556ap1MCgQC8yaTOuXwTTK0mmSWdCfBHQNn3FvkKDgjnsiSaX+/onddoVAoFhFH+7nqsSSdtgP/nxDi08DPgAywU0r5DIAQ4pv4QmUGfiKlLAAFIcRtwDlSyh8LIY7Dk1eXA7cKIV4rpby1zWO8DLhNSlkQQvwQ+CshxAeklO1GnPwU+I6UsiSEeBfwNf95wBNWr/Lb+n6Ilwv1zzMc/y1SynH/+u8BVwkhPuTfNoEZTZKU8svAl8Frr5tp38XGtm3b2LZtG5dddhl33HHHki1ZVCgUCoVCMX9EIhGKxSK6rmOaJsVikWXBZYxZY0QDUcKBMOWc1yK3egr+4KHp+5qJZeRe/gbKgQCRSISVF154yMeSz+cRoi4bvIqma/zN//x59bbrukzcOkK5XCYQCBAMBgFPnpmmycqVKw/peBYzQgRABIDE9LoO7+sObj0sx6RQKBQHy9F+rnpk/9yxgEgpn8ar9NkO/C1w1cE8TKvbUsqSlPImKeWHgb/DCwtvxxuAFwohdgEPAj1MS6RWxz0mpfSjFflP4HkAQohTgC3ALf5jvd5/7JnI1VwXwNVSytP9Za2U8olZ7q9QKBQKhUJx1LB582aklDiO42U4BQK8YeUbEEJQsksU7SLjpktJh7++Y/p+TjDIc3/wBwBYlsXGjRvn5VjGDky0FE4AV177oup1y7J49NFHATAMA13Xq69DSsnmzZsP+XiOWozz57ZeoVAoFIfEMSOdhBArgbyU8pt40+AuANb7uUgwu7ABeIUQwhRC9ACXAfcLIc70H7syye5UYHebY0gAFwNrpZTrpZTrgffO9NxCiBU1N68CKmLoDf9/e3ceH1V973/89ZmZLCQsCRDCFggkKCgJUVOu609UtNaKe11qrXrt1aJWrdpbl7ZyXdra1VZtK1qXWhXbqtetdbut1qq1IibBBREkiBoQCGExCcnMfH5/nCENGLJAyCST9/PxyGNmvnPO97wPDjLnk+/3ewjWYSpM/IwGRpvZ+E6cB8DTwDcsMXbPzPbq5H593vjxnf0jEhERkVSWn59PSUkJmZmZRKNRsrKyOPegc/n2Ht9maGQosXiMnMxcMgYMZGz2SDDDgQ3TpvHxjBlkZ2eTlpZGQ0PDTmfJycnhgUufAGDMnvlYKBi7EwqHmDX781x0a1DkamxspKKigvXr11NaWkpZWVlL/szMTEpKSsjPz9/pPKmqzcXCtYi4iPQSqXit2p+m15UAPzazOMGtNGYTLAj+pJnVE6yLNKiDPqqAvyX2u87dPzazUuB2M8tIbPMvtj/F7XiCdZQ2t2p7FPiRmWVs077FRWZ2DMGqibXAWYn2U4Gjttn2kUT7jR2cBwQLqd8EVCWKZcsIpv6lvMLCwmRHEBERkV4iPz//M0WaS0ZcwiGVhxCNRhm/23hOfeJUzv3apzz9lQryL7+G3Dvv5PCiIpg4kUWLFrFixQpGjBjBwIEdr120Pd867H+oX9fAfxyzN9f/75VtbrNx40YWLlxIPB5n2rRp5OTktJyDdE580++CJ+FiQnl/Tm4YEZFtpOK1qqXafMFdJXH3uk3u/pNkZ+kNysvLff78+cmO0WV33303AGeddVZSc4iIiEjvtnnzZiorK9m8eTPpo9P58pNfpjS/lIcPvAUrLoaTToJ776W5uZnXXnuNjIwM9t5775YFYLvi7mse5L7r/kTu6CE8sPy2Nhcfr62t5a233iISiVBaWkp2dnZ3nGa/E1+1H/haGPoAofR9kh1HRKRFX79WNbPX3b38M+0qOnWOik5b66tFJxEREZHOampqorKykoaGBj7M+pD8ofkcNvEwuOIK+NGPoKICSktZtWoV77zzDsXFxYwdO7ZLx5j/TAVXHnkDkYwI33/h2+w1vewz29TU1LB48WKys7MpKSkhIyPjsx1Jh+KxOlg9HcggNHJhsuOIiKSU7RWd+s2aTp1lZmebWcU2P7e6+5y+UHAys8+3kf+RZOfqLdasWcOaNWuSHUNERET6gPT0dMrKysjOzmbMp2MoGVgCQO3F58KQIXD11QCMGDGCoUOHsmzZMhobGzvd/9qadXzv2BvB4Ms/msXE3Sds9b67s2zZMt59911yc3MpKytTwWlnrE9MW8w8Irk5RETakKrXqhrpJDukr450mjFjBgDPP/98UnOIiIhI3xGNRlm4cCEbNmxgWfoybph/A/+78Wj2vPomePFFOPBAGhoamD9/Pjk5OUydOrXDaXbxeJzTC2ez5sNaZn1zJp87qZR99923Zb94PM7ixYtZuXIlo0aNYtKkSYRC+n3xzoiv3BNohrwFhMI7vv6WiMiu0NevVTXSSURERERkB2xZRyknJ4fcTbkMsAGcM/wl6sbnw5VXgjsDBgxgwoQJrF27lk8++aTDPr8z64es+bCWz32hjLJjp5CXl9dScNpS5Fq5ciWFhYXstttuKjjtpHjjC0AzhPJVcBIR6UH610tEREREpAPhcJiSkhKKRhVx4fgL+XDDx5w/u4DYS/+Av/wFgDFjxjBo0CCWLl1Kc3Pzdvuad+MjvPaXN8grGMaFt59NPB5nxIgRQLCA+RtvvEFdXR2TJ0+msLBwhxYnl21svD54HHhpcnOIiPQzKjqJiIiIiHRCKBRijz324MCiAzmz4Ez+z5bzk6OHBqOd4nHMjN13353m5mbef//9NvuoevFtfnvV/aRlRLjlXz9k7dq1ZGZmMmjQIDZt2sSCBQtobGykpKSEkSNH9vAZpqZ4LAax5UCYUNbxyY4jItKvqOgkIiIiItJJoVCIKVOmcMa0Mzhk2KFwwKFQVQXz5gEwcOBACgoKqKmpYd26dVvtu37tRq488gZwuO7xKxg0NJva2lry8vKoq6ujoqICgL322ouhQ4f29Kmlrk3fDx7T9kluDhGRfiiS7AAiPWn27NnJjiAiIiJ93JYRTdeFr+OjFStonPIW6d/9DqGTToL0dMaPH8/q1atZvHgx5eXlhMNh4vE4F06/gqaGJs645kvsM3MaNTU1uDuhUIiqqiqysrIoKSkhMzMz2aeYWhoeCh5zfpTcHCIi7UjVa1UVnaRfOeWUU5IdQURERFKAmVFcXEw4HOb+Mw7i8cq53Dv3FgZeeCnhcJjddtuNyspKli9fzsSJE7nu5J+xctknlB0yla9eczJAy4Ljy5cvb7nrXSSir+fdKd60FKgHG0QoPDrZcUREtitVr1U1vU76lRUrVrBixYpkxxAREZEUYGZMnDiRwYfO5F+FaVz6/FXENmwAIDc3l5EjR7JixQrm/eQR/vHwq+SOzOEHT18NQFNTE6tWraK5uZn8/HxKS0tVcNoVNlwRPA74SnJziIh0IFWvVVV0kn7ljDPO4Iwzzkh2DBEREUkhJ/3Hl7io+GyeKNzMT687jlgsBkBRURGr3lvLnd++n0hamFv++X0ikQixWIwFCxYQjUYZO3YskydPJhTS1/JdIroQMMi+KNlJRETalarXqvrXTURERERkJ/33Ob/hyPox3Bx/nvue+BXRaJSmhmZ+d8lDuMMFvzmbEePyaGpqoqKigvXr1zNw4EAmT56MmSU7fkqKb/odEIdwEaFwONlxRET6JRWdRERERER2kpnxy3MfZsI65/XnfkNVVRUXTr+CzfVNzDhzX4YUZ1FbW8uCBQvYtGkTkUiEgoICFZx2pU9/HTwOuS65OURE+jEVnUREREREusHAsuk85qfy8zuW8vild/Ph4hom7zuJy359AdFolPnz5xOPxxkzZgzhcJi8vLxkR05Z8Vgd+Fogg1D6PsmOIyLSb6noJCIiIiLSTXKu+QE0xxhT9Qg1B1dz2o+OZu3atcRiMWKxGAUFBWzatImsrCyys7OTHTd1rb8yeMw8Irk5RET6Od0iQ/qVyy67LNkRREREJIUt22hUxAupnbKE1TPrefLDJzlw44EMHz4cgOXLlxONRiksLNTUul2p6e/B46D/SW4OEZFOStVrVRWdpF+ZNWtWsiOIiIhIimqsb+SSg75Luk/mvgUf8uo+Gfw2/FsKJhcwpHkIkyZNorKyklgspql1u1C88XmgGUL5hMIDkx1HRKRTUvVaVdPrpF959913effdd5MdQ0RERFLQxft/h/oNDRx0/jHUnXUWt99Rw8jQIOaunMv6pvW89957RCIR4vE4TU1NyY6bujbeEDwOvDS5OUREuiBVr1VVdJJ+5bzzzuO8885LdgwRERFJMTd9/Tber1pOUVkhB56zD4tnzWJIZi73vjyc2sZaXmh6AXenvr6e9PR0Fi9eTCwWS3bslBOPxSC2HAgTyjo+2XFERDotVa9VNb0uwcxmAJe7+9Fd3C8E3AQcCjjQCJwMzAMygKHAAOCjxC7HAR8CNcBv3f0KM7sa+FLi/RJgYeL5ncAG4Met9r/F3e8ws0LgHeBdwIBPgbPdfadKozv659CXVFdXJzuCiIiIpIBfXnAHT859lngsDoCFjZNv/AKbNm1ij+nTCX/3u5RceikPLs2lOn4jsw/5KcuGh8jLGsNpo09jzZo1uDvhcJgJEyYwefLkJJ9R3xZfcyZEX0m8ihFfcyah4fckNZOISFek4rWqRjrtvFOA0UCpu5cAxwN17v4f7l4GfA940N3LEj/VwOHAYuBLZmbufsOW94GGVtv+MnGM1vvf0erYSxNt04B7gKs6E9jM+nWxcfny5cmOICIiIn3cLy+4g8d//XRLwQnAY86Tv/grBQUFwcLhublgxkfRdVz4RfgoO0p6QxO1n9Zwy/JbeKn2JQBisRhLlixh0aJFyTqdPm/rglNC9JWgXUSkj0jFa9V+U3Qys2wze9LMKs3sTTM7xcyONLNFZrYAOKGD/eeY2b1m9oqZvWdm/5V4axRQ4+5xAHf/0N3XdRDnNOAXwAfAfjt5alsMBrZ7XDM7y8weM7O/Av+X+PO408z+ZWZvmNmx3ZRDREREJOU9OffZNtsXPrWYjz/+OHgxZw64c+3B4AYNEVifCRkNm3F35tXMAyAUCr6SL1u2rCeip6ZtC04dtYuISI/oN0Un4EjgY3ef5u5TgaeA24FZwD7AyE70UUowjW4/4HtmNhr4AzDLzCrM7Kdmtld7HZhZJjATeBx4gKAA1ZETzazKzP5kZgWt2osSx10KXAr8rIN+9gZOcveDgauBv7r7dOAQ4Mdmlt1B9nPNbL6ZzV+9enUnYvcec+bMwcx44YUXADAzzIw5c+YkN5iIiIj0Sa1HOLXm8WDdJgA++ACA6lyIAU0RCMchFHciFuGTpk+CfdwBtMbTDoo3VSU7gojIDkv1a9X+VHRaCBxuZjea2UHABGCZu7/nwb/0v+9EH4+6e4O7rwH+Bkx39w+B3YErgTjBKKLD2unjaOBv7t4APAQcZ2bhdrZ/HCh091LgWYJpdFtsmV5XBFwCzO0g/7PuXpt4fgRwhZlVAM8DmcC49nZ297nuXu7u5X3tNr9z5szB3Xn22eC3ku6Ou6fMX2QRERHpWaFw21+jLWRkZWUFL8YFX60GNwYjnNJiMLQBCIWIepQR6SO22jccbu8roWwrHosRX3sO1J6U7CgiIjss1a9V+03Ryd0XE4z0WQhcDxyzI9209drdN7v7X9z9W8D3CRYL357TgJlmVg28DgwjGD21vdxr3X1z4uUdBKOy2vIY8P86yP9pq+cGnNhqrahx7v5OB/v3eTNnzkx2BBEREUkBR53T9u8Ypx01heLi4uDFDTewIStMOA7pcchqDpobBqRjZpw66lTg3yOdJkyYsMtzp4p4499g9TRofhEwsO387jTSXStZiIjsWql6rdpvik6JqXD17v57grvB7Q8UmllRYpPOTHM71swyzWwYMAN4zcz2TvS95U52pUCbq3+Z2WDgIGCcuxe6eyFwQXvHNrNRrV4eQ3DHurYcCCztxDls8TTwDTOzxHHanRaYKioqKlLyNpQiIiLSswqmjAmeWOIhZJQfV8rlt59Pfn4+cY8T//JpDC4o5u/3p/O7h2FsfYRNAzMYPmgMF46/kP1z92/pb+zYsbp7XSfEY03E15wAdecBTRAugrzXCeU/99kCU2Q/3b1ORPqMVL1W7U93MSshWLcoDjQDs4HhwJNmVg+8CAzqoI8qgml1w4Hr3P1jMysFbjezjMQ2/wJu2c7+xxOso7S5VdujwI/MLGOb9i0uMrNjgChQC5zV6r2ixPQ4A5qAr3WQv7XrgJuAqkSxbBnB1L+UdskllyQ7goiIiKSAR299CoBvPvSffO6AclovPRCNR7n8mcvJyRjCNTUfU3D6ORT86lec3Gr/NWvW8NZbb5GWlkZdXR3RaLSHz6DviX/6IGy8hmBFizAM/iGhrH/fC0cFJhHpy1L1WrXfFJ3c/WmC0T3b6sqvlKrc/avb9PsUwaLk2zvu3cDdief3sPWaTCTWWMpr9XrgNu9fSbBe1Lb9VgMDOhu8dY7E6wbgM2VUd3+eYI0nEREREWlD7cp1fLxkJXmFw8gZMYRhw4a1vNcYbeTrT3ydZ5Y+w7cm/yds2AjTpn2mj+HDh7PbbrvxzjvvYGasW7eOuro6cnJyevBM+oZ4bD3UngixYGF2IvtA7u8JaQ0sEZFer99MrxMRERER6Q53fXceAOXHTWXUqFGEQsFX6g2bN3D6w6fz7PvPcsOhN/DN5vJg9l0bRSeAUaNGUVRUhLsTjUaprq7umRPoQ+Ibb4bV0xMFpwzIvYfQ8AdUcBIR6SP6zUinzjKzs4GLt2l+yd0vSEaerjKzzwM3btO8zN2PT0YeERERkVTz4p/+STgSYq9ZezJ69GgA4h7n9IdPp3JlJbcedSvHTT4OHvsfMIOSku32NW7cOGpqali7di2rV6/WaKeEeOxjWHMS+JqgIf0IQkO3t4KFiIj0Vio6bcPd7wLuSnaOHdXONEIRERER2UmVz7/Fp+vrmVg+jry8PDIygmU9Qxbi/PLzyYhkcOiExI2JKyth0iTIzt5uf2ZGUVERdXV1NDc3884777Dffv37jmvxuu9BYzCaDBsEufcTSt89uaFERGSHqOgk/cr3v//9ZEcQERGRPux3c/4AwP8763OMGTOGxWsX8+6ad5m1+yy+MOkLW29cUQHl5R32mZuby4ABA4jFYqxbt47ly5czfvz4XZC+d4s3vQ3rvgK+KWjIPJ1QzjXJDSUi0kNS9VpVRSfpV/bff/+ONxIRERFpQzQa5a2XF5E1OJNJ5RNZ1rCMrzzyFQakDeDwosPJjGT+e+MNG2DZMjjnnA77jUQiDB48mGg0SjQaZdGiReTk5DBkyJBdeDa9S7z269D01+BFKA+GPUQoPDK5oUREelCqXqtqIXHpV15++WVefvnlZMcQERGRPujRW54iFo0z5ZBiVoRWcPKfTmZI5hAeOvmhrQtOAFVVweN2FhHfVm5uLvX19RQVFRGPx6moqODTTz/t5jPofeKN/yC+siRRcDIYeAmhES+p4CQi/U6qXqtqpJP0K1dddRUAzz//fHKDiIiISJ/z6K1PAZB9YohLX7yUoqFFPHDiA+QPzP/sxpWVwWNZWaf6zs3Npbq6muzsbAYNGkR9fT1VVVXsvffeLetGpZJ4LAbrToNoRdAQLoShfyQU7j+ju0REWkvVa1WNdBIRERER6UDtynXULF3FsHG5bBy4kdKRpTxyyiNtF5wgWM9p6FAYM6ZT/Q8ePJhIJML69espLCwkEonQ2NhIVVUVzc3N3XcivUC8/hFYPTVRcArD4B8QyntGBScRkRSkkU4iIiIiIh246zvzaMpqZPoJpXzt0K+SkZVBRqSdEUiVlcHUOrNO9W9m5OTkUFdXR3FxMR988AGRSISGhgbefPNNSktLCYfD3XQ2yRGPbYLakyD2ftAQKQ3uTBdOT24wERHZZTTSSURERESkHe7OHSvm8vqZf2f34ycwePDg9gtOsRi8+Wan13PaIjc3l4aGBpqamhg3bhz19fUUFBSwYcMG3n77bdx9J88keeKbboPV+yQKTumQM5fQ8D+p4CQikuJUdBIRERER2Y5YPMaZd57N+yWLmLR+d/Yq3qvjnd57DxoaOr2e0xa5ubkArFu3jlGjRpGens769espLi5m7dq1LF68uM8VnuKxlcQ/ORA2/RRwSD8E8ioJZc5IdjQREekBml4n/cpNN92U7AgiIiLSRzTFmjj/yfN5eOlDjPvnJP77K5eTP2I7azi1VlERPHZxpNOAAQPIzMyktraW0aNHM27cOJYsWUJhYSHjx49n+fLlpKWlMXHixK6fTBLE118HDfcGLywbcn9HKL0kuaFERHqpVL1WVdFJ+pWyLv7GUURERPqvm1+9mT+/92fGPzuZie/tzvTD9+ncukqVlRCJwJQpXTqemZGbm8vq1atxd0aNGsUHH3xAdXU106ZNo6mpiQ8++ID09HTGjh27g2e168WbFsO6L4NvCBoyv0Qo54bkhhIR6eVS9VpVRSfpV5577jkAZs6cmeQkIiIi0ttdMP0CNrzUwMuvV7LnsZMYNWpU53asrAwKThntrPu0Hbm5udTU1LBx40YGDx7cMtpp/fr17LbbbjQ3N7N06VLS0tLIz+/EqKseFl93EWx+Knhhw2DYHwlFem+BTESkt0jVa1Wt6ST9yvXXX8/111+f7BgiIiLSS9VsrGH2E7PZsHkDmZFMlt22EoBZFx9BVlZW5zqprOzyek5b5OTkYGasW7cOoGVtp+rqasyMKVOmMGTIEBYtWtSyTW8Q3/wq8ZWliYKTQfZsQvmvqOAkItJJqXqtqqKTiIiIiAjw/rr3OWbeMfy1+q+8v+591taso+b9VQwbl8PuUyd1rpPVq+Hjj7u8ntMW6enpDBw4sKWgFA6HGTduHHV1ddTV1REOh5k6dSpZWVm8+eabbNy4cYeO013isRjxtafDujOARggXQN6rhAZ9M6m5RESkd1DRSURERET6vYWrFnLsvGNpjDby0MkPUTayjLu+8wAA+59azrBhwzrXUWVl8LiDRScIptitX7+eWCwGbD3aCSASiVBaWkpaWhoLFy6kvr5+h4+1M+L1T8DqEmh+DQjBoGsI5f0foXBOUvKIiEjvo6KTiIiIiPRr8z+ez4l/OJHMSCaPnvooU0dMBeDFh/5JKBJi1nlHYGad66ybik7uTl1dHfDZ0U4AGRkZlJaW4u4sXLiQpqamHT5eV8VjDcRXfxE2XApEIbIn5FURyj69xzKIiEjfoKKTiIiIiPRrowaOonx0OY+d+hgTcycC8MZfF1K/oYHCsjGMGTOm851VVsLo0ZCXt8N5Bg8eTCgU2mrNpm1HOwFkZWVRUlJCU1MTVVVVRKPRHT5mZ8U33QWryyD2HpAGQ35NaPgjhMLpu/zYIiLS9+judW0wsxnA5e5+dCe3zwJuB0oBA+qA04FHE5uMBGLA6sTr6cBgoAb4hrv/xsxuBQ4A0oEJwLuJba8HpgL/1Wr/q9z9z62OfxPwJaDA3eNdOtm2z+csoNzdL9zZvnqb2267jZtvvjnZMURERCRJHn7nYa594Vqq66rJy87jB4f9gJP2OIn7T7wfgF9ecAdPzn2WeCz4ShXOCIo/nbpT3H33wbx50NwMhYVwww1wetdH/4TDYdLS0li6dCnLli0jKyuL4uJihgwZwvLly/nkk0/Izs6muLiY/Px89txzTxYuXMhrr71GPB6nvr6+ZZ+ducNdfM2ZEH2lVUsa0Jx4egDk3EEoHN7h/kVE5N9S9VrV3D3ZGXqdrhSdzCwCfAvIc/dLE227A9Xuvjnxeg6wyd1/0mq/2cCXgbi7H9yqvRB4wt2ntmr7zP6t3gsBywgKWFe6+986eY4Rd2/z12GdKTqVl5f7/PnzO3OoXsfM0OdeRESk/3n4nYc574nzcHeaY81sbNpIdno29xx3DydMOYFfXnAHj//66c/sV3b0Hlx++/ntF3Duuw/OPRdar6+UlQVz53a58LRq1SoqKiqIRqMMGDAgyNvcjJkRi8UwM9LT03F3SkpKyM/PZ9GiRSxdupRQKERmZibxeHyr97vqswWnLQyGziOUvleX+xQRkfb15WtVM3vd3cu3be+X0+vMLNvMnjSzSjN708xOMbMjzWyRmS0ATuhg/zlmdq+ZvQTcC4wCPtryvru/u6Xg1I7TgMuAMWa2M/eSnQG8Bfw60Wenc5tZnpk9ZGavJX4O2IkcfcLjjz+e7AgiIiKSJNe+cC3uTno4naZ4EwMiA8gIZ3DtC9cC8OTcZ9vcr/LP77BkyZL2O7/66q0LThC8vvrqLudcsmQJoVAIMyMejxMOh4nFYkSj0ZZik5lhZi251q5dSyQSwd2JRqOEw+Gt3u+yNgtOAK6Ck4jILpCq16r9sugEHAl87O7TEiOKniKYHjcL2IdgOlxH9gBmuvtpwJ3At83sFTO73szavaeumRUAo9z9X8AfgFM6cbwLzazKzO40s9xW7acBDwCPAF80s7Qu5P4F8HN3/xxwInBHB7nPNbP5ZjZ/9erV7W3a68yZMwcz45hjjgFo+aI2Z86c5AYTERGRHlNdV01aKPiqlJOZw5DMIaSF0qiuqwZomVK3LY97x3eI++CDrrW3o76+nkgkQlpaGuFW09fcvaXdzAiFQi256uvrSU9PJz09nUgkWEGj9fsiItI7pfq1an8tOi0EDjezG83sIII1lJa5+3sejGX7fSf6eMzdGwDcvQKYCPwYGAq8ZmZT2tn3FIJiE8A8OhihRDCKqQgoI5hG91MAM0sHjgL+1903AK8Cn+9sbmAmcIuZVQCPAYPNbOD2dnT3ue5e7u7leTuxOGYyzJkzB3dvGaq45Xmq/EUWERGRjhXmFNIcD9YkMoK70TXHmynMKQQgFG77q7GFjKysrPY7Hzeua+3tyMrKIh6PtxSXWnIknm9pj8fjLbm27BOJRFq2a/2+iIj0Tql+rdovi07uvhjYm6D4dD1wzA508+k2fW5y94fd/XyCotVR7ex7GnCWmVUTFHtK2xsd5e6r3D2WWCT8doKFyCEoMOUACxN9HUjHBazWuUPAvu5elvgZ4+6bOthfREREpE/63sHfw8xoijXh7jTFmjAzvnfw9wD44rmHt7nftKOmUFxc3H7nN9wQrOHUWlZW0N5FxcXFuDuxWKzlccvi4q3b3L0lV1v7tH6/yyL7da1dRESkDf2y6GRmo4F6d/89weik/YFCMytKbNJR4Wbb/g7YMuUtMfpoD2D5drbdDRiYKPAUunsh8IP2jmlmo1q9PB54s1XOr7XqZwLBCK7O/krrGeAbrY5T1sn9+rRrrrkm2RFEREQkCU6YcgK3HX0bYwePpSHawNjBY7nt6Ns4YUqwnOdFt36NWbM/3zLiyUJG+XGlHS8iDsFi4XPnwvjxYBY87sAi4gD5+fmUlJSQmZlJNBolMzOTvfbai2nTpm3V1nqR8Lb22dFFxAFCw+/5bIEpsl/QLiIiu0QqXqv2y7vXmdnnCYpNcYL7vs4GhgM3AfXAi0DR9u5et+3d5Mzsq8DlgBEU8p4Evp2YqrfV9mZ2DTDA3a9o1V8p8KC7T9nO3evuJZha50A1cB6wHvgQKExMrduy7cOJvh7sRO7hwK3AFCAC/N3dv57qd68TERERERERke6zvbvX9cuik+w8FZ1EREREREREBLZfdOqX0+tERERERERERGTXiiQ7QG9mZmcDF2/T/JK7X5CMPJ3VV3OLiIiIiIiISOpQ0akd7n4XcFeyc3RVX80tIiIiIiIiIqlD0+tERERERERERKTbqegkIiIiIiIiIiLdTnevkx1iZquB5cnOIX3KcGBNskOI9BB93qU/0edd+gt91qU/0eddumq8u+dt26iik4j0CDOb39YtNEVSkT7v0p/o8y79hT7r0p/o8y7dRdPrRERERERERESk26noJCIiIiIiIiIi3U5FJxHpKXOTHUCkB+nzLv2JPu/SX+izLv2JPu/SLbSmk4iIiIiIiIiIdDuNdBIRERERERERkW6nopOI9Dgzu8zM3MyGJzuLyK5iZj82s0VmVmVmj5hZTrIziXQnMzvSzN41syVmdkWy84jsKmZWYGZ/M7O3zewtM7s42ZlEdiUzC5vZG2b2RLKzSN+nopOI9CgzKwCOAD5IdhaRXexZYKq7lwKLgSuTnEek25hZGLgV+AKwB3Came2R3FQiu0wUuMzd9wD2BS7Q511S3MXAO8kOIalBRScR6Wk/B/4b0IJyktLc/Rl3jyZe/hMYm8w8It1sOrDE3d939yZgHnBskjOJ7BLuXuPuCxLPNxJcjI9JbiqRXcPMxgJfBO5IdhZJDSo6iUiPMbNjgY/cvTLZWUR62H8Cf0l2CJFuNAZY0er1h+giXPoBMysE9gJeTXIUkV3lJoJfEMeTnENSRCTZAUQktZjZc8DINt66GriKYGqdSEpo7/Pu7o8mtrmaYGrGfT2ZTUREupeZDQQeAi5x9w3JziPS3czsaOATd3/dzGYkOY6kCBWdRKRbufvMttrNrASYAFSaGQRTjRaY2XR3X9mDEUW6zfY+71uY2VnA0cBh7q4ppZJKPgIKWr0em2gTSUlmlkZQcLrP3R9Odh6RXeQA4BgzOwrIBAab2e/d/StJziV9mOk7sIgkg5lVA+XuvibZWUR2BTM7EvgZcLC7r052HpHuZGYRggXyDyMoNr0GfNnd30pqMJFdwILflt0D1Lr7JUmOI9IjEiOdLnf3o5McRfo4rekkIiKya9wCDAKeNbMKM/tNsgOJdJfEIvkXAk8TLKr8BxWcJIUdAJwBHJr4/3lFYiSIiIh0QCOdRERERERERESk22mkk4iIiIiIiIiIdDsVnUREREREREREpNup6CQiIiIiIiIiIt1ORScREREREREREel2KjqJiIiIiIiIiEi3U9FJREREpJcys1ji9uxvmtkfzSyrF2SaYWb79/AxC83szZ48poiIiOw8FZ1EREREeq8Gdy9z96lAE/D1zuxkZpFdmGkG0KWi0y7OIyIiIr2Uik4iIiIifcOLQLGZzTKzV83sDTN7zszyAcxsjpnda2YvAfcmRge9aGYLEj/7J7abYWYvmNmjZva+mf3QzE43s3+Z2UIzK0psl2dmD5nZa4mfA8yskKDw9c3ECKyD2tqurTytT8TM5pnZF1u9vtvMTtpe5m32PcvMbmn1+gkzm5F4foSZvZLY949mNrA7/wOIiIhI1+i3TiIiIiK9XGKk0BeAp4B/APu6u5vZ14D/Bi5LbLoHcKC7NySm4h3u7o1mNgl4AChPbDcNmALUAu8Dd7j7dDO7GPgGcAnwC+Dn7v4PMxsHPO3uU8zsN8Amd/9JItv9226X6HurPNuc0oPAycCTZpYOHAbMBqydzB39GQ0HvgPMdPdPzezbwKXAtZ3ZX0RERLqfik4iIiIivdcAM6tIPH8R+C2wO/CgmY0C0oFlrbZ/rFWBJw24xczKgBiwW6vtXnP3GgAzWwo8k2hfCBySeD4T2MPMtuwzeDsjh9rb7rE2Ck4AfwF+YWYZwJHA3xOFsiHtZO7IvgRFrpcSWdKBV7qwv4iIiHQzFZ1EREREeq8Gdy9r3WBmNwM/c/fHEtPK5rR6+9NWz78JrCIY1RQCGlu9t7nV83ir13H+/f0wRDCiqvV+tCou0YntPt12Y4DESKbngc8DpwDzOpF5iyhbLxGRueWQwLPuflpbxxQREZGepzWdRERERPqWIcBHiedndrBdjbvHgTOAcBeP8wzBVDsAEqOPADYCgzqxXUceBM4GDiKYNtjZzNVAmZmFzKwAmJ5o/ydwgJkVJ3Jkm1lXRkqJiIhIN1PRSURERKRvmQP80cxeB9a0s92vgDPNrBKYzHZGHbXjIqDczKrM7G3+fee8x4Hjtywk3s52HXkGOBh4zt2bupD5JYIphW8DvwQWALj7auAs4AEzqyKYWje5KycsIiIi3cvcPdkZREREREREREQkxWikk4iIiIiIiIiIdDsVnUREREREREREpNup6CQiIiIiIiIiIt1ORScREREREREREel2KjqJiIiIiIiIiEi3U9FJRERERERERES6nYpOIiIiIiIiIiLS7VR0EhERERERERGRbvf/AY0BALaNFsH1AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABmoAAAGwCAYAAACpRjopAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd5wcBfnH8c/MbG/XaxKSkISQBCGQQOhJ6CgoItIEaVKlCQgiLYiACCgggmIBBREBQYqUH10IRVqQTijpl+T63t72mfn9Mbdzu7e7d3uXu1zK885rXrc7Ozs7u7k6332eRzFN00QIIYQQQgghhBBCCCGEEEKsd+poH4AQQgghhBBCCCGEEEIIIcTmSoIaIYQQQgghhBBCCCGEEEKIUSJBjRBCCCGEEEIIIYQQQgghxCiRoEYIIYQQQgghhBBCCCGEEGKUSFAjhBBCCCGEEEIIIYQQQggxSiSoEUIIIYQQQgghhBBCCCGEGCUS1AghhBBCCCGEEEIIIYQQQowSCWqEEEIIIYQQQgghhBBCCCFGiQQ1QgghhBBCCCGEEEIIIYQQo0SCGiGEEEIIIYQYpHnz5jFv3rzRPoxhtWTJEhRF4a677hrtQxFCCCGEEGKzIkGNEEIIIYQQYpNx1113oShK0eX1118veV8fffQRCxYsYMmSJSN3wENw2223SZgyilatWsWCBQtYtGjRaB+KEEIIIYTYRDhG+wCEEEIIIYQQYrj97Gc/Y+LEiXnrJ0+eXPI+PvroI6688krmzZvHhAkTcm77v//7v3U9xCG77bbbqK6u5vjjjx+1Y9icrVq1iiuvvJIJEyYwc+bM0T4cIYQQQgixCZCgRgghhBBCCLHJOfDAA5k9e/aI7d/lco3YvoUlGo3i8/lG+zDWm+7ubvx+/2gfhhBCCCGEGAXS+kwIIYQQQgixWbrvvvuYNWsWwWCQUCjE1772NW6++WbAaqH23e9+F4D58+fbrdNefPFFIH9GzYsvvoiiKNx///1ceeWVjBkzhmAwyGGHHUZnZyeJRIJzzz2X2tpaAoEAJ5xwAolEIud47rzzTvbaay9qa2txu91Mnz6d22+/PWebCRMm8OGHH/LSSy/Zx5R9HB0dHZx77rmMGzcOt9vN5MmTue666zAMI2c/HR0dHH/88ZSVlVFeXs5xxx1HR0dHSa9bpr3cf/7zH0499VSqqqoIhUJ8//vfp729PWfbRx55hG984xs0NjbidruZNGkSV111Fbqu52w3b948ttlmG95++2323HNPfD4fP/3pT4e0j//973/MnTsXn8/H5MmTefDBBwF46aWXmDNnDl6vl6lTp/Lss8/mPbeVK1dy4oknUldXh9vtZsaMGfz5z3+2b3/xxRfZcccdATjhhBPs/4PsVnRvvPEGBxxwAGVlZfh8PubOncvChQtzHmfBggUoisJHH33E0UcfTUVFBbvvvjsAq1ev5oQTTmDs2LG43W4aGhr41re+tcG14BNCCCGEEMNHKmqEEEIIIYQQm5zOzk5aWlpy1imKQlVVFQDPPPMMRx11FHvvvTfXXXcdAB9//DELFy7knHPOYc899+Tss8/mlltu4ac//SnTpk0DsD8Wc+211+L1evnJT37C559/zm9+8xucTieqqtLe3s6CBQt4/fXXueuuu5g4cSKXX365fd/bb7+dGTNm8M1vfhOHw8Fjjz3GGWecgWEY/PCHPwTgpptu4qyzziIQCHDJJZcAUFdXB1gVKHPnzmXlypWceuqpbLHFFrz66qtcfPHFNDU1cdNNNwFgmibf+ta3eOWVVzjttNOYNm0aDz/8MMcdd9ygXuMzzzyT8vJyFixYwKeffsrtt9/O0qVL7dAKrFAnEAhw3nnnEQgEeP7557n88ssJh8Ncf/31OftrbW3lwAMP5Mgjj+SYY46xn9dg9tHe3s5BBx3EkUceyXe/+11uv/12jjzySP72t79x7rnnctppp3H00Udz/fXXc9hhh7F8+XKCwSAAa9asYeedd0ZRFM4880xqamp48sknOemkkwiHw5x77rlMmzaNn/3sZ1x++eWccsop7LHHHgDsuuuuADz//PMceOCBzJo1iyuuuAJVVe0A7uWXX2annXbKOd7vfve7TJkyhWuuuQbTNAH4zne+w4cffshZZ53FhAkTWLt2Lc888wzLli3La8EnhBBCCCE2EaYQQgghhBBCbCLuvPNOEyi4uN1ue7tzzjnHDIVCZjqdLrqvBx54wATMF154Ie+2uXPnmnPnzrWvv/DCCyZgbrPNNmYymbTXH3XUUaaiKOaBBx6Yc/9ddtnFHD9+fM66aDSa9zj777+/ueWWW+asmzFjRs5jZ1x11VWm3+83P/vss5z1P/nJT0xN08xly5aZpmma//rXv0zA/OUvf2lvk06nzT322MMEzDvvvDNv39kyr/GsWbNynusvf/lLEzAfeeSRfp/Tqaeeavp8PjMej9vr5s6dawLm7373u7ztB7uPe++91173ySefmICpqqr5+uuv2+uffvrpvOd60kknmQ0NDWZLS0vOYx155JFmWVmZfRxvvvlmwdfJMAxzypQp5v77728ahpFz/BMnTjT33Xdfe90VV1xhAuZRRx2Vs4/29nYTMK+//vq85yyEEEIIITZd0vpMCCGEEEIIscn57W9/yzPPPJOzPPnkk/bt5eXldHd388wzzwzr437/+9/H6XTa1+fMmYNpmpx44ok5282ZM4fly5eTTqftdV6v176cqQiaO3cuX375JZ2dnQM+9gMPPMAee+xBRUUFLS0t9rLPPvug6zr/+c9/AHjiiSdwOBycfvrp9n01TeOss84a1HM95ZRTcp7r6aefjsPh4Iknnij4nLq6umhpaWGPPfYgGo3yySef5OzP7XZzwgkn5D3OYPYRCAQ48sgj7etTp06lvLycadOmMWfOHHt95vKXX34JWFVG//znPzn44IMxTTPn9dt///3p7OzknXfe6ff1WLRoEYsXL+boo4+mtbXVvn93dzd77703//nPf/Ja0J122ml5z9XlcvHiiy/mtZETQgghhBCbLml9JoQQQgghhNjk7LTTTsyePbvo7WeccQb3338/Bx54IGPGjGG//fbj8MMP54ADDlinx91iiy1yrpeVlQEwbty4vPWGYdDZ2Wm3Y1u4cCFXXHEFr732GtFoNGf7zs5Oe1/FLF68mP/973/U1NQUvH3t2rUALF26lIaGBgKBQM7tU6dOHeDZ5ZoyZUrO9UAgQENDQ84slQ8//JBLL72U559/nnA4nLN93/BpzJgxuFyuvMcZzD7Gjh1rt13LKCsrK/j6A3YY0tzcTEdHB3fccQd33HFHweebef2KWbx4MUC/LeQ6OzupqKiwr0+cODHndrfbzXXXXcf5559PXV0dO++8MwcddBDf//73qa+v7/fxhRBCCCHExkuCGiGEEEIIIcRmp7a2lkWLFvH000/z5JNP8uSTT3LnnXfy/e9/n7/85S9D3q+maYNab/bMJfniiy/Ye++92XrrrfnVr37FuHHjcLlcPPHEE/z617/Oq8QoxDAM9t13Xy688MKCt2+11VYlPovh0dHRwdy5cwmFQvzsZz9j0qRJeDwe3nnnHS666KK855RdOTPUfQz19c/s55hjjikatGy77bb9Pt/MPq6//npmzpxZcJu+4Vih53zuuedy8MEH869//Yunn36ayy67jGuvvZbnn3+e7bffvt9jEEIIIYQQGycJaoQQQgghhBCbJZfLxcEHH8zBBx+MYRicccYZ/P73v+eyyy5j8uTJeZUZI+mxxx4jkUjw6KOP5lTlvPDCC3nbFjuuSZMmEYlE2Gefffp9rPHjx/Pcc88RiURygoNPP/10UMe8ePFi5s+fb1+PRCI0NTXx9a9/HYAXX3yR1tZWHnroIfbcc097u6+++qrkxxiOfZSipqaGYDCIrusDvn79vf4AoVBowH0MZNKkSZx//vmcf/75LF68mJkzZ3LjjTdyzz33rNN+hRBCCCHEhklm1AghhBBCCCE2O62trTnXVVW1KyYSiQQAfr8fsKo6Rlqm4iNT4QFWm6w777wzb1u/31/wmA4//HBee+01nn766bzbOjo67Hk4X//610mn09x+++327bqu85vf/GZQx3zHHXeQSqXs67fffjvpdJoDDzyw6HNKJpPcdtttJT/GcOyj1Mf5zne+wz//+U8++OCDvNubm5vty8U+L2bNmsWkSZO44YYbiEQi/e6jmGg0Sjwez1k3adIkgsGg/XkphBBCCCE2PVJRI4QQQgghhNjkPPnkk3mD5gF23XVXttxyS37wgx/Q1tbGXnvtxdixY1m6dCm/+c1vmDlzJtOmTQNg5syZaJrGddddR2dnJ263m7322ova2tphP9799tvPrvA59dRTiUQi/OEPf6C2tpampqacbWfNmsXtt9/Oz3/+cyZPnkxtbS177bUXP/7xj3n00Uc56KCDOP7445k1axbd3d28//77PPjggyxZsoTq6moOPvhgdtttN37yk5+wZMkSpk+fzkMPPZQ372UgyWSSvffem8MPP5xPP/2U2267jd13351vfvObgPVaV1RUcNxxx3H22WejKAp33313TugykOHYR6l+8Ytf8MILLzBnzhxOPvlkpk+fTltbG++88w7PPvssbW1tgBWclJeX87vf/Y5gMIjf72fOnDlMnDiRP/7xjxx44IHMmDGDE044gTFjxrBy5UpeeOEFQqEQjz32WL/H8Nlnn9mv6fTp03E4HDz88MOsWbOGI488ctifsxBCCCGE2DBIUCOEEEIIIYTY5Fx++eUF1995551sueWWHHPMMdxxxx3cdtttdHR0UF9fzxFHHMGCBQtQVavxQH19Pb/73e+49tprOemkk9B1nRdeeGFEgpqpU6fy4IMPcumll3LBBRdQX1/P6aefTk1NDSeeeGLec1u6dCm//OUv6erqYu7cuey11174fD5eeuklrrnmGh544AH++te/EgqF2GqrrbjyyispKysDrOqhRx99lHPPPZd77rkHRVH45je/yY033jioGSi33norf/vb37j88stJpVIcddRR3HLLLXZrsKqqKh5//HHOP/98Lr30UioqKjjmmGPYe++92X///Ut6jOHYR6nq6ur473//y89+9jMeeughbrvtNqqqqpgxYwbXXXedvZ3T6eQvf/kLF198MaeddhrpdJo777yTiRMnMm/ePF577TWuuuoqbr31ViKRCPX19cyZM4dTTz11wGMYN24cRx11FM899xx33303DoeDrbfemvvvv5/vfOc7w/p8hRBCCCHEhkMxR+KtSEIIIYQQQgghNkl33XUXJ5xwAm+++SazZ88e7cMRQgghhBBioyczaoQQQgghhBBCCCGEEEIIIUaJBDVCCCGEEEIIIYQQQgghhBCjRIIaIYQQQgghhBBCCCGEEEKIUSIzaoQQQgghhBBCCCGEEEIIIUaJVNQIIYQQQgghhBBCCCGEEEKMEglqhBBCCCGEEEIIIYQQQgghRoljtA9AiA2RYRisWrWKYDCIoiijfThCCCGEEEIIIYQQQgghNjKmadLV1UVjYyOqWrxuRoIaIQpYtWoV48aNG+3DEEIIIYQQQgghhBBCCLGRW758OWPHji16uwQ1QhQQDAYB6wsoFAqN8tEIIYQQQgghhBBCCCGE2NiEw2HGjRtnn28uRoIaIQrItDsLhUIS1AghhBBCCCGEEEIIIYQYsoHGaxRviiaEEEIIIYQQQgghhBBCCCFGlAQ1QgghhBBCCCGEEEIIIYQQo0SCGiGEEEIIIYQQQgghhBBCiFEiQY0QQgghhBBCCCGEEEIIIcQokaBGCCGEEEIIIYQQQgghhBBilEhQI4QQQgghhBBCCCGEEEIIMUokqBFCCCGEEEIIIYQQQgghhBglEtQIIYQQQgghhBBCCCGEEEKMEsdoH8CG5vjjj6ejo4N//etfo30oRSmKwsMPP8whhxyyQexHbHpM06S1tZVEIoHb7aaqqgpFUUb7sIQQQoh1l0zCbbfBF1/ApElwxhngcgGQ1tP830f/R1O4iYZQA/tN3w+H1v+vy8lkisdue5pVX6yhcVIdB5+xPy6Xc308k43S+vwdQ36fGT2mqUPyLTCaQa0B12wURRvtwxJigydfO0IIIcTma1SDmuOPP56//OUveev3339/nnrqqVE4ok3TggUL+Ne//sWiRYty1jc1NVFRUbHejmPevHm89NJL9vXa2lr23HNPbrjhBsaPH1/yfhYsWMCVV16Zt/6ZZ55hn3324aGHHuKaa67h888/J5VKMWXKFM4//3yOPfbYYXkem7qmpiY+/PBDVq1axVNPPcUBBxxAY2MjM2bMoKGhYbQPTwghhBi6Cy+EX/0KdL133QUXwHnncc93tmXBywtYFVuFgYGKSuPTjSzYYwHHzDmm4O7uuPBu/vnrxzF0o3fdj+/mOz86iFN+Kb939JX5HSMej9vrPB7PiPyOsT4fS+Qy409jhq8GY3XvSrUeQpegePYfvQMTYgMnXztCCCE2RU1NTfz+97/n1FNPld/DBzDqrc8OOOAAmpqacpa///3vo31YI0rXdQzDGHjDEVZfX4/b7V6vj3nyySfT1NTEqlWreOSRR1i+fDnHHFP45Ed/ZsyYkfd5s+eeewJQWVnJJZdcwmuvvcb//vc/TjjhBE444QSefvrp4X46m5ympibefvtt4vE4bW1t/P3vf6etrY14PM7bb79NU1PTaB+iEEIIMTQXXgjXX58b0gDoOv/+1/Wc+fiJrIiuwKk68ak+nKqTFdEVnP7M6dzzxj15u7vjwrt54IZHc0IaAEM3eOCGR7njwrtH8tlsdLJ/x8g2Er9jrM/HErnM+NOYHWfnnmgGMNZgdpyNGZffx4UoRL52hBBCbKqampq48sor5XfwEox6UON2u6mvr89ZMlUeiqJw++23c+CBB+L1etlyyy158MEHc+7//vvvs9dee+H1eqmqquKUU04hEomU9Ni6rnPeeedRXl5OVVUVF154IaZp5mxjGAbXXnstEydOxOv1st122+Udw6OPPsqUKVPweDzMnz+fv/zlLyiKQkdHBwB33XUX5eXlPProo0yfPh23282yZct488032XfffamurqasrIy5c+fyzjvv5Ox78eLF7Lnnnng8HqZPn84zzzyT9zwuuugittpqK3w+H1tuuSWXXXYZqVTKfuwrr7yS9957D0VRUBSFu+66y359s1u8DfRaHn/88RxyyCHccMMNNDQ0UFVVxQ9/+EP7sUrh8/mor6+noaGBnXfemTPPPDPnOeu6zkknnWS/3lOnTuXmm2/O24/D4cj7vHH1tC2ZN28e3/72t5k2bRqTJk3inHPOYdttt+WVV14p+Tg3R6Zp8uGHH/a7zYcffpj3NSKEEEJs8JJJq5KmAF2BS/aClJHCq3rRFA1FUXAoDnyaj5SRYsHLC0jr6azdpfjnrx/v9yH/+evHSSZL/x1pU7Y+f8eQ32dGj2nqVjUAhV5ba50ZvsZq7SSEsMnXjhBCCCFgI5hRc9lll/GLX/yCm2++mbvvvpsjjzyS999/n2nTptHd3c3+++/PLrvswptvvsnatWv5wQ9+wJlnnmmHEf258cYbueuuu/jzn//MtGnTuPHGG3n44YfZa6+97G2uvfZa7rnnHn73u98xZcoU/vOf/3DMMcdQU1PD3Llz+eqrrzjssMM455xz+MEPfsC7777LBRdckPdY0WiU6667jj/+8Y9UVVVRW1vLl19+yXHHHcdvfvMbTNPkxhtv5Otf/zqLFy8mGAxiGAaHHnoodXV1vPHGG3R2dnLuuefm7TsYDHLXXXfR2NjI+++/z8knn0wwGOTCCy/kiCOO4IMPPuCpp57i2WefBaCsrCxvH6W+li+88AINDQ288MILfP755xxxxBHMnDmTk08+eeD/zD7a2tq4//77mTNnjr3OMAzGjh3LAw88QFVVFa+++iqnnHIKDQ0NHH744YN+DNM0ef755/n000+57rrrim6XSCRIJBL29XA4POjH2ti1trayatUq2traAPjiiy9yPoJVrfTqq68SDAZxuVz24nQ6c647HA7pAS+EEGKDkNJTpH97E96eSppmHzwwA1p81vJxNXxQB5gQT3XgTyv40yqmooCqgAqr00t58aYL2Gfbb8D48Tz+0Ht5lTR9GbrBY7c9zXfOPWg9PMvRZRgGiUSCZDJJMpm0L2c+RiKRvOqWvuLxOK2trVRXV5f8uKZpkkqliMVixGIxotGoXQk83I8lSpB8K78aIIcJRpO1nXtOP9sJsekxTRPMbjBarPkzRgvozZhGC6Q+kq8dIYQQm5RM9yPAfoN+9hv1GxoapA1aAaMe1Dz++OMEAoGcdT/96U/56U9/CsB3v/tdfvCDHwBw1VVX8cwzz/Cb3/yG2267jXvvvZd4PM5f//pX/H4/ALfeeisHH3ww1113HXV1df0+9k033cTFF1/MoYceCsDvfve7nPZYiUSCa665hmeffZZddtkFgC233JJXXnmF3//+98ydO5ff//73TJ06leuvvx6AqVOn8sEHH3D11VfnPFYqleK2225ju+22s9dlB0IAd9xxB+Xl5bz00kscdNBBPPvss3zyySc8/fTTNDY2AnDNNddw4IEH5tzv0ksvtS9PmDCBCy64gPvuu48LL7wQr9dLIBCwK1CKKfW1rKio4NZbb0XTNLbeemu+8Y1v8Nxzz5Uc1Nx222388Y9/xDRNotEoW221Vc5r7nQ6c+bPTJw4kddee437778/J6h5//33cz5vpk+fzn//+1/7emdnJ2PGjCGRSKBpGrfddhv77rtv0eO69tprC8692ZwkEgmeeuqpvNaDt956q335qKOO4uijj6a9vb3ffSmKUjTEkXBHCCHEujBNk2gqiolJwGX9LrAmsoZ737+XlmgLLdEWmqPN9sfOeCfnr96S83vu3+6Fn+/Zu7+4A4yeHz9Kz/4VXSfzE8kFJNwQ+ePN8IlV5Xso8G1ARyGNShKVOA6iOOjGSRcuOnFTdXc3KF/A2LEwfjw0NkJVFazn1rODZRiGHboUCl76hjLpdHrgnZYg+00z0BvERKNRO4jJDmVisdiQH7vvY4lhYDQP73ZCbARMMwlGm/V5rTfbIYxpNIPekhvMmLF1ezD52hFCCLGR+P3vf593njX73PEVV1zBggUL1vNRbfhGPaiZP38+t99+e866yspK+3ImIMm+vmjRIgA+/vhjtttuOztYANhtt90wDINPP/2036Cms7OTpqamnGoOh8PB7Nmz7VYIn3/+OdFoNO8EfzKZZPvttwfg008/Zccdd8y5faeddsp7PJfLxbbbbpuzbs2aNVx66aW8+OKLrF27Fl3XiUajLFu2zH5+48aNs0OaQq8HwD/+8Q9uueUWvvjiCyKRCOl0mlAoVPS5F1Lqazljxgw0TbO3aWho4P333y/5cb73ve9xySWX2M//mmuuYb/99uPtt98mGAwC8Nvf/pY///nPLFu2jFgsRjKZZObMmTn7mTp1Ko8++qh9ve+snWAwyKJFi4hEIjz33HOcd955bLnllsybN6/gcV188cWcd9559vVwOMy4ceNKfl6bArfbzQEHHMBOO+1EMpnkoosuAuC0005j6tSpgPW1OWHCBFwul32CJpVK5ZzM0XUd0zTzqpQGUkq40/d2CXeEEGLTYJgGHfEONEWjzGNV/q6JrOHORXfS3N1MS6ylN4TpbiaejnP+Ludz/q5W/NKV7OL6V6/P2Z9pmJimiWEYfGZ227fVR+A7H0F1FGqi0OKF63YHlw5OrLZnhmaCaaIYJmnVRDOhqttqQJP5qaMADkwc6HjQCVGgzdk7S+GdJ/PXKwo4nVZg4/NBIAChEFRUWEFObS00NMCYMVbIM2aMtb6iwrrfIJmmWTR0KXR5MG1te59S789xt9udczmZTPLVV18NuI+Wlhba2tpyghi970yhAlwuF16vF5/PB1BS/+v1Padxs6DWlLSZabQhv72JDZlpGmB29AQtPSGL0YKpN+dVxGB2DG7nih/U6p6lBrQaMGIQf3Dg+5b4NSaEEEKMtlNPPZVvfvObxGIxdt99d8B6I3jmvLZU0xQ26kGN3+9n8uTJo30YBWXms/z73/9mzJgxObcN9o87r9ebd0L5uOOOo7W1lZtvvpnx48fjdrvZZZddSCaTJe/3tdde43vf+x5XXnkl+++/P2VlZdx3333ceOONgzq+Ujn7nBxQFAXD6L/1R7aysjL7/3vy5Mn86U9/oqGhgX/84x/84Ac/4L777uOCCy7gxhtvZJdddiEYDHL99dfzxhtv5OzH5XL1+3mjqqp9+8yZM/n444+59tpriwY1brd7s/+DvaqqisbGRiorK3NahkycONF+LT0eDzNmzOg3HNF1vWiI03fJ3D4c4U5/1TrZi6ZpEu4IIcR6kNSTtEZbcTvcVHqtN+E0dTVxx9t35FS8tEZbaY21ohs65+1yHhfsarWQjSQj3PLGLUX33xZro7u7m3A4TGdrJ3vV7IXX9OI1vZQ5ygg6gpQ5yihzlOHTHRjqESiGQSgBv8nKTnQFHpoGi6sgabox0iaG0TMTABPdmcbfGuTKlXsTKPMx/Wtj2GOXRl654X6qzShVxKggTjkJQiQJkMJHCi9pyvxOlGQS+gYfpmnNzUkmoasL1qwp/YVVVUyXC7xeTK8XIxDACAZJh0KkKipIlJcTr6ggVlVFpKyMmNdLt8tFOhDAzHqzTSkKhS7F1jmdzryfr6ZpEo/HiUajrFixYsAAaPny5QXXu91ufD4fXq/XDmSyP2a/icg0TZ577rl+2595PB6qqqoG8UqIkrhmg1oPxhoKz9ro0fVzjNQHKMELUTRpPyfWH9OIFmg91px1PXNbKzCYaj1Hb/ii1dghjNLnOmoViurPu7dp6pjJV/r52lGsry3X7CE+cyGEEGL9yrQ26+7ufcPczJkz2WGHHUbxqDZ8ox7UDOT111/n+9//fs71TDXLtGnTuOuuu+ju7rYrQRYuXIiqqnYFQDFlZWU0NDTwxhtvsOeeVv+LdDrN22+/bX/STJ8+HbfbzbJly5g7d27B/UydOpUnnngiZ92bb75Z0nNbuHAht912G1//+tcB64/TlpYW+/Zp06axfPlympqa7KTx9ddfz9nHq6++yvjx4+0qFYClS5fmbONyuQZ8N+K6vJbrIvOHdSwWsx9z11135YwzzrC3yZ6RMlSZ3umiOEVRmDFjBm+//XbRbQYKacD6P82cSClVdrhTKMgptBiGMaRwR1XVktuxSbgjhBC9TNMkkozQGmvF5/RR668FYFXXKm7976125UtztxXChBPWvLfs8CWaivL7t39f9DEiyYh9uS5Qx4nbn0i1r5pKTyU+fHh0D860E0fCQbI7yQsvvGBvf2TlkfZlj8dDKBQiFAoRDAatSuPzzkO54Ya8x1RNuPp5OOJQlZiWQEVDQcFUTQynjgMHJzWczJXNlxGqDNr3W045D9zwaN7+Mr57wTc55ZfHZl48iEahpQWWLYPly2HFCmhqgrVrMZubMdvaoKMDIhFr20QCJZVC6Tv03jBQ4nGIx1Ha21F7VruKHknWXXtCHsPjwfD5MIJBjPJyqKzErKtDqa9H3WILtHHjcNbVoVRWWlU8ZWVQIOTJ/H7V1dVVsDVZPB4v+Q09gUCAsrKynAAms2iDCJiG6/cZMXiKokHoEsyOs+lpJJh9q3XdtQskX4P4vzATz0LgXPAdjaJs8H+Wig2UaaasYCVT4ZKpfrFbj/WuI6u6siRKeZ+gpRol53oNaNWglKEo6oC7K/owA37tgBL6qbWdEEIIITZZo/4bcSKRYPXq3MF5DofDHu75wAMPMHv2bHbffXf+9re/8d///pc//elPgNVG64orruC4445jwYIFNDc3c9ZZZ3HssccOOJ8G4JxzzuEXv/gFU6ZMYeutt+ZXv/oVHR0d9u3BYJALLriAH/3oRxiGwe67705nZycLFy4kFApx3HHHceqpp/KrX/2Kiy66iJNOOolFixZx1113AQz4B+CUKVO4++67mT17NuFwmB//+Mc5J7f32WcfttpqK4477jiuv/56wuFwTiCT2ceyZcu477772HHHHfn3v//Nww8/nLPNhAkT+Oqrr1i0aBFjx44lGAzmVY+s62tZqmg0av9/r1mzhquuugqPx8N+++1nP5+//vWvPP3000ycOJG7776bN998k4kTJ5b8GNdeey2zZ89m0qRJJBIJnnjiCe6+++68FnsiX0NDA7NmzeKtt96y11VUVNiVNCNVmjic4U5/IY9hGPZJpeEKd4qFPBLuCCE2Brqh0x5vpyXaQpm7jIag9X1+ZXglN752Y97Ml0Ta+t75o51/xI93+zEA8XScuxbdVXD/DtVBPN1b2VAfqOeMHc+gyltFjb+Gal81NT7rY6W3EofqIBqNEg6HCYfDHBI6hHA4TLQlau8j1fMPrO/PmSAm8zEUCuFy5ccWHx5yEt1PL2LW+8+hZZ0EM4DI4q2Y8lANX+zzIbHKbtBMnJqDRt84FuyxgGPmHJO3v0wI889fP46h94YRqqbynR8dxInXHEV3d3dua7FUikRlJclAgMSWW+bcZvYNZABMEzWRwBWJ4OzsxNfcjKelBU9bG+72djxdXdZt3d04o1HUeBw1kUBJJvMDHkA1DIjH0eJxKxQqkQngdGK43RheLymvl5TPR8LvJ1FWZlXxVFaSqKwkFQySDAQwAwHUQADT78fTE7woikJnZ2fOXJmR+B0j8/vMhx9+mFNZM9K/zwhQPPtD+S2Y4atzh6Or9daJZs/+mMlFmOErIf0hZtfPIfYAhK5AkWoB0cM0TTA7+4QvzZj29ezWY/3PzsyjeO3QJRO0KH2uW7dXoiilRODDo5SvHSGEEGJj1t/sdGEZ9aDmqaeeyvtjaerUqXzyyScAXHnlldx3332cccYZNDQ08Pe//53p06cD4PP5ePrppznnnHPYcccd8fl8fOc73+FXv/pVSY99/vnn09TUxHHHHYeqqpx44ol8+9vfprOz097mqquuoqamhmuvvZYvv/yS8vJydthhB376058CVluoBx98kPPPP5+bb76ZXXbZhUsuuYTTTz99wFZaf/rTnzjllFPYYYcdGDduHNdccw0XXHCBfbuqqjz88MOcdNJJ7LTTTkyYMIFbbrmFAw44wN7mm9/8Jj/60Y8488wzSSQSfOMb3+Cyyy7LGcj0ne98h4ceeoj58+fT0dHBnXfeyfHHH59zLOv6WpbqD3/4A3/4wx8AKwDYdttteeKJJ+yqnVNPPZV3332XI444AkVROOqoozjjjDN48skC/d2L6O7u5owzzmDFihV4vV623npr7rnnHo444ohhfS6bqoaGBubPn29f32+//dhiiy02uNBhYwh3Sm3Hlrldwh0hxHBIpBN2wFLprWRcmTVzbXnncn7xyi+sdmOxVpq7m2mLtWGYVshw7s7ncuFuFwKQMlLc98F9Bffvd/nRzd5K3fpAPT/a+UdU+6rtJRPClLnLcr6v+V1+Lt3zUsCqZO7q6iIcDrN2zVo+D39OV1dX0eHwbrfbDmIyi9/vR1ULv4v54zc+46k/v8B7L3zA6iVr0dMGUI6Db3Mwn9NIN83uMj7eYV/mHLIzL5wwn0Cln//76P9oCjfREGpgv+n74dCsX5d1Xbd/FmR+Rux1yi7sfPR2vPi311i7tIWyuiBfO3ArDAyeeuqpQfyvWRwOR0ltxjIfiz13AGIxaGuD1lZobraqeFauhFWrYO1aaG3FbGvD7Oiw2q/FYiiJBEqBChgFIJVCS6XQIhEGMyXHVBSUrFk8ZihEKhgkXVGBUluLZ8IElK++gspKa6mo6F2CQWuezxA0NDRQX19Pa2sriUQCt9tNVVWV/JxdDxTP/uDeB5JvWSfU1RpwzbarARTXTKh6EGL3Y3b9CtKfYrYdjek5RNqhbeJMM5YTvFhzX7KrXjJVMC1QaO5XURqoVX2CluoCrceqQfFvsN8HBvraEUIIITZmEtQMTDELvn1vw6AoCg8//DCHHHLIaB/KoFx99dX87ne/K9pnW2z4wuEwZWVldHZ2Wu1SNjPd3d0EAgHAmtWUaYe3uTFNc0gzdwYztylb33CnlIBnMO1ghBAbJ9M06Up22eFLrb+WCeUTAFjWuYyfvfQzu+KlJdpCV6LLvu/Zc87mJ7v/BIAlHUvY9U+75u1fURQqPBUcP/N4u0VZLBXjD+/8wa54qfJV2ZUvXmfpAXnm+GOxmF0lk1mi0WjB7VVVJRAI5IUyhapksn3y5uc8/efneff5D1j91Vr0dH7bV2/Aw4SvbcHOB81iv+Pm4q/w5QQvmct9P2bmqQ2Wpmklhy4j8T1d1/WclmR9W5MVegOCXcHT1YWzqwtPZyfBcBh/Zyeezk7cnZ04w2G0SAQlEkGJRlFiMRjC6zMgRQGvF/x+CIWgvByqqqCmBurrraVQwFNRYd1nAz0ZK3qZRhtm141WVQ2AEkCRdmgbFdNMg9HWJ2jpqX7JDl6MZjAjA+8wm1KWNfelUOuxntuU8nVqPSaEEEKIkSHnFy2lnmeW336HwW233caOO+5IVVUVCxcu5Prrr+fMM88c7cMSYsg0TbNnJ23OQYCiKDgcDhwOBz6fr6T79A13Spm5k0ql7MqdeDze7wDkvgqFOwMFPJvz/6kQGwrd0GmLtdnhSmOwkUmVkwArULnshcvsWS8t0RaSetK+b3b4YpgGTyx+Im//Ts1Jta8al9YbbtQH6rli7hU5FS/ZLceyeZ1ezp5z9qCfV3aVTDgcti8PV5VMts/e+ZKn//w87zz7Pk1frUFP5QcFbp+L+sm1TNt9EjO/MQN30Gl/7339ndcG/fwy33NLDV4cjpH9VTudTvcbxCSTyQH3kV2hmpkNkz0jxu12l/bu81gM2tt7q3ja2mDNGquCJ6uKh/Z26Oy0q3go8rkB9M72iUatqqDB0DS7ioeyMivgqaqCujprKRbwVFZa4ZBYLxS1EqXsakzv4T3t0D7Iaod2OYprx9E+xM2S1XqsqydoKdR6LLsKpo3cmSoDcecEL6g1VhVV3/BFrV6vrceEEEIIMfzk/OLgbNIVNZnErpAnn3ySPfbYY4hHlutHP/oR//jHP2hra2OLLbbg2GOP5eKLLx7xP843JC+//DIHHnhg0dsjkUG+e2qUbe4VNWL9Gkq4U3SeQQk0TRvSzB0hRP/i6bg1z6UnYBlXNo6tq7cGrPDlwmcutCtf2mJtOV/DZ+10FhfvcTEASzuWssufdsnbf8AVoNpXzVHbHMVZc86yH/O+D+7LmfVS468h6AqOaGuX7CqZ7GCmu7vwoOZCVTKFZuZlMwwj53veZ+98wYt/W8hHCxfTsqytp5VZLodbo2qLcibuOJbp+0whWN3/O7YURSk5dHG73eu9RWUqlSoYwGQ+plIDtwZyOBx54Uvmus/nw+l0jm4boHjcCnWyl9bW3pBnzRorpGlrs+bqdHVBdzeU8NyHzOHoreKpqOit4hko4KmogAFaH4viTFOH2ANWhY3Z04ra862edmg1o3twmwjTjOdWuBgtmH2Dl0wrMgYOenupPa3HqnODFjt4qe0NYjbg1mNCCCGEECOh1PPMG3RQs64+//zzoreNGTNmULMtRP9isRgrV64sevvkyZPX49GsOwlqxIauv3Cnv5BnXcKdUit2MrdJuCM2dqZpEk6ErfClJ2CZWD6RGbUzAPiq/SvOeeocu+olksx9U8KZO53JT/ewZtot61zGzn/cOed2RVGo9FZS46vhu9O/y+k7ng5YM2Ye/uRhqrxVOZUvHodnPTzrfLqu5wUypVTJBINBO5QJBAIoipLXYqxYm7FEIsGqxWv56JnPWLaoiY6mLowiwUzluHImzh7L9H0nU1YbzAtb+gteHA7HqJ0wNE0zL4jpG8gUe42zOZ3OfitiRj2IGSnxeG8FT3YVTybkaWrKr+Lp7oYSqozWictlzdYpK7PCm+pqqK3tDXL6hjzZ152Dmf6z6bLaof2qpx2a2dMO7RzwfU/aoRVgmjoY7XlzXkyjOacVGUaLVSUzGEooJ3hBremZ+1KdUxGDWiFzVIQQQgghipCgRoh1IEGN2BSZpkk6nS6pWif7Ngl3xKYkbaRpjbbSGmu1K18mV05mu/rtAPiy/UtO//fpNHc30xprJaXnvmv/hzv+kEv2vASA5Z3LmfPHOTm3OzUnNb4aavw1HLr1oZw862QAknqSf3/2bzt0ybQc09QN53PeNE3i8XjeLJliVTKKohAIBPD5fHg8Hvtr2DCMnNAlO4TpT+uydj78v89ZtmgV7avCBYMZp9tB3ZY1bDN3KnOP3oUxkxpyApgNKZQwTZNkMtlvEFPK3BuXyzVgECMGIZGwgptMsJO9tLRYIc+aNdbl1tbeNm0F5vkMO48nv4qnlICnvNyqAtrEmMn37HZoADimomwm7dCs1mORrCqXnuqXPtetpRUYzHxElxWu9Gk3lj/7pRpFGZ03CAghhBBCbEpkRo0QYsi6u7upra0FYO3atZvtsK9NjaIoOJ1OnE5nyf+nfcOdgWbtZIc7mSHWsVis5GPsG+4MFPI4nU4JdwTRVDSn5VhLtIWtq7dmVuMsAL5o+4KTHj2J5mgz7bH2vPufseMZdlDj0ly8v+b9nNtD7hBVvipqfDU0Bhvt9fWBev5w8B+o8ddQ46uhyldVtOWYS3Px7WnfHs6nvU50Xc+rkOmvSkZVVZxOJ6qq2l/fqVSKrq4uuroG9w5tp9OJ2+2msynCe098xOI3ltKyrJV0Mj+0cHldbDF1DDseMJMDT96bhol1Q3q+I8E0TRKJRL+tyQxj4JOnbre7aGsyr9e7WbXSXS/cbqivt5bBSCYLt2jLvrx6tdWmLVPFEw5blT+lisetZe3awR0bWPN4MsFNdXXxgKfvurIya57PBkhxbQdVD/S0Q/sVpD/FbPsepuebKMGLNsp2aKaZ7BO0ZNqPtfSpiGkGBhMOKqBWZgUtVhCjZFe9ZKpglJFtjSmEEEIIkSHnFwdH/vITQhQUjUZH+xDEBmC4wp1SKniGGu44HI6SqnWyl1IGlYvRY5gGnfFOu91YZtmmdht2GrMTAJ+3fc6xDx9Lc3cz0VT+96szdjzDDmo8Dg+ftX5m36YqKlW+KruyZXzZePu2On8df/32X+2qmCpvFW5H4ZkTTs3JN7b6xnA+9WGV+VoMh8N0dHQQDoeJRCLEYrGShsxny1TJFNL3a6xvm7HMx+ZlrTz715d55//+x/JPV5FK5M8YcXmcjJ3ayI4HbM+BP9iLMZMahvTch0OmwqhYRUwsFispiPF4PP1WxEjYvJFwuYYe8BRq0ZZ9vaXFCniyq3gG8XMQgGjUWvppRVyQolit2jIBTqkBT0WFVf0zwj9PFUUD35Hg2b+nHdr9EH8UM/E8BM4G3zGj3g7NNA0wO0BfW6D1WEtuMJOZvVMqJZBT4WK3HssOXtRqUCtH/XUQQgghhChEzi+WTn6bE0IIMayGM9wZKOgBSKfTpNPpQYc7pbZjk3BneKT0VE67sUwIM7N+JruO2xWAxa2LOfzBw2mNtpI28is7Tp99uh3U+Jw+lnYstW9zO9zU+Kx5LjX+GiZVTLJvq/XXcv9377du89VQ7ikv2nLMqTnZZ8t9hvOpDytd1/NmumR/7O7utq+X0larkMzXR3+zXbIvF/vaWPlFE0/e+jxvPb2I5Z+sJBnPD2acbifjpjYya7/tOPCkvRg3dcyQjnkoDMPIC2L6Xi6l9WOhKpjMR4/HI0HM5s7lgro6axmMVKp4i7bsdZmQJ1PFM9g/hE3TqvwJh2Hp0oG3z6aqvbN4ioU5xdYFg1ZIVCJFrUApuwrT913MzgWQ/gCz6xqI/RNGoB2a1XqsO6fqBb0Z0243lj37pRUYzPdbZ07wYs9+0bKqYezWYzJTVQghhBBicyFBjRBCiFE31HAnE96UOm+nb7gzGNknrwcKeTK3b8rhjmmadKe6cypeMiHM7MbZ7DF+DwA+a/2Mb933LTrjhd9FfNrs0+ygJuAKsCayxr4t5A5R46+xA5atq7e2b6v11/LIkY/Yt/ud/qKtXJyak9232H24nvqw0nU9J2wpdnldwxdFUezPYa/Xi9/vx+fzFQxghhosNH21hif/9BxvPrmIZZ+sJBnLr9pxuh2MmdLQE8zszfhpY4f0WKUwDKNg+JK5HI/HBwxiFEXJC2Gyr3s8nk3661yMIqcTamutZTAyAU+xYCf7eqaCp7UVisyi6pdhWI/Vnt9SckCaNnCgUyDgUSonQeX9EH+wQDu0C1G0/l8vq/VYW1bQsrZ39ovekhvMmIOsalIrs4KXatCyql96rqNWg1ImrceEEEIIIUQeCWqEEEJslBRFsU8wl6rUcKdvyAO94c5gynb7hjsDBT2jHe4YpkF7rN2ueGmNttqVLzuN2Ym9Ju4FwKctn3Lg3w4kni48e+HUWafaQU3IHbJDGk3VqPL2thyr8dXwtdqv2fer8dfw1DFP2ZUxTq34kHSH6mDHMRveQGnDMAoGLMXWDTYwHIimafj9fgKBAGVlZVRUVFBWVjYiVR1rlzXz5J+e541/v8Oyj1eQKBDMOFwOxkyutytmJszYYtgeP7tVYqHWZPESZoOoqjpgRYycUBUblXUJeDo6Bg53Mktzs/VxkDOqbLpuBUUtLYO+q+J09gQ3ZRCKQqgDyu6A8rswq6ZjVk1CqVAwQ2kIJaEsCmXdEOgET3iQD+bvDV7y5r5khS9qFYpS/GeWEEIIIYQQA5GgRgghxGZjXcOdUufupFJWi6ehhDuZyqLhCneSejKv4iWz7DpuV/adtC8AHzd/zH737IduFK7YOGXWKXZQU+4pt0Maj8NjV7VkwpcdGnaw71fjq+GF416gxm+1HFOV4sfqUB1sW7dtya/V+mAYBqlUquTgJfN/PxiZirLsFnu6rucEhYXuEwgECAaDhEIhe3G73SMWLDSvaOXJPz7LG0+8y9KPVpCI5s+scbgcNE6qY9a+23LAiXux5bYThvx4mZaGxSpiis3Myaaqak4lTN8gZiRfLyE2Kk4n1NRYy2Ck01bAM1Cwk309M4dnqFIpWLsWZe3aAje+jMLLABT6yjbdCpSpUO6Cci9UBKA81BP8VENVHVQ2QOU4qByHUj2mZx5PBbgLzysTQgghhBBiOEhQI4QQQvRjuMOdYgFP5gR/KpUilUoVDXdM0yRmxOhKd9GZ7iScDtNtdtNldNFtdDOrZhbzxszD5XKxLLaM4547zj4RrShKzklpE9MOaiq9lXZIU+4pt2e91PhqqPJWsfPYne37VfuqefWkV6nx1eBz+vo90a2pGlOrp5b82o000zRLajGWuTzU4KXYPBeXy4XD4bBnzcTjcSKRCOFwmEgkUnB/TqczJ4wJhUIEAoERn33Ssqqtp2LmbZZ+uJx4d34wojk1GifVsf3eVjAzZfuJJe8/lUr1G8QUC6lyHl/TCgYxmcsul0uCGCFGksMB1dXWUgLTTFkzXZKroXUJtC6F1pWYbaugZS20taC0dUB7F7THod2ADh06DGhLo4QHnhvVHyVhwlod1saAGNBW+p293sHN4cle55RqGyGEEEII0T8JaoQQeVRVZe7cufZlIcTgDDbcMUyD1mgrTeEmVneuZnXXatZG1rI2spaWaAuzqmaxW/VupFIpPmv/jHPePqfobI10Ms1kczIAHakO0uk0KiohR4iQFiLkCFHmLKPcVU6gLcDChQutuSQOjb/P/zu1gVr8Hn/Byp0MTdWYUD5hnV+n4ZAdipUSvJRy8r+Q/oKXvh+dTieKomCaJolEgnA4bC9dXV1EIpGC/3+KouD3+/NCmfVV9dG2up0n//w8rz/2Fks+WEG8O791mObUaJhYx/Z7bcMBJ85nq9mTC+4r8//SX2uyUkIwh8PRbxCTea2FEKPHNE0wO625LnqzPefFzLmemf3SDvR8/3MAdT1L9v5wABU91zw97cWsFmMmlShhP3R6oN0BnYoV4rQnUdo6MVubYO1r0PKlFfC0m9DphPbughU2gxKLWcuqVYO/r99f8hyenHXl5VYYJoQQQgixEZLzi4Mjv/UJIfJ4vV5efPHF0T4MITZqaSPNmsgae95L3/Zj+2y5D9+e9m3Amvmy91/3LrqvMTVjmDlzJgATuifget+F3+Wn2ltNpaeSCk8FFS5r2aZyG7au3JpkMkk8Eecftf/AZbhIp9J2tU629j5DoLsoPm+gWOu1/ubwDPYkummapNPpkkOXZDI54ED4Ys+lUOhSKHgppSpD13UikQhr1qyhq6vLDmaKBUOjVSWTrX1tB0/9+Xlee+xtlry/jFikQDDj0KifWMvM+duw/wnzmDZnK6A3iOno6ChaEVPK/B2n09lvazKnvAtdiFFjmjHQMyHLWjBaMPVM4NLzMXM7g6k+1ECtsme+ZEIYJWfmS89HxZ///bei8F6ht92ZmXofM7wAUu/33DAZzB+hdE0ovUVbWxu0t8MQfsbk6e62lhUrBn/fYHDwAU9FBZSVwXr8mSKEEEII0ZecXxwcCWqEEEKIEqX0FMvDy/PmvWSCmP0n7c93Z3wXgM/bPmevv+xVdF8V3go7qKnx16AoChWeCrvlWJW3ihqfNftlVuMs+37Vvmq+OPsLvE7vkJ5DZubKYObt9G3L1t3dXfLjORwOu92XpmlommafdDNNE8MwMAyDdLo3SDIMY9DPy+FwlFTtklnW5d088Xjcro7JBDLFqmQAAoGAHcZkZsqMxpD6jpYwT//5eV579C2+fH8psa5CwYxK3YRatps3g/lH78aE7cbmhC///e9/7cu6XnieUTaXy1UwgMlcdsg7xYVYr0wzDUZbn6Clp/olO3gxmsEs3I6xKKXMClfssKUapU8YY32sQOlnXtlwUJxfg8oHIPYgZtcNYH6OyQ8xaw5G2fJCFG1OaTsyDGsGz2DCndbW4Qt4ALq6rGXp0sHdT1GssGagQKdQ6BMKgbzrVQghhBBivVLMobwNVYhNXDgcpqysjM7OTkKh0GgfjhBiBCX1JF+0fZETuNghTKyFb0z5BkducyRgVb7M/8v8ovs6cfsT+flePwewWpbdMYtqX7UVvvSELpll+/rtmTPWOlFkmia6qeNQN8yT1n3DnXg8TjQaJR6Pk0gk7OqWdDpNOp3GMIwhVbn0paqqHe5kKnfcbjdut9s+2e/3+0fshL9hGPb8mOxloCqZTBiTubw+q2Syhdu6ePrOF3j1kTf58n9LiYZjeduomkr12Aom7ziB7b++DQ3TauwgppTALPN/USyIGa3nLsTmxGo91pUTvGC0YBrNOa3IrI9t2K3HSuLuU+VSg6JV51a99NyuKKXPclufTKMds+smiN0HmFaVTuAs8B2LooxQ1Z5hQGdnacFO9rr2duu+Q5V5A8C6/gxWVavt2mCreCorIRDoPQ4hhBBCCFHyeWYJaoQoYHMParq7u5kwYQIAS5Yswe/3j+4BCTFI8XScj5s/titeMiFMc3czrbFWDt7qYI7d7lgAPmv9jHl3zSu6rxNmnsDVe18NQGu0lV3+tEte+JKpgNm2blu7+iXz43VjmJ+h63pJbcYyH0uppOhLURS7qkZRFPt1ya6oGUolTcZg2rEVasvWd5ZMKVUy2YHMaFXJZIt0RHj6rhdZ+PB/+fK9pXSHo3nbKKpCWW2Axm3qmLbXJBqn1/ZbXeTxeHLCl75hjAQxQowc00zkBS1m3+AlE8wwmPlbak/rsercoKVP8IJaA0pgo/g5VgqrHdqVkPqftcIxBSV4OYq7xOqa9cEwIBwurWqnb9izrgGPolgBz7qeHnA4ckOeUgKezDqfT0IeIYQQYhMi5xctpZ5n3jDfuiuEGHUtLS2jfQhC5IilYry35j274qU11kpzd7NdBfPtrb/NCdufAMDyzuV8495vFN3XlMop9uUaXw1Vvqq8ipfM9Rm1M+xtq3xVfHbWZyUd72ie2DIMIydkKTbbJbsSZrBUVS1ptkvmcikVL9nH3V87tuzbMseeWT/Y56AoSr8VQJqm2YFMWVkZZWVlo1olk2EYBq1rWnnqrhd447F3WPbhyoKtzBQFAjUBxm5Ty9Z7TWLsNvV2MKMoCh6Pp2hFjNfrlYGPQgwz09TBaM+b82LmhC/WPBjM4jPDClKCvQFLT7ux3rkvfVuPbX4hq9UO7X6I/ROz63pIL8ZsPxbTcxBK8CIUrW60D7G3kqW8HCZNKv1+mYCnlKqdvtcNY+gBjar2tkjTdWsf6TS0tFjLYDmdQwt4KirAO7SWsEIIIYQYWXJ+sXQS1AghhBg13clu3lr1Vk7bsezLh007jJNnnQzAivAKDv3HoUX3tU3tNvblGn8NjcFGavw94Yu32q58qfZVM616mr1thbeC909/f+Se5DDItB4rpdolE2IMlqIoBUOWQqFLJngZ7jBKVVU8Hg8ej6fk+/QNd7JDnFgsRnd3N/F43A51sgOZUip4dF2no6ODjo4OFEUpqVonexnq66TrOrFYzF6i0Sjtze28/q93+OD5z1jzeQuJ7vxgSlEgUO1nzIw6pu09ma3mTLTbw/UNYjwejwQxQgwDq/VYJCtoyWo9lnXdWlqBwVQ+OEGt7QleetuNKTntyKpBq0ZRSv/eublSFBV83wXPvj3t0P4O8ccxEy9A4EzwfX/k2qGNpOyAZ8stS7+fYVjzb0qdvZN9Xdet+w+lkkdVQdN6q3jSaetjKgVr11rLYLndg5vDk73O7R784wkhhBBCDDMJaoQQQgyrSDLCq8tfzZn10hztrYA5YsYRnL7j6QA0RZo46p9HFd3XDvU72Jdr/bVMrJjY226sTwXMVlVb2duWe8p565S3Ru5JriPTNO3gZaBql0QiMaTgBSi52sXtdo9I8LI+ZCp7MrNzwuEwXV1dhMNhEolEwfs4HA4CgQA+nw+Px4PT6UTTtJwWcH0XXdcxTXPQlTuZAKxvkON0WicCTdNE13XS6bQdMEWjUetxokk+efErPn9tKWu/aCURKRzMhGqDTNphPLseOpvt9/0agUDADmI2xv9TITYUppnsE7Rk2o+15FXEQH5FW3EKqJV5c16UPsELai0oQfk6HgGKWo5StgDTd1hPO7T3MLuug9g/IXjFhtUObSSpKpSVWcvEiaXfzzRzK3gG06ItnV63gMfpzK3iSaWs40kkYPVqaxksr3doAU9FhXU8QgghhBDDQIIaIYQQAwonwry45EVao612tUt2BczR2xzNWXPOAmBt91qO/9fxRfe1tHOpfbnWX8u0mml21Uum4iXTjmxy5WR72zJPGQtPXDhiz3FdZIKXUqpdMpeHIrtSY6Dgpe8Mlk1FIpGwg5jsWTLFqmP8fr89QybTwszr9Q76tdF1vd9WbIVatWXCnUwgN5BkPM2nL37B4leX0vxFK/GuwsFMWV2IqTtNYv5Ru7HT13fA4/FstEGbEOubaRpgdmSFL2t7Wo9lVb1kbjM7B7dzxZ8TvNitx7JakVnhTCWKIn+GbQgU5zZQ+Y+edmg3QPrzDa8d2oZIUYYe8GQqeAZbxZMJeEr4eZpHVcHlyq3iSaUg8/tYLGYtq1YNft9+f2mBTt/r5eXWPB8hhBBCiB7ym4EQQmxGTNO0T+aGE2Ge/vxpq9qlJ4DJDl+O+doxnL/r+QC0Rls57fHTiu53RXiFfbnaV83M+pnU+Guo8vbOfsmEMBPKJ9jbhtwhnvv+cyPzZNeBaZqk0+mSql0y64rNOOlPpsJioNAls25zOhFvGAbd3d05gcxAVTLZYUzmcimzcUqhaRqaptlt2VKplN2SLBaL2bNuANLpNLquD7jPdFLns/98xWevLGHN4hbiXQWemwL+Sh+N02qZOnciE3cca7cri9HFSy+9ZG2WVbnTXyu27EXTtM3qc0psuqzWY905VS/ozT1zX7KqXozmntZjA3999nJmVbj0thtT+rQiQ61GUX0j9RTFCNpk26FtiBQFQiFr6RksXBLThEhk8OFOa2tvwBMfTNVbD1W12qJlqnhMs7eKJ/P7SHe3tSxfPvj9h0KDm8OTWcrKrNBJCCGEEJsUCWqEEGIjZpomhmmgqdYfax3xDh779DE7bMmufGmONnPizBP58W4/Bqzw5Zynzim67zXda+zL1b5q5oydk9duLHN9i7It7G1D7hBPfO+JEXrGQ5NpL1VqtUsymSxpfklfDodjUMGLzAexJJPJvECmvyoZn89nhzGZZShVMsVkKqSyg5jMx8zldDo94H6cTqc9D8bn86EpGu89/TFvP/k/vli0lHBL/qBwRVGoqC9n6k5bssshs9hmr62LtmTLVPAMtnIn+7EGM29Hwh2xvlmtx9r6BC091S992pFhxga3c6Wip+qlOit8qelTEVMNSpl8zm8m+m+HdjmKe+fRPsTNl6JAMGgt48eXfr/sgGcwLdpaW60wxjB6q20GQ9OsgCe7iscweqt4Mj+rw2FrWbq0//31laloGmzAU1lpvYby+6cQQgixQZKgRgiRR1VVZs+ebV8W65dhGqSNNC7NBUB7rJ1/fvzP3pkvsawQpruZU2edykW7XwRYQc1Fz15UdN9ru3uHs9b4a9hz/J45FS9V3iq78mVMcIy9bdAd5OEjHh6hZzw02cFLKQHMUIIXTdNKDl0yJ7FFcUOpksmukBmuKpnMrJm+4Uv25VIqYlwuV04Qk/3R6/ViGiYv/uM1/u/+Z/nkzc/pbA7n70SByvpypu88lb2O3p1dvjV70M9voCCn0GIYxpDCHVVV+63UKXSbhDsiW2/rsew5Ly2YfYMXvdnabjAUf07wglaNklXx0hvMVEmFhCiqtx3aQ5hd1/e0Q/s+pucbPe3Q6kf7EEWp1iXg6e4efIu2TMCj6xCNWstgqKo1L8ftttqiZVfxZAKeRMJa19FhLV99NfjHKC8fXMCTWRcIWK+pEEIIUSI5vzg4ijmUXi1CbOLC4TBlZWV0dnYSCoVG+3DEJiCpJ0kbaXxOqy1KW6yNv7//97yKl9ZoK62xVn644w/5ye4/AWBpx1J2+dMuRfd99NeO5ob9bgCgO9nNGU+c0Ru+9KmAaQg2EHJvmJ/T2SebB6p2SSQSJZ1I70tV1ZKCl8xHCV6GLrtKJjNTpqura71UyWQCiP4qYkoJ7txud14Qk325b6CSTKZ4+YHXePEfr/LJfz+nY22B+RYKVNaVM23nrZh35K7sfuicYWvPNhjFwp3+Qp6hhJ1gfd2V2o4tc7uEOxsf04gWaT2WFbwYLT2tx1KD2LMD1KqsOS/VvbNftN5WZFbrMf9IPT2xmTKNDszITRD9O2CC4keRdmiiGNO0wpmhtGgb4vxCwApffD7weKw2bX2reBIJqypoXR4DrPAoE/IMJuCpqLCOT36uCyGE2EyVep5ZghohCpCgRgzENE0iyQgmph18tERb+Muiv9Aaa7UrX5q7rRAmnAhz5k5n8tM9fgrAss5l7PzH4i00ssOXaCrKj576UW+7MX9vCFPlq6LWX2sHQBsSwzCKBi+FAphSWkn1lTkBPFC1S+byaJwQ39RlV8lkAplwOEy8SC94TdPyApnBVsmYpkk8Hi8axMRisZKDmEKVMJnLAwV1qVSaV/75Oi/ct5BP3lhM+5rCg8cr6srYes4U5h+xG7t9Zw4u18Z3ci/TPrC/Kp1CAc9whDuDmbkjhpdpprJaj2VVv/RpRWa1Huse3M6V8vygpU8rMrRqUMqtGSJCjCIz9WFPO7RF1grHZBRphyaGS3bAU2oVT2bdIKpi86gq+P1WFY/LVbiKJx63qotSgwnYC3A6+2/J1l/o4/Wu22MLIYQQo0yCGiHWgQQ1myfd0GmPt6MpGhXeCgCau5v5wzt/KDjzJZFODCp8OWqbo7hx/xsBiKViXPTsRXbYkt1+rNpXTZW3Cqe2YZ3MNQyDVCpVUrVL5oTtYGVmZpRS7ZIJXuRd9+vPUKtkstuX+Xy+Af/PDMMgHo/nhS/Z10v59SUTvBRqTebxeAZ9Yj+dTrPwof/y/H2v8Mnri2lb0wEFDqO8NsTWO05h7pG7sud3d9kog5nhkAl3Sm3Hlrldwp2RZZommJ19qlx6ql+ywhgrhGmn4Cd5UZ6e8CUz5yW79VimIqamp/WYa6SeohAjwjQNiD2M2fVLMNutldIOTYwm07QqZYbSom1dA55AILeKJ9POxjAgnbb2H41CV5cV+qwLt3toVTwVFdZ9hRBCiFEmQY0Q62BzD2qi0SjTp08H4KOPPsLn2/CqNUqVSCdoibbg0lzU+GsAa07Lb//72952Yz0VMG2xNgzT4Ic7/pBL9rwEgOWdy5nzxzlF93/stsdy3b7XARBPx7ns+cvssCW79ViNv4Yy94Y1kDgzML2UapdEIjGk4AUoGLoUC16cTucG9RptrkzTLDhLZqAqmexAJhgM4nQWDigMw8gLX7JDmHg8PmAQoyhKwSAmc9nj8axzD9x0Os1rj7zJ839fyEevfUbb6vaC56zLakJM3XEScw/flXmH74rLIyegh6pQuDNQyDPc4U4pM3c2RKYZ66ly6a10sea+ZM1+ydw+qNZjalaVS2+7MUWtyauIQfHL93CxyTONzqx2aIa0QxMbp1is9Kqd7Oux2NAfU1WteUHZVTya1lvFk073VvFEItayriGP1zu0gKeiwgqghBBCrJNN6fziupCgZiMzb948Zs6cyU033TTahzIoL774IvPnz6e9vZ3y8vLRPpxhs7kHNeGuMGUzysAPzz7yLPMmz0NTN4wTU6Zp0pXsoiXags/poz5gvYNxTWQNv3791zkVLy3RFroSXQCcseMZXLrnpQCsCK9gpz/sVHD/iqJw/HbHc/XeVwNW+PLz//zcrnxxp90EtSD1oXq2GrMVPteG80MmE7yUUu2S+TgU2ScsB5r3IsHL8DNNk9bWVhKJBG63m6qqqgFf4/7uk0wmc1qWlVIlkx3IFKqS0XV9wCBmIKqq4vF4irYm83g8RZ93MpnisdueZtUXa2icVMfBZ+xfUlWLYRi89uhbPHfvy3z06qe0NXUUDIzKqoNsNXsSex62C3sdvbsEM6NsKOFOMpks8H9rUBn8ErczTCIVoq1rSyA/7NM0bUgzd4b23NI9rceyg5as2S/ZwYwZGdzOlbKc4AW1mmjcRzIdQnXUESrfEkWrBbUcRdkwfgcQYkNipj7qaYf2rrVCm4QSuhzF3TtX0DR1SL5lfY2qNeCaLV9PYuOWXcEzmCqedQ14QiGrisfrza/i0XUr5InHrcfp6oJw2Ap/1kUgMLSAp7zcaiM3FLoOL78MTU3Q0AB77GGFWevThnAMQohNRnd3N4FAAIBIJILfv3nOlCz1PLM06xcbBEVRePjhhznkkENG+1A2e08sfoKLn7kYjgEU+NYD32JK1RSu3vtqvj7l6yPymLqh0xZroyXaQtAdZGxoLACrI6u57pXrcma9tERbSOpWwJAdvqSNNH99768F9+/UnKT03ncP1/hqOGPHM/LajVX7qqn0VuJQe781ehwefr7Xz2lqauLDDz8kHo+TJs0KVtDyRQszZsygoaFhRF4X0zRJp9MlVbsUP/E4sMyJxFLnvEjwMnqyPw8zPB5Pv5+Hhe6jaRqBQIBkMkmsyB/OmqblBTKZKpl0Om2HL83NzXmhTKKEdhqqqhacC5P56Ha7h/S5dseFd/PPXz+OofcGTXf8+G6+86ODOOWXx+ZsaxgGb/z7HZ7728t8+OontK5sL/g1FKoKMmXWlux52M7sdfTueHyeQR+XGDmKouBwOHA4HCW/Qyvz/TUT5JB4Br9xE5rSbG+TTFeypPV7rOnYNud7bHYQWarscMflcuJxpfB6uvG6IridXbgcYZxaJw61A01pQzFbUcwWK6QZVOsxF2i1OXNeFC2r4sWugqlCUXrbweR/nzDxeFYyY0Y5DQ1yckaIQhTndKj8O8T+hRn5JehfYLYfh+k5ECV4MaTewwxfDcbq3jup9RC6BMWz/+gduBDrwuuFMWOsZTBiMWhvH1y409ZmtU8zDOjosJbBUBQoK7OqeAIBK+DJVPEoSm4VTyxmzeIJh60Feqt6li8f3OOCFSwNNuB55RW45BJYubJ3P2PHws03w6GHDv4YhuKhh+Ccc2DFitE7BiHEJmv16tVMmjRptA9jgyZBjdikpFKpoq12xMCeWPwExzx0DPF0HNKAAQ6fg8/aPuOYh47hnkPvKTmsiafjVnVLdzMV3gomlE8AoKmriZ+99DOr3VhP5UtbrM0+OXr67NO5bO5lABimwT8+/EfB/QdcgZwTqjX+Gs7b5byCLceCrmDOCV+3w20HPKVoamri7bffzn+O8Thvv/02s2bNKimsyX7Xd6nBy1Da+TgcjpKqXTLr1rU9lFg/BvN5mEqlCIfDrFixguUF/rjUdZ3Ozt7B916vNyeQ8Xq9KIpiz4mJRqO0tLTYJ6dLqcbSNK1gEJO5PBKh3x0X3s0DNzyat97QDR644VFM02Tm/G149p7/8OHCT2hZ0VYwmAlWBpiyw0T2OGwX9v7e7nj9MsR2U6MoCk6nE6fTiVd9GTN+KSi5nwsuRztb1d3K1Km3oHj2zwnPC1XspJIRu9WYShsqbWhKO25HGJezC7czjNvZhdvZhaam8w/KBAp0eDFNhbQRIm2Uo5uVGFRhqlUoag2qoxbVWYfDVY/T1YDqGHyLzeH6GSfE5khRVPAdCp69MSM3Q/ReiD+JGX8OKPCz0liD2XE2lN8iYY3YvHi91tLYOLj7xeMDt2MrtK672wpihhLwgFUVU1bWW8XjdlshT+ZnbHYVT3e3Feh0dlrVPNAb+CxdOvjHzrZiBXznO7DvvrDDDv2HPsFgb5XRUDz0EBx2WH4l0sqV1voHH5SwRgixTiSoGZgENRuof//73xx99NHcdtttfO973+t32z/+8Y/ceOONfPXVV0yYMIGzzz6bM844A4ATTzyRt956izfffBO3200ymWTOnDl87Wtf469//StLlixh4sSJ/P3vf+eWW27hnXfeYfLkyfz2t79l7ty5JR/v22+/zUUXXcRHH33EzJkzufPOO5k6dap9+yOPPMKVV17JRx99RGNjI8cddxyXXHIJDoeDCRMmAPDtb38bgPHjx7NkyZIB7wfWiZbbbruNJ598kueee44f//jHLFiwgNtvv50bbriB5cuXM3HiRC699FKOPTb3ndQil27oXPLcJST0BCFXiJhhvVPYoTrwOr2Ek2EufvZiJldMpi3eRo2vhkmV1jfYVV2ruPT5S+2Kl5ZoC5FkbwuW02afxuVzL7evP/LpI3mPrygKld7KnBZrNb4aLt794t7wJavyxePIfUe7S3Nxwa4XDOtrAla48uGHH/a7zQcffIDH48k5eVcsiBlK8KJpWsnVLhvy/AQxdKV8Hr733nssX76crq6ukt/pr2kakyZNIpVKEY1GWbNmDUuWLClpHpHD4ShYCZO5vL7b3iWTKf7568f73ebBGx/jwRsfy1sfqPAzZYct2f3Qndjn2Ln4AhLMbC5MU7fe8V6wasUEFMzwVZjqGBSzHYfRjMNswau1gLsZnD0fjRYww4N6bN30k9bLSOplJFJB4skg8WSAaNxHPBkgkQqRSAVJpf2Y9Pd9vRv4AviiT+XOwDN3nE7ngN9bPvzwQ+rr66WaUoh+KGoZSuhyTO9hmJ1XQvrdIltmvq9cA+59pA2aEAPxeKxwZygBT6aCZzBVPN3d1v2HWsGTaX0WCOTP4oHcKp5otLeKZ+XK/lu1PfOMtfRHVa3HLlax019Vj9drVdIUOgbTtJ7buefCt74lbdCEEGIESVCzAbr33ns57bTTuPfeeznooIP63fZvf/sbl19+Obfeeivbb7897777LieffDJ+v5/jjjuOW265he22246f/OQn/PrXv+aSSy6ho6ODW2+9NWc/P/7xj7npppuYPn06v/rVrzj44IP56quvqKqqKumYL7nkEm688UZqamo47bTTOPHEE1m4cCEAL7/8Mt///ve55ZZb2GOPPfjiiy845ZRTALjiiit48803qa2t5c477+SAAw6wTzIPdL+MBQsW8Itf/IKbbroJh8PBww8/zDnnnMNNN93EPvvsw+OPP84JJ5zA2LFjmT9/fsHjTyQSOa16wuHBnWzZFLyx8g0+b/scFy7S6bTVlt8LnclOzJSJYRq8v/Z9dv3zrrg0F6fOOpUr5ln/DwoKT33+VN4+nZqTGl8NXkfvSc9qXzUL5i3IqXrJtBzrOwfHqTk5a85ZI/q8B9La2jrgPI1EImF/vpdCVdUBwxa3221fl+BFlPJ5mE6nWbt27aD2q+s6n332WcHbnE5nTviSCWAy6za06sXHbns6p91ZfwLlfiZvP4Hdvj2Hfb8/F39ow5k1Jdaz5Fu5bYnymGCshbZDS2xA5uxpL5bbbkzRslqPqdWgVeNUPDiBvrFgocqdgWbupFKpIbdlG0g8Huejjz6irKzMbjGXWTRNsy9LkCOE1Q7NDJ4L7cf1s5UJRhNm9D5w7wlaNYoibxAQYlh5PNZ8lcFWhCYSVsBTStVO9vVIxAo02tutZSQcdpgV/rS19T5OZonFrBZxmeMZLFW17l+MaVot4F5+GebNG/JTEEJsPpqammhqasr5u2TRokV4vdbvPA0NDVK1X4BiDmWggRh28+bNY+bMmUyZMoVLLrmERx55pKSKlsmTJ3PVVVdx1FFH2et+/vOf88QTT/Dqq68C8NprrzF37lx+8pOfcO211/LCCy+w++67A9gVNb/4xS+46KKLAOtk38SJEznrrLO48MIL+338F198kfnz5/Pss8+y9957A/DEE0/wjW98g1gshsfjYZ999mHvvffm4osvtu93zz33cOGFF7Jq1Sqg8IyaUu937rnn8utf/9reZrfddmPGjBnccccd9rrDDz+c7u5u/v3vfxd8HgsWLODKK6/MWz/QkKdNyb8++ReH33c4qUjPO+ldQN/zsApUeCvsapZpNdOoD9RT46vhjZVvcOkel1Ljr6HGV4PP6aPWX7vRn7hZuXIl775b7F2RvZxOpz1XY6B2Y5qmbfSvi1i/Sv08XBeKoqCqas4J2L6LqqoDrhtoG1VVR+Tz/zdn/YlHf5sfGPd14A/25rw7Thv2xxcbJzP2OGbnecO0Nxdo9aAEQQ2A0rP0XFby1gdB8WdtE0RRhhaAmqZJKpUqGuQUC3qGUya0yQ5vCgU6pa6Tn5NiYzWk7yuKH9SqnkC396M1Y6oqa+5UNYq6eQ7hFWKDlkzmBzurVsF778GiRfC//1kVNOvi3nsh67xPjkwFUWZpa4OvvoL334cPPrCWSKTwfYfrGIQQIkux86wZV1xxBQsWLFh/BzTKwuEwZWVlA55nloqaDciDDz7I2rVrWbhwITvuuOOA23d3d/PFF19w0kkncfLJJ9vr0+k0ZWVl9vVddtmFCy64gKuuuoqLLrrIDmmy7bLLLvZlh8PB7Nmz+fjjj0s+9m233da+nElE165dyxZbbMF7773HwoULufrqq+1tdF23Zx8UG/xb6v1mz56dc7+PP/7YrrzJ2G233bj55puLHv/FF1/Meef1/kEVDocZN27cQE97k1Lrr8XtcuOv9KMpGu0d7Rimgd/rx+l0YhgG3Xo3PqcPw7TebfNx88d83Gx9nkyrmcY3tvqGvb95d81jeXg5DYEGGoON1AfqaQg00BBsYEL5BOZNmDcaT3PQ3G73wBsBs2bNorq6eoSPRmyuSv08rKurw+l02t8r2wfxjr7Mu/F1Xc+pMBwJpYY+g1lXMaa0UH389LEj+tzERkatKW07546gOMGMgBGxPpoRMLNPuiRBX1Z0F6W8M8rEnRXmZIIdf1awE0DJCnZ6Qx4/TjWI0xvA5wuUFPiYpsmaNWt46623Bty2oqICTdNIp9P2ous66XTanvOU+f4xXCT4ERutUr+vqNVgdAEJMLtB7877HlKwKaPiLRDqVKOoVT3VfFnBjhKQz30hRoJpWmHI0qWwbFnvkn19dX8Vuz0UxWo/1to68LaZd57rOqxda7VLW7Gi92P25ZUrSw+GfD7rGFasKP0YhBBiAKeeeirf/OY3icVifPe736WpqYnf/va37LzzzgBSTVOEBDUbkO2335533nmHP//5z8yePXvAX6ojPe+I+MMf/sCcOXNybstulWQYBgsXLkTTND7//PPhP3DIaYGTOe7MLI5IJMKVV17JoQUGz3k8nrx1GaXez+9f93eVZdpMbc7mjJnD5MrJfNb2GSFniMqKSlpaWvCWeXE4HISTYbat25b//uC/RNNRmrqaWB1ZTVOkiVVdqyj3lOfsb3VkNbFUjC/bv+TL9i9zbptWMy0nqDnqn0cRTUXtUKch0EB9oJ7GYCNjQmOoD9Svh1egsKqqKjweT79tpzweT8ltAoUYilI/D7N/dpimyXPPPdfvfZxOJ1tssQVdXV0DzrbJbsfndDrtWWGZk7OGYdiXC63LLuDNrCtlFk6pAls5UVQF0yh+OlxRFcpneHnllVcGFQKVuq2cDNsIuWaDWg/GGgqfElVArUep/GvBWRKmqVsnWM2IdcI1E+AYETC7wOzGtIOdrtyQx+jqva8d+CTASADFT9iUHvgE86p6+lb41Ab9jK9bSiyuktK9pHU3ad1jLYYH09TweDzsuuuuBT+/TdPEMIy88KZQoDPQegl+xCaj1O8rNc8DqvV9wGjpWVrBaMHUey/nfDSjYMZAX2EtWQp/b3BhqtWg5QY7SibIyQ52lJB8XguRkUxaYUff8CX7cilBiNcL48fDFlv0LtnXx4wBhwMmTOh/To3XCxdfbG3T1GTNuSlFZSWMHWs9TrGP5eVW27P+jkFRrO332KO0xxVCbPayW5s9/vjjzJo1i5133pkddthhlI9swyZBzQZk0qRJ3HjjjcybNw9N0/LmyPRVV1dHY2MjX375Jd/73veKbnf99dfzySef8NJLL7H//vtz5513csIJJ+Rs8/rrr7PnnnsCVkXO22+/zZlnnrnuTwrYYYcd+PTTT5k8eXLRbTLvAB/s/QqZNm0aCxcu5LjjentDL1y4kOnTpw/uwDczmqpx9d5Xc8xDxxBOhnHhAiBtpIkmo7g1Nz/f6+c4NAchLUTIHWJq9dSi+1t02iJWR1azqmuVHeqs6lpFU6SJsaHcd7S/0/QOXYmugvuZXjOdZ7//rH390ucvBbCrczIf6wP1dku24aQoCjNmzODtt98uus2MGTPkD1sxoobyeVjKfbbddtucd7Kk02m6uroIh8OEw2H7cjqdzpvlBVZ4EwqFCIVCBINBQqEQgUAAVVXzHisT2gwU6Ay0vu86+7pbZ9a3t+Gtf75f9Plu/63pxBIxYonhm9+RTVXVAVvBDVclUaHXWAyeomgQugSz42xAIfdUp/X1pIR+WnTgt6JooISAEBQZJ1bKTwfTTGcFPoWCnW7MnCCobyiUWTKf25nAp6X4Y/Z8nNFPAbGuO0ENYrb8EjMv8LGCIFUJ4FIDuNQgaH7wZFcEhXpCodL+5Cgl+Ck1ENoYgp/s9fJ7xKZj0N9XMl9bTOizVT7TiOaHN0Yzpt6aF/ZgdgNJMFZZS/Z+Cu7diZkJbbKCHTvUyb5NKUdR5OeQ2EiZJnR0FA5fMtebmoqHJtnq6vLDl+zrVVVWyAEQDvdWvCxZAq+80nvd6ez/8WIxeP313uuqCvX1uaFL3wBmzBgr4CmFpsHNN1tzcBQl91gyx3/TTdZ2QgghRowENRuYrbbaihdeeIF58+bhcDi46aab+t3+yiuv5Oyzz6asrIwDDjiARCLBW2+9RXt7O+eddx7vvvsul19+OQ8++CC77bYbv/rVrzjnnHOYO3cuW265pb2f3/72t0yZMoVp06bx61//mvb2dk488cRheU6XX345Bx10EFtssQWHHXYYqqry3nvv8cEHH/Dzn/8cgAkTJvDcc8+x22674Xa7qaioKOl+hfz4xz/m8MMPZ/vtt2efffbhscce46GHHuLZZ58teh9h+fqUr3PPofdwyXOX8Hnb5zgDTtKkmVo1lZ/v9XO+PuXrJe/L4/AwoXwCE8on9LudaZrce+i9rOpalVOh0xRpoqmriS3KtsjZ/oGPHiga6uw8dmceOuIh+/pdi+7C4/DkhDlBV3DQJ0My7wRoamrKfY4eDzNmzJCSTbFeNDQ0MGvWLD788MOcKpn+Pg8Hex+Hw0FFRQUVFRX2OtM0icVidniTCXC6u7tJJBI0NzfT3Nxsb6+qKoFAwA5wMovL5RrxcGHffffl4MAxxKO5gZKqKRx0xn5874pDBxUClbLOyBq8ahiGfZJ5pCmKMmxzgwZaN1JzhTYUimd/KL8FM3w1GFltStR662SqZ/+RPwbFAUoZUDY8gU92kNMnzDGNviFQhFSijWSyHU2J4dASODRrfo2mpYA20IsPJi6pwkfx9gY8ir9AtU8QpScEsoMfZwBc2aFQZcmBT+/rsfEFP8MV/mzKX7Mbg5H6vqKoPlC3AHJ/Py70v22accipzLEum5kwR88KdswwkLKO1VgNWT/GCn+NOzDVyj4BTk/7tT4t2VDLi4bdQoyIdLq3GqZYEFPKvBa3u3AVTOb62LHg8VjVKC0tuW3H3n47vyVZV+G/Yfvl88G++8Jee+WGMPX1ViXOcDr0UHjwQTjnnNw2aGPHWiFNgU4nQghRioaGBq644go5d1YCxTRLeZuAGGnz5s1j5syZdjDz8ccfM2/ePI455hhuvPHGfu977733cv311/PRRx/h9/v52te+xrnnnsuBBx7IrFmz2H333fn9739vb/+tb32LlpYW/vOf/7B8+XImTpzIvffey0033cSiRYuYPHkyt956K/Pnzx/wuF988UXmz59Pe3s75eXlACxatIjtt9+er776igkTJgDw9NNP87Of/Yx3330Xp9PJ1ltvzQ9+8AN7ts5jjz3Geeedx5IlSxgzZgxLliwp6X6KovDwww9zyCGH5BzX7bffzg033GA/v0svvZRjjz12wOeTUeqQp01VV6SLbb++LWl3mr/c9hfmTpqLpo7+H1iGafDX9/5KU1eTFeT0hDlNkSZiqRj7bLkPf/32X+3tt/rNVkSSub+E+11+6gP17Dp2V67b9zp7/SvLXqHcU05DoIFKb2XeCY433niD5uZmJkyYQEVFBW63m6qqKjkRItY70zRpbW0lkUiU/Hk4lPsMpL/qm0Kyq28yi9/vH9bwZs2yZo6ZcAYA+x43F2/AS+OkOg4+Y39crqENaR9I5kTwcIQ+pawbLcMR/JS6zWh9XzVNHZJvgdFszZhwzd6sTi7mfJ9waVRWulHs1myZYKe3zZuZ1+YtkrVNz/YUb704JNmBT4HqHpSAHfjkbhPMuuwfdOCT/RqNVPAz3PqGOOva8k1+3xmajeX7imkmegOdrOocM7tyJxP6mB2D3LsKamXeXB1Fq84KczK3VQz561NsRsLh/mfDrFxphScDqanpP4ipqbFCn6am/Pkv2R9XrbJapZWirKz/VmT19fDRR9Z8m4YGq9XY+q5i0XV4+WXreY/WMQghNhnRaNSew/7mm28WnVO+qSv1PLMENZu5JUuWMHHiRN59911mzpw52oezwdjcg5ru7m4CgQBgzQoajjlAI8k0TcKJMPF0nLpAHWC1bPvJsz+hKdLbdq0z3mnfZ99J+/KXQ/5iX5/ymyl0J7sBcGrOnNZq29dvz7jmcaTTafbYYw8SjgSV3kocqvwhKUS2QtU34XCYaJEe3v1V3wzFr0/9PU/84VkcLgdPxO7d5E4s9g2FBtUabght5kbLcLWHK2XdpvY5sqExzVR+hU/OnJ5IT+DTd35Pn8vDHvj4sqp7eoKcPsGOFfj484Kg3u3963zCXYIfsTEyzSQYbX2CneasUCcr2DE7KK3uLkMBtaJPeJPVfi1n1k4VijIyb8IQo0jXrYCgvyCms3Pg/TiducFL3zBm3DirvVex8CXzcc2a0lqgKQrU1hZuQZbdiqznb2whhNhcbGznF0dKqeeZ5SyjEGKjpygKZZ4yyiiz1zlUBzfsd0POdrFUzA5tvM7efr2JdIJJFZNYHVlNc7SZlJ5iWecylnUuA6Cju4OjfUejaRqBQIBZv51FPB2n1l/bOyenJ9iZXjOdeRPmrZfnLcSGRlEUfD4fPp+P+vp6e33f6ptMBU46nbavZxtq9c2r//ovANN32WqTPAmYaXemrYd3NZqmiWmaw1YVNND17JPLmRZyqVRqxJ9nJrAZqVlCfVvIbW4UxQlKOajlxbcpYT+mmewJfIqFOYUqfLK3z1T49LRFNKPWAlAkkyytpZuvQPXO4Cp8VNWP2+3G7XaX8IgDvU7DF/xklozM12rfWWVDJcHPxktRXKDVW0v2+gLbmma6J9TJnatjZrddsz+2AUbP9rntFot9PZpKOdiVOT2VOtmVO1m3KcrQ3gQihlkkUjh8yVxescIKawZSWVl8Lsy4cVZQk6mEyQQvr74KDzzQe72jo7Rjdjp7g5ZiIUxDAwzxjUZCCCFEhgQ1G7hAP++4ePLJJ9ljjz1G9PFPO+007rnnnoK3HXPMMfzud78b0ccXYjh5nV4mVkxkYsXEnPVuh5unjnkKgJSeYk33mt72al1NOOIO6IDy8nJieoyEnsAwDVZHVrM6spp3edfe176T9rWDGtM02flPOxNyh2gMNlLvr+8NdoINjC8bz/jy8evr6QsxaorNvolGo3kBTjQaLTr7JhgMEgqF7I/Z1TervlhNR7MV+Bx+wTfX7xPcBCmKgqIoqKqK0zny71jOhDPD2S6u0DyhYnOF1ofsoG2kw6HM/9+mQlFcoLisd9oX26aE/ViBT3bIk1/tY+a0cSscCkFPixs78Fm7joGPP6t6p2+FT0/1TsE2btmhkA9F6f0cGIngZ7BBT6F1GRL8bB4UxQFarbVkry+wrWnqYLT3CXB62q/pfUOdVkC3KnbSHcDnvfspciymEsqZp9NbqZM1T6cn2FGUdf/62SwZhtWyq7/ZMO3tA+/H4bACkEItycaOtQKR9vbc6pd334XHH++9Hi+xEjMQ6L8V2dixUF0Nm+GbLYQQQqx/0vpsA/f5558XvW3MmDF4vd6itw+HtWvX5r3TOSMUClFbW1vwto2dtD6T0sRsixYtYsWKFUyZMoWpU6eiGzot0Ra7rVpTVxOrulaxOrKabeu25eRZ1gylcCLM1rduXXS/2e3XTNPk+EeOp9JTmRPmZD5WeCrkpIHYLBSqvgmHw0VbcXk8HkKhEP+69hnefGQRTo+TxyP3bJbVC6I02ZVCIz1faH2FQH1lQraRmiWUvW405wqNlvzAJ/tyV1ZLt55gx57t02eeDyXONChVJuzpbz5PwTZugdxtlJH5/lks+FmX8GekSPCzYTNNwwpp9NacYMc0mnPn6RgtPdU5g6zQVAK57de0rPZrfWftqJtRr/1otHg7smXLYPlyKKUatry8cDuyujorhEkkrMCnUCuypqbS5s+AFbD014ps7FjYDP/WF0KI9UnOL1qk9dkmYvLkyaP6+LW1tZtsGCNEqdrarPYLmWoATdWoC9TZ83CK8Tl9PPf95+wQpynSlHN5ckXv13dXsotnvnim6L4OnHwgf/rWnwDrRMcvXvkFdYE66gP1NAQaaAw2Uu2rRlNl0KPYuPVXfZPdNi1TfROPx4nH4/zvuY8AaNi6mqeeeqrf6huxeVMUxT6BOtL6zhUa6XAo+3HX56yhkZ4llH19QzjhbVX4VFoD0ottU8J+Cgc+/VX49KkAsit8ek6Mmt3WwpphqPDJb+OWXcljV/hk355X4ZMb+GRXlY1kxc9wBD9S8bNhUxQ162twSu/6AtuapglmZ9Y8nZ72a9nzdLJvo+frUo+AvqR3P0WOxVR8uVU5mVZrWp9qHbWqJwjdQP/vDAOam/ufDdPSMvB+NM0KQbKDmHHjoKrKCmEMI7ca5quv4OWXreutraUdq6ZBY2P/rcgaG8HjWbfXRAghhFjPJKgRQoh+JBIJexB69onjUjhUB9NqpjGtZlpJ2950wE29FTqRVXb7tdZoa04oFE6E+c1/f5O3D03VqPPXccjWh3DpnpcC1h+nj376qBXoBBuoD9Tj0uRktdi4KIqC3+/H7/fT0NBgr0+lUnR1dfHJW5+RiFjvTN/p8JkYhkFnZyedfYbNZqpv+s6+2WBPmoiN3vqeK5Td3m0kZgllr8suyl+foVB2eDPcwVDf9SP9vWFkAp+ugsGP2bfyp+/8HjPCyAQ+hVq1+bMCn74VPX22LxD42K+NBD9DCnr6rt/Ugx9FUXpnZTl63yRVPNTp6hPg9LRf6ztTR28B4lb7Qz0K+vLcfRU8Gg9mToCTNVdHq84Ne5TA8P6/xONWxUuxIGb5cquSZSDBYG4VzNixUFHRO58lGs2thnnrLetjd3dpx+n1Fm9BlrlcW2uFNUIIIcQmRoIaIUQeRVEYP368fXlz1t7TRzkYDI7onAaf08fhMw4veFtST5JI9/7hZJgGJ+9wsjVDp6dKZ233WnRDZ1XXKqKpqL1tOBHm9H+fnrO/al+1HdzsM3Efjt3uWMD64/TL9i+pD9Tjd22e5ahi4+J0OqmsrOT5O18DwO1zc8pFJ+RU32QqcLKrb9auXWvvI3v2TWYJBoNSfSM2OuszFAJGrFKo0O3ZoVBmrlCqlPY66yi7vdtIVw2tS7vGYQ18+lT00Gdmj2l2gdFdtAKoYODTT5eigQMfpbfCJ69VmxUEKQVn9gRKDnzsR9qMg5/hqPLZFIIfK9QJgRoCtuxdX2BbK9Tpzpmng9GKqTf3mafT89GMAnHQV1hL9r4KHo0Ls6ftWm6ok9uSDbUaCKG0tvY/Gybrd59+XgCrEiUTxIwZY7UGc7ut25JJq+pl5Upr+eADWLUKSm1DWFnZfxXM2LFWW7SN9PNHCCFEPjm/ODgS1Agh8vh8PpYsWTLah7FB6Nv2bDS4NFdOFUyFt4Ir51+Zs01mbs6qrlWE3L39LqOpKDuP3ZnVkdWs6lpFUk/SEm2hJdrCB2s/YGxwrL1tOBFmjzv3ACDkDtkVOJnWajs27sjcCXMB7JNm8oNWbAjeemoRADPnzxiw+qZvgKPrulTfCDEEqqqiquqIvokhIxPOrI8WctlzhTKPuz5khwQjMUsoe1EUpeD3MkVxWSd+qSp+nAM8D+v3g2Thip2+FT55M366+gQ+acDM2qbIY5b2CmMWCnBy2rkVm9+TqQAK9gQ+pf0c2JiCn8x1CX5KZ4U6PZ8rjO9dX2R704jmhzdGi9WCrc+sHevzPwnGKmtJGNCUhpVpzJVpWJFCWZmGFWlYmYKVaYgP/JVg+nwwfjzKFltAQwOUlVkhjKpas2W6uqwZMCtWwPPPlxbuWC+Gtb/+QpgxY8C3Gc3zEUIIAcj5xcGSoEYIIfqRqagZzaCmFMXm5jQEG3joiIcA6w/89ni73VKtqauJKVW9fb1bY60E3UG6El2EE2HCiTCftnxq337CzBPsoKYz0cn2v9/eDnGyA536QD1bV2/NxIqJ6+GZi83dp299QXenVUV29CXfKbpdpvqmsrL3Hed9Z99kllgsVnL1TSgUWi8nqoXYnGVCofU1V2ikZwllr8t+3L4nz0fScFQF9X97EE0rR9UKzxUqLfBJ9Du/Jz/w6RsK9Q18unq2KfKYJb1yalaFTybY8ecEO0qxNm55FT6DCx8k+Nm4gx9F9YG6BbBF7nrTtGa2LOutgjGXfAHLvuhZtwrWtFnbDcCs06DRATUOCCmYHhVUUNJA1IA2HZq+wHz1M5SuEttVulzFW5BlPtbXw3r4/iyEEEJs6uSnqRBCFJF5pz1s+EFNKRRFodJbSaW3khm1M/Ju37JiSz4981O6El2sjqy2q3CaIk2sjqxml3G72Ns2dTWRSCdY0rGEJR1L8vZ1wswTuHrvqwHojHdyzMPH0BhopCHYQEOgIedjnb8OpyYnusXQ/P0aK4j0Br1M33mrQd13uKpvvF6v3TJNqm+E2LgpirJeAiHInSu0LrOESl2XbbTmCg1mRlDvOg1Nq0TTavK3c+Tet+/33dzAp0/Fjh3sdPcEPoXavnX3XkYHjKzAp6ng8y098BlshU/fy0FQvEP+WTMSwU/m82q4wp+MjTr4SaWsNmHFZsMsW5Y3v6Xg3rxeGDcO6uqsShifDzQNU09Bdwe0t8Kq1fBhM0oyUXw/WcyQCvUOaOhdzHqHFfbUO6DBCdU1WfNzqkCtRNH8VhWOmgI1DIoLzEoURU4vCSGEEOtCfpIKIfLEYjH23HNPAP7zn//g9XpH+YhGRzgcxjAMXC4Xfv/mM7Ml6A4SdAdzqm36mlI1hddOes2uzMn5GGliq6reE+arulbx9qq3eZu3C+4rO9QJJ8Jc98p19gyd7FDH69w8Pw9F/9559n8AzNp322HbZ7Hqm+7ubju0ya6+ySxr1qyxt9c0jWAwmFeBI9U3QoiM9TlXKBMKjeQsoex1G9JcofwQyIOm+dG0xtJCJJfW83+VRlPiaGoUTY2imPnVO8UrfLp7gyA78AlbyzpX+GTP58mf55Nb4ePPCnyygqB1CHwyMiGnw+EY1uCnWKAzlPAnY9iCH9PE0d1NoL0df3Mz/tZWvM3NeJub8axZg2vNGpzNzaVVw9TUWCFMRQWKz2dVqBgGxGLQ0QFr1sDixfDZZzn3K/q/VleXV/liNtZBYwgaPFYw44v1tl/Lm6vTjlWJ1grpVqC3yr7ws1EwlfKeUCczVyczU6fvrJ0qFEV+HxJCiM2BnF8cHAlqhBB5DMPgrbfesi9vrrLn08g743M5VAfjy8czvnz8gNs2Bhu54+A7WB1ZTVNXE6u6VrG6e7Ud7DQEeysZVoRXcOeiOwvup8xTxumzT+fsOWcD0J3s5pFPH8kJc0LukPxfbUY+WPgxsUgcgO9dWrzt2XBQFIVAIEAgEMhZn0ql8ipvwuEwuq7T0dFBR0dHzvaZ6pvsChypvhFCjLTsUGh9zRUaTAg01GqivnOERmeukNXmrZRZQtZ1E1VJoWlJNCWJpibQ1DiaEkNVrBBIVSJoSheqEkZTwqgUqAbCYPgCH61PhY+/T5DTt8LHX6C1WxDwDNvPs+zgZzhkBz8lhzzxONqaNWgrV+JYuRLn6tW4Vq/GvWYNnjVr8DY344zFBnxsXdNIVFSQCgZJezygaWAYqKkUzu5uXOEwruZmaG4e+Hk4HKRqa9Hr69Hr6zEaGzEbGzHHjEEZOxZl3Di0sWPRvN68ip9i/zOF1ptmGoy2vLk6pt5SYNZOG9bnYjuk24HFvfsp9jyUciu0yQp2lKyApzfYqbbmZwkhhNgoyfnFwZGgRgghithY5tNs6Mo8ZRy01UEFbzNNk7TR+w7HMncZ58w5h6ZIT6DT034tmorSGe9EU3rfdby0cykX/N8FOfvzOr12cHPEjCM4bPphACTSCT5t/ZSGQANVvipURR2BZyrWt79f8zAAgXIfk2eOzkwkp9NJVVUVVVW9w7ezq2+yw5uBqm+yK2+CwaBU3wghNlqZuULrQ3bLrZGeLzSyc4WcQFnPkisTCuXOCFLQNBNNNdE0A01Jo6ppNDWNploBkKokUNUYmhpDU7rRlG5UpRtN6bICIKWzJyhKWdurEVRFp1DWMqjAp0h1D2oApWA7tz5t3oYx8Ml+DfOCn3AYmpoKtyNbutRqWVbCSSUzFMKorMT0+TCcTus+8ThqJILa2oqWTOJraYGWln73k/Z4iFdVEauuJl5V1bv0XI9VVZEsK7PajhViGNZxL12as3qwrd1y14/B4RhvrXNqBVu9maYORkdPcNMb4phGC+h9Q51WQAezA/QO0L/o3U+x11cJ9Vbp9AQ7ippbuZMJfRTF0+9rLIQQQmzIJKgRQogCTNO0g5rs9kdieCmKkjOfZkxoDBftflHONqZp0pW05uaUuXtPXigo7L3l3tYcna4mOuIdxFIxvmz/ki/bv2T+hPn2tp+3fc4B9xwAgFNzUh+ot9qrBRpoDDayz5b7sOu4XQHQDR3DNGRuzkbgvZc+BGCnA3cY5SPJlV1909jYaK/vW32TPftmoOqbTHgj1TdCCJFruCsv+lNortBIhkPZj1t6IKQB3p5laDQNKwBSDVTVsMIfLY2qJHNCICsAiqKp3ahqEk1JoWkpq2JITVrVQWpnTxBkrVPty9Z2hX+kOXoCn57qngLVO1bg488Lguw2b6YXmtpQli8vHMQsW2a1FCvlxaiqgkAAXD2VHYkEdHVBezvoOko4jBYO97+f6uq8VmT2x7FjMRsbwe/Hoet402lcuo5vmFu9DZf+g54QmlaBw7F14e1cKg6tG4fWiUPpQDHbUMzW3PZrelawQ8qqGNPDoH8FPR0Ui4c6/qwWaz0VOTkzdrIreHzD9poIIYQQw0GCGiGEKCAajZJIJFAUhbKy/Hc2ivVHURRC7hAhdyhn/bSaadz97bvt6/F03K7AaepqYpvabezbIskIdYE61navJaWnWN65nOWdy+3bq33VdlDzccvH7H/P/tT6a+0wJxPoNAQb2L5+eyZWjE71huj19jPvkYgmATh6hNueDZdSqm8ySzwel+obIYTYwIzGXKF1bQ1Xapu5bLoOuq5ghT4aVrXPyFDVFJqS7glxknago6mprOupnu1SaGonmtqCFo/iXtOBa00nztVhHKsjOJsiaE1R1KY46uoESrqE2TA+FwS94HYBKqTSEImjdHX3vhhr11pLIZoGDQ2FA5jMx8ZG8PRf6aFgnZxxDNPP8yG1ehuV4EfB4ajH4RhbIPjRcDvjuBxduJ1dOB1duLQwDq0TTWlHUzrQaEehzQp8SFrzoPRu0HurioqHOr688Aa1qkCwUw2KvFFGCCHEyJOgRgghCshU05SVla2XP8bFuvM4PEwon8CE8gl5t80ZO4d3T32XlJ6iOdpsz8ppijSxOrKaHRt3tLdt6mrCNE3WRNawJrKG93gvZ1+X7nkpZ+x4BgAfN3/MmU+eaYU4gQbqA/U5l8eGxuJ3+Uf0eW+u/vHLRwAIVQUZP23sKB/N0BWrvkkmk3bLtFKqb3w+X16A4/P55KSCEEJspNZ3KNS3hdy6VAUNdN00e0+dG4YTAycpPasCyDBwd3TgbW7GsbYNd3Mz3j6Lq6trwOdlKAq614vudIKioOpptHgcLdUbMijRJPS88SPv/m4H6Vo/6To/eq0foyGIUR/CbCjDbKxAGVOFUleF5vahaV40hw/N4UfVAqhapgpIBaUbTAVwrbefyxvEjJ9hDX48PUtNsSPEocVxO7rwemJ43d14XN14nBHczjAuZxdOLYxTC+NQO1CVJJhR0KOgL++zp8KPb2qFqnIyc3ayblOC8vuXEEKIIZGgRgghCmhrawOk7dmmxqk5aQw20hhsZBazCm6z95Z7895p79khTqZCZ3VkNU2RJraq2sredkV4BR83f8zHzR8X3Ndle17G6TueDsBX7V9x8xs35wY6QetypbdS5uYM0gevfALALgcX/n/c2LlcrrzqG8MwiEajBatvotEo0Wg0r/omU3GTHeCsj/ZAQgghNh6KoqAoCqqqrpcKTSMSwVi6FGPJEsyemSrK8uUoy5ejLl+OumoVSio18H6cTgyXC1NVUXQdLR5HyZopo5omajRasB4oGQjkzYGJ9ZkJkwoEKNKbzbK2Z8mTQFG67fZuWna7N9XomS1kjZrRtN5ATtUcODQXquZE09xoDg+a5kXVvGgOP5rmR3MGrdt67pOZGTPSwcBIBz/DEv7oXtK6l+7EgI+OpiZwO7twOyN2xY7b2YXLEbE+OrtwO6zbHVoCiIO+wlpy9lTouTkxlApMpQqUKtCqULQaVK0GxVFrzdfRMqFOmYQ6QgghbPKXuhCioOrq6tE+hFGVqaipqKgY5SMR65uqqNT4a6jx17Bt3bb9bjurcRZ/O/RvvYFOpDfQWdW1ioZgg73t522fc/+H9xfcj1Nz8vP5P+fY7Y4FYFXXKp5Y/ETOHJ0afw0OVX5sA7z62JukEtYJnO9ddtgoH836o6pq0eqb7Kqb7Oqb9vZ2+/tZhlTfCCGEGDGmabUJy54Fkz0bZulS1JYWSnp7isdjtRbTdYjH825WUynUvoGOokB9vd16zBwzBqOxEaOhAaOhgXR9Pem6OnS326ruMQxrLoyu49J1AjkVQGn0dAJdT/YsKQw9jW6k0XUDQzesNnEG6IaCYfRWP5mmg7TuYF1mBVkDWVJA//NvFHpmCWkGmmqiaqCpCpqmWmGOqlnhj8MKgFTNjaZ5cDhcqKqaE/r0vd53naqqw/L7wvoIfkoNelLpNPGkTjqau02GpibsAMcKc7oKhDzWZacjjqKk0FgL5loryTGwZ+tAbrhjmBppPUTKKEM3ytGpwDArMJRKK+TJasWmOapwOF05s3+G6/9DCCFG0uZ+fnEw5IyPECKP3++nubl5tA9j1KRSKbp62ilIUCP6U+mtZP7E+UVvz27tMalyEj/d46dW27WIVaXTFGmiubuZlJ7KmcHzwdoPuPyFy3P2pSoqtf5aGoINnL3T2ew/eX8A2mPtfNr6qV2p43a4h/lZbngevOExAMrrymiYWDfKRzP6XC4X1dXVOb8AG4Zhz77JbqE2UPVN39k3Un0jhBAiRzwOy5cXD2KWLYPEgCUNVgDjcFghTLG2V33DGZer+ByYzMf6esiqCsqetAMwkr8l9Z0rlGn7lk6n0NNRdL0bQ4+ip2Poegw9ncDQE+h6qmfJCoAME90AQwfdUHsWB4bhRO9Z6Im7TDK3FzsyA0j0LJF1fp6apmSFN46eZeCQp791hdYPJoQYreAnkk7TmdJJxzK3R1HMNjTa7Tk6DrUTp9aZVakT6Zm5E0NVdFyOdly0D3hMRkolGQ2QSAeJpAIkUkGS6SApvYy0UYZuVqCb5RhUglqBw9Eb6uTO/im+ToIfIcRw29zPLw6W/PUthBB9ZN597vP58Aww+FOI/mT/obNlxZacudOZeduk9BRrutdQ5i6z11V4Kjh4q4NZFVnF6shq1kTWkDbSrI6sZnVkNfF074mLN1e9yfH/Ot6+XumtpCHYQEPAWg6fcTizGq32YIl0gpSRIuAKjMCzXT8Mw+Dj1z8DYI9vzxnlo9lwqapKMBgkGAzmrB9K9U3f8Eaqb4QQYhNlmtDamh+8ZF/PCvn7pWlgGNY+C9F1a8kIhXrDlmJBTHV1/63IRln/c4WqCqwbHNM0wOwGM4Kpd2EYEYx0F3o60hMEZUKghLWkkxhGsicA0jF03QqAdHoDH9OJbrhyAiDrsivrshOT3uek61aIkUrpQOH5PsOlbzXPUIOgUtZl/24z0sFPLJ2mKxXF1FusxWgBowXFbEOlDZWekEfpwKF14tQiqIqBxxXG4+q/wsp6PIVk2m+HOYlUgEQ0SCQdJJHqXZLpIMmU3/7/zXwODxTolBr+SPAjhBCDI0GNEEL0IW3PxPrk1JyMDY3NWbfjmB3ZccyO9nXd0GmJttht1WbWz7RvM0yDCeUT7ACnLdZGW6yND9d+CMCu43a1g5oXl7zICY+cQMAVyAlzMpf3HL8n48vHj/yTXgcvPfAa6ZR1YufoSw4d5aPZ+AxUfZO9JBIJu/pm9erV9vYOhyOvdZpU3wghxEYgmYQVKwpXwWSux2ID70dRigcwGdkhTG1t/1UwY8ZAnzcWiHyKooISBIIoWkNp7eMKME0dzCiYETC6rI9mBIwImNZ102jvCYW6wIhg6N3oehwjHbdCICNttYLrCXT6BjuZdYbZfwCUv50L0+wNhQzDwDAMUiXMLFpXqqoOuhXcUCqHXC6r5RyUA40DHJXFNFNgtPYsVrhjpJsx9WZM3Qp5MFpRaUMxO1EUE7czgtsZAZoG2LdCMu3rCXSCJFNW1Y51OUgiHSAW671smqX/vlco+BlMhU/f9RL8CCE2dfIXtRAiTywW48ADDwTgySefxOtdl97KG59MUFNZWTnKRyKERVM16gJ11AXq2I7tcm47YPIBHDD5AEzTpDPRabdUy3z8Wt3X7G3XdlsTbyPJCItbF7O4dXHOvn530O/soOa5L5/j0hcuzQlzGoONdou1yZWTCbrX/0mVh2/+NwBVjRVUj1n3d6eK3OqbMWPG2Ouzq28ySyQSIZ1Ol1R9EwqF8Hq98ge1EEKsD6YJ7e3F25EtXQpN/Z+wHdRjgdW6rLGx/xCmoQHcm35b1o2Jomh24IPWUHibPtdV8k8eWYFPd1bIE7GDnUz4Y2Zdxui0g6DsbTCjOfs1TLVAhU+fkCcr2MkPgDzophfd8GKYbnTDnXWbo6eFnNozV6j3mWZCoXSxVnzDKLv6qpS5QL23udG0LVDVCfn3cao924OmdKEp7ahKO6rZimK2YurNdqDT+7ENRTFwO7txO7sJelcPeOy6ESBllJHSy0ilQyTSVogTT/qJJf3EEj5iCT/JVBDDdNhVRMP1uhUKdST4EWLDtbmfXxwsCWqEEHkMw+Cll16yL29ODMOQihqxUVIUhXJPOeWecqbVTCu4zbHbHcuh0w61K3NWdVmt1TJzcyZVTLK3Xda5jKUdS1nasbTgvn530O/45tRvAvD6itf50zt/sitzGoON1AfqaQhaoY5Lcw3LczQMg8/e+gKAeYfvOiz7FMUNV/VNpuJGqm+EEGIdpFKwcmXxlmRLl0J39/A9nt8/cBVMbS2oQ63rEBs7K/AJASEo1O2N/MCnkNzApwvNjKCZEZx2hU93VuDT1ScUaum9b5/ApxSmqeSFP73Bjx/dDGKYQXTTby2GD8PwopsedMNtVRSZrp7wx4FuaOi6FQDpOugGOfOKeh/XHNYAo38ONK0RTRtXIPhRUVUDTU2hqUlUJYGmxtCUKKrS1RP4hK3Qhw40NY6mplDVFJrajltbi8+ZQvWnrPVKKqc7oUkQU6nEoAKDCnSzgnQm5NFDJNIhUukg8WSAVForOg9I76nQM02TVCo1bBVWEvwIMfI25/OLQyF/JQshRJbMrIZMax8hNjV+l59JlZOYVDmp3+0O2foQZtTOsEKcTKATabIDnjHB3sqLj5s/5t+L/110X3/65p84cIr1LpoP137Ic189R32gPqdCx+/yD3jsz/zlRfS09cvdkRd/u5SnK4ZZseqbRCJhz7zpW33T1tZGW1tbzn78fn9e+zSpvhFCbNY6O4u3I1u6FFatGrjdWKmqqgYOYcrKNuh5MGLTMXyBT7pPhU9+9U5uhU8XihnBkVfhU0L7v0HxgBrAJIhBCN0s6wl/QuhmAN0MYBg+DNOHbnh7gh83Rk8lkG460HUNwzBzQp/M5WLrshVaV5gC+HqW6gG2LcREVdNoahJNSfYEOqneIMi+vAZVXdGzXQq3msKrKWguN5rmQXP4UDU/DmcA1RFC08qszxG1HEMpwzQ9Oc83O+DpG/IUWi/BjxBiQyVBjRBCZMmuppFfisTmrMJbwU5jdipp213G7cJV86/Kabm2OrKaVV2rSOpJavw19rb/XflffvHKL/L2EXKHaAg2cO3e17Lz2J0Bq6pncetiK9AJNvCv3z4FQO0W1ZTXlA3DsxTDxe1243a786pvIpEI4XA4J8RJJBJ0d3fT3d0t1TdCiM1DOm21HSsUxHz1lXV5OKphVNVqNVYofMlcbmwEaTsiNkGK4gClDCgbnsAne35PwcAnt82btX13gcAnDkYchRY0sg5NyTqgIsebe/BeUAI9ix/UYO91NQBKEEW1rpsEMBQ/huFH7wmADNPb0ypOGTDk6btuoNtNO0RWMHqqklIM/Cas0qWBtp6ll6roaJputXtTFTRNRdMcqJoTTXOhaR68Xm9eG7lCAYhpmnlL9vPMtMWT4EcIMZLkL18hhMiSede3tD0TonRbV2/N1tVb5603TZP2eDtBV2912qTKSRwx4wg7zGmKNNGV6CKcCBNOhHGovb+aPPvls1z6/KX29fY9wrhnupncOIkznziTH+74Q7vNWzgRJpaKUe2rRlNL+WtXjDRVVe3AJVsikbBDm0yA09XV1W/1TXblTTAYlOobIcSGpaurcBXMF19YH9euhXVt9+HxDFwFU1dnzY0RQgyZHfioxd8UVFrgk+oJfPq2bett82bmhEDZFUDdvdsT79lhrCf8aS7+mFmXVQrPFrIDH0cAXIGssKc3+MkEPr0hUACU8qzLfut16pEdZgw2BLKWOHo6hq7HMfQkejqFbqTRdaOnkkhBN1QMw4FhZj2uqWGk+/7ebwLJniVSwv9UabLnCmUWp9NpX1YUJWcpxDAMTNPM+dj39Uin03Z7qPUV/Ax1nQQ/Qgw/+S1OCCGyyHwaIYaPoihUeitz1u05fk/2HL9nzrpIMmLPyskOfPxOf2/7tdYmDE0nVh5lZWg5D328ghNmnmBv++BHD3Lp85fiUB3UBeqs1mqBRntuzsFTD6Yx2DiyT1iUxO12U1NTQ01Nb6VVdvVNdoCTXX3TlDUEO1N9kx3ehEIhNE1COiHEMNN1WL06vwpm8eLelmTRwc/GyBEKWWHLuHHFQ5jKSmlFJsRGRFGcPeFGefFtSthPb+DTVbC6ByPSE/j0rfDpc7lQ4FOkG1opTRZNxZdV3RNAU4JoSgBnT3UPWgDF2XO7EswKebJDIb/V+m4QDD2CnlqLnm5BT7VhpDtIpzrQ010Yehd6OoquR9HTcSsA6Zk51Dt7qGcWUc9Mot7bMpfd1namA8PoPbb1OVdIURRUVc1bskOgzMdMNVN2JZBhGHlLZpv1FfwMJfyR4EcICWqEEMIWj8eJxawS9fLy8tE9GCE2IwFXgMmVk5lcOTln/RHbHMER2xwBwEnbn8OnSxYT3NrHKX/+Hk2RJras2NLetjPeiaqopI00K8MrWRleydu8bd8+u3G2HdTc+e6d3PTGTTQEGuwgJ3O5PlDPdnXbEXTLjKr1qZTqm1Jn32QHOKFQCI/HI3/0CSGK6+7ObUe2eDF8+iksWWKFMG1tQ6+GURQrYBk7FiZMyG1Blvk4Zgz4h7NFkBBiUzJ8gU+yT4VP3zCnUIVPgYogEj07jFoLDFPgk129kxvsKH0uO9QgDnc5eMf2G/iYZgz0FjBawWjpWVoxjWbQV9vXMVr+n73zjpOkLND/t3JVp5nZvEtclpwkIyKyCCeIyHl6ZwKzKMchcvzEAB4mUE+C4CmCeqJivOP0jiCoRBFFMgKC5LhhNkzo7uqu+P7+qK4OM90zPWlndvf9fj716UpdXT2hw/vU8zzJcxx1f4U41olEQ+RpiDo2kZhHzDwi0UskCkkHUZyr9Q3ZRMKuiT8aUTS+66jxuI0+ok1BswjU7jNzu1i4dP1MCD9Tdf2k66XwI9kckULNHGflypXst99+XHrppbN9KhPi9ttv56ijjmJgYEAOeG+mZDKZ2T6FTU464FcoFDAMY5bPRiKRpPiez0uPrMaJs7z7+LfzD3v8w6h9/vWwf+Vjh36MdeV1rCquqseqpZ052/VsV9/3leIrrCuvY115HX9Z+5dRx7ruXddx4LIDAfjfJ/6X//7rf7eIOUtziaCzLL+MglWQXwBmkG7cN+nk+35b941hGC29N6kDR7pvJJKtgDhOYsdeeCGZnngimZ59NhFh1q+HyiSLw3UdFixIOl+WL28IMc0izNKlID9TSiSSOYCimKCYoHZOjuhe8GkWeUa7fURLjFt7USiJJqNJ8OmfouCTrbl3cm37e1CyieCjLkDRloPV6vARGCBclHigLt4o8QaUeD1avB6iDQ1hRwx1cUbNaKDOA3U+qAvqt4rWmBfKPGIWJGJPJLqKjBtveaz1zcRTjeacIM3fnRr9RjMr/ExH148UfibP1ji+OFmkUCORSEaRzWYpT0eh6WaEEIJVq1YB4DgOQgj5JiyRzDK+H3Dd5b/h99fcjYiTD/H/eNYJHffXVT0RUvJLxzzuxw75GG/Z/S11Ead+W5vfprBNfd9H+x/ltudu63is6999PQcsPQCAO56/gz++9EeW5peyLL+MJbklLM0tZX5mPqqiTuSpd00UR/z5lT/TX+5nUXYRh25z6Bbf0TNR900QBG3dN7lcbpSAMxn3jRCCDRs24HkelmUxf/58+f4hkaT4Plx+edLVsmIFnHYamOb0Hb9SgZdeSoSXRx5piDCvvALr1sHw8OTcMJYF8+c3RJidd4btt2+IMNtum2xXZ+a1XSKRSOYqieAzLxEeOu3TxXFGCz6lUe4d0Szs1Lt9RvT51AWfcjJNi+DTxuGjbw/KnjUxyKntHIMSgvBrkXI10SoeBLEhcfOIQSCCeF0yjXE+Sa+Qiq72tQg6mPNR1AWgpUJPum1e4riaIKkrpp2gE4YBkfcEcThEJPJEyg61nqCIKAqJ/FeIogpxbBPRV+sRGlswahZj0sffFEy38AO0iDnprWEY9b6iiQg/W9pFY52+E2UyGV544QU8z6NSqZDJZOR3pTGQQo1EImnL6tWrufLKK/noRz/K0qVjD3pu7qxevZrHHnuMajXJ7V27di233HILe+211xb/3CWSucp3Pnk1//P164mj1gG2q79wDR/52numdOweu4ceu4e9F+097r5v2+Nt7Dxv5xYxZ1VxFauLqxmsDrb03vz+hd/z7fu+PeoYhmawJLeEq//hanadvyuQCEDPDTxXd+gsyi7C0Cb2RevXT/2ac285l2cGniESEZqisaJvBRccfQHH73L8hI61JTBR902pVKJUKk3JfTPy/QPAtm35/iGRAHzyk3DJJUnHS8onPgFnnQVf+9r49xciEVuefBIefhj++tdEhHnppcQlMzSUCEETJZNJRJYlSxIXzG67JSJScxTZCCFYIpFIJNPLzAo+Yzl8RjiA6g6f2mB+XfBZ21Hw6e4JpoLPTqA6gAGKVntWAkQE+CCqNZGndi7ENUfPhtbn2en5K72gNYs3C1FSgadF2JmX/MyhHnGmqmpLkoio/gYxfAFoayD96KsuQSmcm2wfvgDiNY0Hr21T7GPH/FGkPTndOH0muy5dnml3UNpT5HnetBxPVdW6WycVb0aKPKkQZJpmy/JcEn46fSdatmwZq1atYtWqVdx0000cd9xxLFu2TH5XGgMp1Gxm3HDDDbz73e/m8ssv56STThpz3+9973tcfPHFPPfcc+y4446cccYZnHbaaQB88IMf5L777uPee+/Fsix83+fQQw9ln3324Uc/+hHPP/88y5cv52c/+xnf+MY3eOCBB9h555351re+xZFHHtn1+d5///186lOf4q9//Sv77bcfV111Fbvttlt9+7e//W0uuugiXnrpJZYvX85nP/tZ3vOexgCcoihcccUVXHfdddx6663ssMMOfP/732fhwoV8+MMf5t577+VVr3oVV199NStWrOj6uJLxWb16NV/4whc48cQTt+gX0NWrV3P//fePWl+tVrn//vs58MADt+jnL5HMRb7zyav574uubbstXT9VsaZb9li4B3ss3KPttkpQwdKt+vKrt301XuS1iDr95X6CKOCloZcoWI2Bv189/qsWUUdRFBZlF9Vj1b501Jfqzp41pTVUwypLckuwdRtIRJqTf3kyXuSR0TNoqkYURzy58UlO/uXJ/PitP94qxZqRtHPfCCHq7ptisdi1+6ZZuCkUCgwMDPDAAw+Mekz5/iGRkIg0F144en0UNdZ/8Yvw2GPw0EOJCPP00w0RZmAgcctM5KpbRUm6XubNS0SYHXaAXXeF3XdPBJlttkkcMpY17qEkEolEsnkwM4JPsa3wI0Y6f0b294gSowUfYEragQnoNZGndjAR0ugKGoRwEHi68Vw6PUelp+HSqYk4Sk3gEdGLUP7O6DvFaxGDH2t/wHgtYvAM6P3GmGKNqqqoqoquz/wQdLNTaDqFoDAMR22bDmdQKmJNF80iXPOUCjntHD6p8JOKQelkGEZXcW9jjak9++yzQFIz8LOf/YxDDjmEefPmye9KY6CITeU5k0yK5o6an/70p5x66qn89Kc/5YQTOke/APzkJz/h7LPP5pvf/Cb7778/Dz74IKeccgqXXHIJ73vf+yiVSrzqVa/ixBNP5Otf/zpnn30211xzDQ8//DCFQqEu1Gy77bZceuml7LnnnlxyySX84he/4LnnnmP+/PljPn7aUXPooYfy7//+7yxcuJBTTz2VKIq46667APjVr37FO97xDi699FKOOeYYrr/+ej75yU/yu9/9jqOOOgpIXmS22WYbLrnkEvbbbz8+9alP8dBDD7HTTjvxyU9+ku23354PfvCD9Pb2cuONN3Z93PEYHh6mp6eHoaGhUdEqWwPVapVjjjmGu+66iz/+8Y8cdthhs31KM4IQgltuuaVF9R+JbdscffTR0popkWwifD/gzdmTRzlpmlFUhQtv+RzzFvdSWJAn25tF1+emdTyIAta561hdXM1+S/arx5L95wP/ybVPXsvq4mrWltcSRK2W/Ac/+iCLc4sB+NIdX6qLOr12L0tyS3hozUMU/SKO7pAxMvVoNSEEw/4wu83fjXtPuXeLj0GbTqIoqrtvmgUcfzJX7CPfPyRbMb6fuFamswRZVRMRprc3EWG23x522QX23jsRY7bbDhYtklFkEolEIplVhPBHOXoY0dkjRBHickcHUIvgM+dREmfNwltRlK3re4cQo7uEuhV9Rk7tnEHplEbVzSbp95lUuGkWgSqVypjn5/s+n/3sZ3n88ce58MIL2X333YGt77tSt+PMUqiZ46RCzS677MK5557L//3f/3XlaNl555350pe+xLve9a76uvPPP59f//rX/PGPfwTgT3/6E0ceeSSf/vSn+cpXvsJtt93Ga1/7WoC6UPPVr36VT33qU0Bi8Vu+fDkf+9jH+OQnPznm46dCzc0338zRRx8NwK9//Wve9KY3UalUsG2bww8/nL322ovvfKeh2r/97W+nXC5zww03AMmLwWc/+1m+9KUvAXD33Xdz2GGH8Z//+Z988IMfBODnP/85H/jAB6jUikC7Oe5IPM9rsS4ODw+z3XbbbXVCzerVq1m9ejWVSqX+t/DNb36zLtQsXbp0i1K8169fz9133z3ufosXL2b+/PlkMpn6tCmuBpFItkb+59LrueKsH07qvoqioKgKqqai6SqarqEbOrqpY1g6pm1g2iaWY2Fnk8nJ2dg5m0zBIVvIkO3JkOvNkuvLkp+XIz8vR2FeDidnY9rmjHyQjEXMBncDq0urWVNaw6riKt6z73vqIsvnbvscP37kx1SC5H3Oj3w2VjbWn/PCzMKWDpwgCvAij5tOvonXbPeaaT/frYE4jus5ykNDQ/T397Nhw4YJX/H26le/mgULFszQWUokc4j+frj2Wrj9drj5Zli7tvv7aho4DvT1JWLL9tsnUWR77QX77gs77QQ9PYljRiKRSCSSLZxkmNZv79gZ6fAZ1fFTHCH4hJvknJW+q1GsQzfJY22NNItC7YSftIsnnUaKQGEYttxvpAg0E2JQmlLg+359XPnUU0+tpyzNmzeP448/fqv5rtStUCNHGjcDrrnmGvr7+7nrrrs4+OCDx92/XC7zzDPP8KEPfYhTTjmlvj4MQ3p6eurLhx12GJ/4xCf40pe+xKc+9an6wHwzzU4KXdc56KCDePzxx7s+93333bc+nw7w9/f3s/322/P444/zkY98pGX/ww8/nMsuu6zjMRYvTq4u3meffVrWVatVhoeHKRQKXR+3ma985St84Qtf6Pp5balceeWVo34Op59+en3+c5/7HJ///Oc38VnNHN3miq5du5a1IwYcDMNoEW4ymQyO49Rvt7RiOIlkU7HqmQkM7o1ACIGIBHEUE07OBDE+Ss2+r6lomopmaOiGhm4aiRhkmZiOURODTOysjZNLpkzBIVPIkOvJkO3NkOvLke/LUpifx8k77JRZwR59e6Abeosg9IWjvsDnV36eol9kVXEV//3Yf3P+nedjqRYxcYtI4wYuhmYQiYj+cv8M/RA2b8IwpFqttkyVSqVlebpyp6frOBLJnCGO4Y9/hBtvhLvvhr/9LRFpJlPU+0//BD/4QeK+kUgkEolEAqTuBQs0C+icZtPp8gUhIog3IqJ+iFdB+HJyG62FeF2tA2cwEXWmVMTTRLxueo4jaYuiKJushyaOY4IgwPf9+tRJCCqXy5RKpbbHuemmm/jZz37Wsu6KK66oz7/rXe+qX9gvaSCFms2A/fffnwceeIDvf//7HHTQQeNezZv+k3z3u9/l0ENbFe3mf+o4jrnrrrvQNI2nn36amaC5mCw974lejdruGNNx3GY+85nPcNZZZ9WXU0fN1sZHP/pRTjzxxDEdNVsSVpcZ5enzdl0X13Xrb05DQ0MMDQ21vY9t2y3iTfNk2/ZWY++USCbKshWLu9rv1Evex4mnHUtxY4mhDUVKG0sUB8qUBsqUBsuUh13coQrusEul5FEpVai6Hl7Zw6v4+FWfwAvwvZDQDwmDkCiIiKM4meIOVxQJ6vuEAJVpe+otKKqCpqmomoZmqOiGjmHqGJbBwDbrESshiEM0dIpuCUVRiNSIiuKCAgYGL/zhFe5+5n7yfVmyPVmsjImdsbAyFpZjos3RuLjJIoQgCIKO4ks6BV0OKCuKgm3b2LaN4zj1edu28X2fRx99dNxjdPs+I5HMSdavh+uvh9tugwcfhBdegOHhzvurauKKyWSSrpnxeM1rpEgjkUgkEkmXCBHURJZ+iNZBvA5RF1/W1db1J/tMRIBRcjX3zRRQF07t/pI5g6qqWJbV1feYsVJqjjvuOA455JAxHTXyu9JopFCzGbBixQouvvhiVq5ciaZpfPOb3xxz/8WLF7Ns2TKeffZZTjrppI77XXjhhTzxxBPccccdHHvssVx11VV84AMfaNnn7rvv5nWvex2QXIF6//33tzgspsIee+zBXXfdxfve9776urvuuos999xzkx+32xehLZ002qxcLtfX7bfffhxwwAGzeFYzx/z587Fte9yOmgMOOKBFWAmCgEqlUhduXNdtWY6iqD4g2A5FUUYJOM3Lpjkz8UoSyebAm087lu+cffWYHTWqpvLm047FMA3mLelj3pK+GTmXOI7xKj7lIZfixlJ9Kg2WKQ+WKdWEILdYoVKsUC17VMtVqmUfr+rhVwICL5kSMSgiDCPiMBF6xrKXi1gQxhEEEYx4KREvCqy9Hdz5JTQvRkmvp1MEWCB0QRAHXPi/l7DLzfug+8boBwBQaBKDEmdQKgaZtolpG4mok0mdQRaZvIOTd8j2NGLiUiHIziYikJ0xMR2zLgip09AZIYTA87yOAky6rtuLNjRNayvANK8b67VYCMHTTz897vvHeJ1+EsmcII7h3nvhhhvgT39KXDJr1yZdM52wbVi2DPbcEw4/HN785iSqDLrrqNE0OO206X0eEolEIpFshgjhQdTfJLj0I5rmE/FlHcQDQLfxVAqo8xMBRV0I2iJQF6LU5xeBVtuGhlh3FMRrJ3D85sdZAuZBE7yfZEtgrDG1efPmMW/evJZty5cvZ+eddwbkd6VOSKFmM2HXXXfltttuY+XKlei6zqWXXjrm/l/4whc444wz6Onp4bjjjsPzPO677z4GBgY466yzePDBBznvvPO45pprOPzww7nkkkv4+Mc/zpFHHslOO+1UP863vvUtdtllF/bYYw++/vWvMzAwUO+GmSpnn302b3/729l///055phjuO666/jlL3/JzTffPCePK9nyUBSFvfbai/vvv7/jPnvttdeogTrDMDAMo22upBAC3/dHiTfNgo4Qor7cDk3TxhRymh1lEsmWhmkavO1fT+C/L7q24z5v+9cTMM2Z/z9QVRUna+NkbRYsmzftxxdC4Fd9PNenWq5SGqpQ3FikNFCmOFCiNJA4g8pDiRBUKVWplqpUy1Xsl1V+N/9aIjtCD3WIQSigCBUlBDXQWLf7KorLBtjt1/vTs6rN+QuIwpgojAm8mSssVVQFTdeSziCzSQyyDEwnEXVM28Cw9WRydHRLR7c1NEutT7qtY1gauqmjWxq6lXQP6ZaOZqgtrtuxBBjbttF1fUqC+GTfPySSWWdgIBFkbrklcck8/3zikukkHCtK4pJZvhwOOgiOOQaOOw5yuc6PYZpw1llw4YWd9znrrGQ/iUQikUi2UERcbhFfiGsCTIsosw5E+5SO9migLqiJL4sT8SUVXJrFF3UBijKBId/CuYjBM0gC1SYgBgFK4RwUZcty6ku6o5vvRJ2Q35XaI4WazYjddtuNW2+9te6sufjiizvu++EPf5hMJsOFF17I2WefTTabZZ999uHMM8+kWq1y8skn8/73v583v/nNAHzkIx/hhhtu4D3veQ+///3v68f56le/yle/+lUeeughdt55Z6699tppK3p6y1vewmWXXcZFF13Exz/+cZYvX85VV13FypUr5+Rxt1aWLFky26cwoyxdupQDDzyQxx57rEXpt22bvfbaa8Jxb4qi1B1afX2jr/IXQlCtVju6carVKlEUUSqVOmZ9pv047WLVZD+OZEvgI197DwD/8/XrW5w1qqbytn89ob59c0dRFCzHwnIsCvPzLJrg/X/91K8595ZzeWbgGSIRoSkae83bk/Nffz6Ls4v5l1//Cy8Ovcgruz7BP73qTN61w0lUytUkHm6gTHGgTHmoTHmoFhNXrOCWKlRLiTPIq/h4lcQZ5Hs+QT0mLiKqOYO6KZ0UsUju54d47fXpaUHVVXS9JuSYOqZlYNgGlm1i1mLfRnYGNTuDnJxddwGlziArY7XM60bjo/N0v39IJNNKHCdCzA03JJ0yjz8Oa9aM7ZKxLFi6FPbYo+GSaeqKnBBf+1pye8klrc4aTUtEmnS7RCKRSCSbEUKIpNsl7m8RXEQ6X48fWweiPP4B65h110siwixEUUc4X9RFoPahKFN3q49EsY+F3m8ghi+AeE1jg7oEzAOg+uvRd1KXJCKNfey0n49k82Hp0qVst912vDQi9ta2bZYtW8ZTTz1VX9fX1ye/K42DIrr5hi3Z6nj++edZvnw5Dz74IPvtt99sn84mZ3h4mJ6eHoaGhtq6JrZ0yuUyudqVkqVSiWw2O8tnNPMIIdiwYQOe52FZFvPnz58VdT+KIiqVSkc3jj/WAEsNy7I6unFs256WGCKJZFPg+wHXXf4bVj2zlmUrFvPm047dJE6azYkojvjzK3+mv9zPouwiDt3mUDQ1EWuLXpHP3vpZ/vuv/833//77HLfzcdP2uKl7sFwqMzQwTHGwyPBAMpWHywwPJo4gd8jFK/t4bkBQCfDT22pAUA0J/YjQi4iCiCiIicO43hUUhTGiU1fQLKEoSlNMnIFh6Ri2gW4mDh8na5PryeHkbTI5m0whkwhCvRmy+Uw9Eq6dCNQcGycFd8mEGB5uuGQeeCBxyQwOju2S6e1NXDIHHACvfz286U0wE595fR8uvxyeeQZWrEjizqSTRiKRSCRzDCFiEIMN8SVaB/HamgOm5n5Ju2Hwuj+wkhkRP7aoFj82wgWj9MwJd4EQEfj3Jc9XXQjmQSiKhqj8EjF0LhCBthPkz0axVkonjQSAhx56iJdffpltttmGRYsWtYypPfPMM/W4s+eff57tt99+Tvytb2q6HWeWQo2kLVKo2bqFGsncJQzDjm6cSqVCGIZj3j/tx+nkxrEsa6t805RItmQeWvMQ+y3Zr768uriaJbklHf/X4ziu98F06oSZSB+Mruvj9sEYhtH2fNKeoGrZw3O9ltuq61EecpPOoCGX8mAZt1jFHXaplKpUylW82n6e6xNUfXwvIPBCAj9MxKFwAkWrmxBVU9FNvRYTp7d0BiXOIAs7Z5PJO2QKyZQtZBKHVsas7zfWvGnLPrTNDiHgL3+B66+Hu+5KXDKrV4M3xoCRZcHixYlL5jWvgRNOgP32A3nRhkQikUi2AoSIIN7QEFlqbhdRn0/XrwfG/i7dglKoO18Sp0saQbaoxRmjqGNEhW5mCO8uxODHQJRA2wml77so+nazfVqSOcAdd9xBsVjkoIMOGpXKs2bNGu677z76+vo4/PDDZ+kMZ59ux5ll9NlmSm6MXOgbb7yRI444YkYf/9RTT+XHP/5x220nn3wyV1xxxYw+vkSytaLrOoVCoWM/ThAEYwo5cRzXlzds2DDqGKqqtnXiyH4ciWTzpVmkWTW0iqOvPppDlxzKpw74FEZstIgvlUoFb6xB3xGYptlVH8xkae4JmgmEEARekAg/5SrVWl9Q2htUdX0qpQrucJXyYInSkEtlOI2Jq3UGuYl45Fd8vEpAUPUJ/EQMCoNw4p2sQBzF+BUfvzK+i3Iq6IaGbiXOINMysRyj4e7JWklMXN4hW3Bwck4iENW2W7U4OWscQUg3ptYHtNVSKsGvf524ZO6/H557LumXGcsl09MDO+6YCDFHH524ZNrEsEokEolEsrkjhJ+IKy3iS38jdqzugtkAdHdxEQBKX0Noqd0qTfPpekWZmc+mcxnFOhzm/QwxcApEzyI2vh36voNi7DPbpyaZRdLofoCenp5ZPpvNH+mo2Ux5+umnO27bZpttcBxnRh+/v7+f4eHhttsKhQKLFk00aX9uIR01ki2RtB+nU6xapVIZ9xhpSXcnMUfG9Ugks4MQgjAMOzpg0nV/WPcHrnjxCmJi5hnz+Oh2H2X33O6jjqcoyijxZaQAY1mW/J/vgsAPWoSfarna1iFUKVUTZ9Bw2hnkUil7VEsVqmWfqltN+oKqfhId5weEftTS4zQXUVSl5gwyMG0jiX9zap1BObveG5QpODhZe4TQM1oQajvvmGj6Zvy3+NhjcN11iUvmsccSl0xT79EoTDNxyey+e+KSeeMb4eCDpUtGIpFIJJs9QlRae16idYi66yWNH+tPYsq6RgV1QZMDJnG+KE1umESImY+iyHjO8RDRGsTARyB8AhQHpefrKPbrZ/u0JLPE4OAgf/jDHzBNk7/7u78bdYGWdNQkyOgziWQKbO1CTbVa5T3vScq6r776amx767taZGskjuNRDpxmMafbfpxOsWqO48h+HIlkEqR9MGMJMNVqlSjqLsbrucpzXPHyFfR7/aiKysm7nMyp+51KPpNvEWGkC2LzIAqjuqsnFX4q7aLiajFwbtHFHa7iDpWplKq4pQqVkld3EvkVH6/qE1SDekTc5oCmqzUxyMR0DCynJvbUnUGJM6u96DN2b1A6b9rG1N7HXBduugluvhnuuw+efTZxyYwVI9jTA9tvD/vv3+iSWbBg8ucgkUgkEskmRggBotwUM5YILiLtg4nXNbphRHECRzYSAaYuviyuiS8LWxwxiQCzGV/QMQcRcQkx+HHw7wRUlMK/oWROmu3TkswCL7zwAo888ggLFy7k0EMPHbX9+eef5+STT8YwDG688catdnxRCjUSyRTY2oWacrlcj9crlUpks9lZPiPJXCAMw45uHNd1u+rHsW27oxtHDgxLtkbiOG7b/zJSlOn245phGB0dMOlkGAbloMy/3fpv/OKxXwCw/9L9+dbx32LH3h1n8NlKNkfSnqBmwae5J6i9O6iSOITSvqBipUUs8mqxbkGtM2hzwrB0jOaYOMesu4KcnI2VtbAdk0XeRnZ55TG2Wf00vetfxhneiBb4tHuXEwC6gVi4ELH7bqiHHYZy/PFw2GHSJSORSCSSOUsiwAw1RJaaECOa5uvOGDF+ekMDu8X5glaLH2vuf9EWgtKLosj3ydlCiAAx/DmoXJOsyH4YJfcJ+TvZyvjLX/7Ciy++yIoVK9hjjz1GbX/22WdZsWIFsHWPL0qhRiKZAlKokUKNZGKk/ThjCTnjFY+rqjpKvGle7lQ2LpHMVdIosrEEmIn0wViWNaYA4zjOhKPIrvvbdZz9u7MZ9ob5wH4f4IKjL5jo05RIpkRLT9AoF9Do3qBGjFwSF+cWK23FIL/i12PiRDxzX3d0EXIg/RzEWnZlgGWUyOPT6T9RAC46/WR4hl4eYgF3s4yhpqx7RVWSmDg7iYmzMhZOzsLO2thZqxEN5zQ7f8buCho5bzlJf5BEIpFIJCMRIoZ444i+l/7WCLL0lgn06SnZpqixNH6sufulJsYoefm9bzNBCAHlbyNKlyYr7Dei9HwNRbFm9bwkm44777yToaEhDjjgAJYtWzZquxRqErodZ5afziUSiUQyZRRFwTRNTNNsWyAnhMDzvI6xatVqlTiOKZfLlMvlto+h63pbJ066biqF5RLJREiFyU59MOkUBEFXx1NVtW0fTLMgY1nWjEQHvnm3N3PgsgO56I8Xce7rzp3240sk46EoShJXZpsU5udn5DHa9QSNEn46OYRcj0q5ijtcIbt+NbuveZwVxRfZxtvIvKiMRdTWJQMQojCIxcvkeZx53MsSHmU+YpwrTUUs8Fwfz/WZSADMRFF1Fcs26+KN0yQEtYg7zti9Qe0EIdMxsTMmpmPKLiuJRCKZIwgRQry+JYJsdPxYP8QbgAlEnyo9TTFjSeSY0hI/lmxT1MyMPTfJ7KAoCuROA20ZYuhcqN6Y/E31XY6i9s326UlmmDiOKRaTT6vtxoEkE0eOakkkEolkxmkuJp83b96o7Wn8Uyc3jud5hGHI8PAww8PDbR/DNM2OsWqyH0fSLamoOF4fzHgOsRRN0zq6X9J50zRn9arBZfllXHLsJfXlWMSc9ZuzeMde7+Cw7Q6btfOSSKYLwzQwTINcb5dX8Pl+0iPz29/Co/fC00/Dhg3QoQdKAORyRMu2Idh1D0r7H8zAwUdQzvbWBZ++ssfrXI9DRjiGvEpDQKrU3EHVUrLsucn2mYqHi8M4cSOVqjNy/BTD0rGcmvMnO1roScSg0b1BbferC0etApFpz+7rqEQikcwmQvht4sf6W7tf4nWJS4ZuXaYKqPNG9L3UBJjU+VKbl+4JieK8BdTFiMHTIbgfseGd0PddFH372T41yQxSKpWI47h+Ua1k6kihRiKRSCSzjqqqdVGlHVEUdXTjVCoVgiDA931832dwcLDtMZr7cUYKOrZtywGerYAoisbtg/E8r+s+GNM0xxRg0j6YzY2f/OUn/Ndj/8V///W/Of3g0/nEaz6BoW1+z0Mi6YoXXoBrr4U77oBHHoFXXoEOzk4AdB0WLIBdd4VDD4XjjkN53etA19FJvlw5wMJpPMWRPUEjO4La9QQl22qOIbda31YpVamUPaqlat0x5LkTiK2ZBIEXEnghpcExfq5TRFGUuounEQfXZr6NINS8XzsRqHleN3T5eUEikWwyROw2iS+J4CJaxJeaM0YMTeCoGqjzW/te1IWNCLL6uvkoivz8J+kexToM5v0cMfBhiJ5DbHw79F6JYr5qtk9NMkMMDSWvPYVCQX4+miakUCORSCSSOY+maeTzefL59rE4QRB0dOOk/TjpQPzGjRtH3b+5H6ddtJrsx5n7pFFkY/XB+H73g5HjCTC2bW+xcT5v3eOtPLz2YX76yE/5j3v+g9+/+HsuP/5ylvctn+1Tk0gmTxjCrbfCb34D99wDTz0F69d3dMkAkM3CdtvBPvvAypVwwgmw/aa/MlRVVZysjZO1p1cBqjFmT1Cb3qDmnqBq2cOrjL5PpVQTh2rLcdSdC3Eqz8Fzk3NgBgPjVE3t3PszQhBqFYqSOLiOLqER81vq+4tEIql1eohiS/xYEkG2trX7Je4HMRGB26iJL42+F0Vd3NT9krpg+lAU+RojmRkUYxeY/1+IgY9C+FfExvdA7yUo9jGzfWqSGSAVamTs2fShiG4vG5VItiK6LXnaUimXy+RyOWDrLvuSbBkIIfB9v6OQU6lUxnVQaJrW1omTTrIfZ+ZIf39jCTDVapUw7C4aaGQfTDsBZqb6YDY3bnjyBj7xu08wVB0iY2Q4//Xn84693iFFS8nc5+WXGy6Zv/wFXnppbJeMpiUumV12gUMOgTe8AY46Ckxz053zFk4YhF0IPyP7g5rEonb9QeWkP6ha9gj9mYmHmy0MUx+zA8hqJwg547iJRsybtiHf6ySSaSQRYAYabpcoEVtE03xdnMHr/sCK0xIzNjp+rCbOKD3yM5pkziDiEmLw4+DfCSgo+c+iZN8z26clmWb++Mc/snHjRvbbbz+23Xbbtvs8++yzrFixAti6xxe7HWeWQo1E0oatXagRQuC6LgCZTEZ+4JNs0TT344yMVUv7ccbDNM22vTjprbwytj1xHON5XkfxZaJ9MLqutxVemgUZ6Y6aGKuLq/n4TR/nDy/+AYDTDj6Nz77us7N8VhJJjTCE3/8ebroJ/vxnePLJxCUzlnCbycC22yYumSOPTFwyy6VbbHMnCqN6308n4aedUJTGv1XbCEfN9/MqMxsPN1s0xJ1WR0+LIOQ0HEEdHURjzBumjIuTbN4IEUG8YVTfi4hqwktdiFkPBN0fWMmPiBpL48daRRmUrPwfkmyWCBEihj8Plf9KVmQ+iJL/JIoiLxLYEhBCcNNNNxFFEUceeWTH9JPVq1dz11130dvby9FHH73Vvp51O84sLwGWSCSjUBRlq1W5JVsf3fTjtOvFSeeb+3FS6+9I0n6cdrFqW2o/TtoH006ASdd1I4KlWJY1bhyZdDZNP0vzS/n5P/6cK+67gkv+dAlv2f0ts31Kkq2VVavg+uvh9tvh4YfhxRehVOq8v6bB/PmwYgUcfDAceywcc4x0yWyhaLpGJu+QyTszcvw4jvGrQUO46RAN5zX1Bo3sCRopII3cfzaun/QqfiJCbZi5x1BVpX0fULM45JgjHEHju4lGzmu6vChGMjGE8BMBpklwEXXnS7MLZgMwgfhGpbcmvixqiiBb1Bo/pi1EUWbm9UoimSsoig6FL4G2LaJ0CbjfR0SroPdrKIo926cnmSLlcpkoilBVdczxQ0VR6t/dt8Rxj+lGjmhIJBKJRDIGmqaRy+XqcYAjCYKgrRMnXddcYN8ORVE6unEymQymac6pDzRCCMIwHFOAqVarBEF3VxSmH9zGiyOT8Syzh6qonHbwabxr73fR5/TV1//ppT9x0LKDMDRZNCuZRuIY/vAHuPFGuPvuxCXT3z+2S8ZxEpfM3nvDa18Lb35zEmMmkUwTqpp009gZa2Z7gjoKPm3EoJoQ1KknaORxonCMPqYZJI4FlVKVSqn956DpQje09oJQrRuoLu44zULPOG6iUVFzpvw8shkgRLXF+ULUjxjRB0PUn8SUdY0K6vxRfS9K3Q2TCjELUBR5QYBEkqIoCuROBW0bxNCnwbsJsbEf+i5HUefN9ulJpkB6kWqhUJDvjdOIFGokEskoPM/jox/9KABXXnkllmXN8hlJJHMXwzAwDKOtfXVkP047Z04aNZjGDY4k7cdp58ZxHAfDmL5BciFEPYpsrE6YaKzy7RHn3k0fzFwSoiSdaRZpHln7CO/8n3ey+4Ldufz4y1kxb8Usnplks6W/H667Dm67reGSGR7uvL+qJi6ZnXZKXDJ/93dJn4wtr8qUbN4oioJpm5i2SWFe++iQqdKpJ2ikuNO2J2ikENTmfoE3gcinGXl+EeGQS3mo/eep6cK0jbqAY9ZEoFGijzNSABotCI01b1gyprUdIi6NiB/rrzlg1jW6X+J+EMUJHFUHdUFL34sywvmSrJ+XuAMkEsmkUJw3g7oIMfgvEDyA2PBO6Pseir79bJ+aZJKkQk1PT8+Y+3mex9e//nUsy+JXv/qVHF8cB9lRI5G0YWvvqCmXy3X3wNZc9iWRzDRCiHo/Tjsxp5MLpxnDMNo6cUb246RdPGMJMNVqtevoFcMwxhRgHMdB12Uu/ZbKHc/fwT/f8M8MVgdxDIcvrvwi797n3fL3LWlPHCfumF//Orl94olEpBnLeec4sGwZ7LVX4pI58UTYbbdNd84SiWRCRFGE5/pNYk6bnqB2/T8jeoJGx8il8XETKF+fBtL3M4GATTxioihKixOoYwdQG0Gom94gO2NiOia6Mfuf04QQIIaaYsaSyDERr4N4basLRkxEhLOaRJY0fmwhqIsbjhhtESi9si9DItmEiPBpxMZTIH4FlD6UvitRzP1m+7Qkk+Duu+9m/fr17Lvvvmy/fWfB7dlnn2XFiuSivq15fLHbcWYp1EgkbZBCjRRqJJK5QNqP0ylazffHLzeuDzRM4O0+7YPpJMDYtl0XgCRbL2tKazjjxjP4w4t/AOCNO7+Ri95wUYvzRrIVsnFj4pK59VZ46CF44YXEJdPpNUhVoa8vcckcdBAcfTS88Y3QoTdMIpFsnTT3BI3V99Mx/q1NT5A34jaON93QiKIqLZ/REsFikz08AKqmdo55GyEItQo9HfZrmjdtHcuuYNmDaMr6uuDSNoKM8T/P1lGyNbdLTWhRFzbFjy1sdMMo+VkXoSQSSXtEtA4x8BEIHwMslN6LUew3zPZpSSaAEILf/va3BEHAEUccMaarRgo1Cd2OM0vvpkQikUgkcxRVVTFNkziOieO4vk7XdUzTrIs4Y0WRjSfQpM4Yx3HI5XLk83lyuRyO48hYMsmYLMkt4ef/+HOuvO9KvnrXV7nx6Rt5YM0DfOO4b3DEDkfM9ulJZpo4hvvvhxtugD/+MXHJrF0LYwnItg1Ll8KeeyYumRNOSHplJBKJZBxaeoJmACEEgR+2FX4qbZ0+jZ6gxPEzvoAUBo3PayIWiVtnhlBUBVVVIP0cJ5LnGEdxfZ84inGLFdxiZcbOA8AwYywnxnJE7TbGduLENWQvS9ZnNOyMjZVxsDJZrGweO1vAyvZiZ+dhZedjZRdi53qaeoYaApFpGbIjQSLZTFC0hTDvx4ihfwXvdsTgxyB/Dkr2fbN9apIuqVQqBEGAoigdu3wlk0MKNRKJRCKRzAJp7Nl4cWSpQDMeuq6Pcr+k/TVCCMIwxPf9ujunUqkQxzFBEBAEAcVikf7+/pZjqqraMVYtk8lMaz+OZPNEVVT++eB/5rXbv5bTfn0az2x8hsfWPSaFmi2NwcFEkLnlFnjwQXj+eRga6uySUZTEJbN8ORxwABxzDBx/PMgvchKJZI6iKAqmZWBaxoz2BI0UfsZyAXk1IahdT9DobqHWniARC6IZdAgpqkBVBUqTFgSJhi9ihThurAx8lcBXKQ11c+QQGKpNEyMVcEb2/rS4gByrjYuocR+zjQjUPG+Ysx8XJ5FsCShqFnovRwx/CSo/QxQvQESvoOQ/haLI5Ia5TtpPk8/nZdLGNCOFGolEIpFIppkoisYVYDzP6zqOzDTNMftgmkWZbmnuxxkZrZY6deI4plQqUSqV2h7DMIy2vTjpvPzQtvWwz+J9+O3Jv+Unj/yED+7/wfr6KI7QVPl3sNkQx0lc2fXXw5/+BI8/DmvWgDdGN4RlwZIliUvm8MPhTW+CffdNIs0kEolEUkc3dPQenWzPzMS+jOoJcj0qxSG8cj/VUj/V4ga88iCV8iBeeZhqqYTnuokrqBJQdVWqropXSW6rFRXPValWlNr6xvu5iBWieOYEC0VRUHUVVVVrMXHpA0MsBCKKiaIY0SRGeRUfr+LDhhk7LVRVaSvgjBSHbGe0UGQ6ZseouZHzmi4/O0m2fBRFh8LnQdsWUboQ3B8golXQexGKYs/26UnGYHh4GGDMyDPJ5JBCjUQikUgkEyAIgjEFmGq12lV3DNTKYsfpg7Esa0YED0VRcBwHx3Habo/juEXAGSnm+L5fd+OkH9RGYllWRzeObdsyomILwzEcPnzAh+vLbuDylp+/hZP3PZn37PseeQXqXGN4GG68EW6+GR54AJ57LnHOjOWS6e2FHXdMXDJHH52IMlthl59EIpHMJkmfTQnqfS/9EK9Difqx43XYxjp68v2Q7YcF5Qkc2aj1vCxMel60hSjqovo6oSzE83qpVjL4lXDMvp+2DqHKSBdQ554gIQRREBHROd53qmi6hqarKKpaj4lTAIFAxII4EsRRRBTG9Yur4lhQKVWplKozdl4AuqGN2QE0ShDqxk00sl/IMeVnccmsoygK5E4BbSli6FPg/Rax8b3QdwWKOm+2T0/SgdRRI4Wa6UcKNRKJRCKRkHwh9H1/TAFmvD6YZlRVHVOAsW17TnfAqKpKNpvtWPYXhuEo8aZZ0AnDEM/z8DyPgYGBUfdXFAXbtju6cebyz0bSHT995Kc82v8on77509z2/G1c/IaLmefIL1yzwl/+krhk7roL/vpXWL16bJeMaSYumT32gMMOSwSZAw6QLhmJRCKZQRIBZqAmvqyrCzEiXgdRf12QIVoHTEAoUJxEbFEXgpYIL0pdkFncEGeU3jE/eymAY4IzM8lwLT1BIwWctj1Bo5ZH9wSNPE5zT1AURkThzAtBmq4lriBVbXEGpZ1BURQ3zqV2rUQYRIRDLuUhd8bOD8C0jdECzkhxyDGb3EAdHERjzBuWIT/TS8ZFcU4AbTFi4DQIHkJseDv0fQ9F33G2T03ShlSoKcgLtqYdKdRIJJJRZDKZeldFJpOZ5bORSKZOHMd4njemAON5Xtd9MIZhtI0faxZlDGPL/lKi6zr5fJ58fvS3dSEEQRB0dOOksWppxNqGDaMzKlRVHTNWbUv/+W4JfHD/DxKLmAvuvIDfPP0bHlz9IN944zd43Q6vm+1T23IpleCmmxKXzP33w7PPwsDA2C6ZQiFxyey/f+KSOf54mCcFNYlEIpkuhIgg3lgTWdbWRJh1iCY3TF2cIRj3eHWUXIv4grooKelucsGgLgIlt1l8ZmruCWKG3oba9QS16/sZ1RPk+q1CUAfByK82fn8NIWgCv9MJoGoquqG1dQYBIGrOoFgQRRFxGBOGEVGTWOVXA/xqQHFj+5jj6UBRlHGdPpaT9Ae17tfZTdRuXjfk8ObmjmIeDPN/jhg4BaIXa2LNFSjmAbN9apIm0hh36E6ocRyHH//4x/T09MjxxS5QRLcB+RLJVsTw8DA9PT0MDQ1JhVgimeNEUdRRfGnug+mWNIpsrE4YXZdfBKaCEALP89o6cdL58dB1vWOsmuM48nc0h3is/zFO+/VpPLXhKQA+euBH+cwRn8HUzFk+s82cv/41ccnceWcyv2oVVMe4wto0YfFi2G23hkvm4IOlS0YikUgmiRABxOtrbpdUfOlvccMk8xtgIhFeSm+T+LJwRATZokYsmdI+vlYye0RRhF/x64LPqPi3ESJR4vapzVfaiUTN+ybH21QoqoJh6mipGKSpqFrSGQRKYrGKRc0ZJIjjxBkUBhGhHxJH3V0AN11outbW0WM6Zqu444wUesZwE42YNx1TdnBuAkS0HjHwEQgfBUyU3otR7GNn+7QkNfr7+7nnnnvI5XKsXLly3P3XrFnDfffdR19fH4cffvjMn+AcpdtxZjmKIZFIJJI5SerKGEuAqVarBEF3V6mlUVtjCTCyN2XT0Py7mNfmyv04jqlWqx1j1TzPIwxDhoeHO/bjmKbZ0Y3jOI78PW9C9lq0FzeddBNf+v2X+MFDP+DK+6/Ej3wuOPqC2T61zQPXhd/+Fn73O7jvPnjmmcQlM5YDsFCAHXZIXDIrV8Kb3wwLFmyyU5ZIJJLNGSG8JvGlH6L+JH6s7nxJt22cwFEVUOePiCBLHTCNThjUhSiKvJBhc0XTNJycg5ObGRFNCIFX8TvHv5Xbxb817dPhfs33r/cExSJxCFVnxhGkKKCbBoapoRl6EhOnaSiagqIodReYEAIhQMRxEhXXJAYFXlA3DUdhhDtcwR0e/4KvqWBYRl3AaUTCtXMJdRaExps3bXOzcMHNFIq2AOb9GDF0Fni3IgbPgPynIfP+rfrnMleQ/TQzixRqJBLJKDzP46yzzgLgkksuwbKsWT4jyZZG6qgYS4CpVqtd98FomjamAOM4Dqa5dX/g3ZxQVbUuqrQjiqIxY9WCIMD3fXzfZ3BwsO0xHMfp6MaxbVv+rUwzjuHw5aO/zFE7HsX5d57PGYeeMdunNDd56im49trEJfPoo4lLZiyHmWHAokWJS+bVr05iyw47TLpkJBKJpA0iLtWdL6kQ09L/kjpgRPuLQNqjg7qgETOmLhwhvqTOmPkoihx+kUwNRVGwawP6PTNw/cVYPUEje3/aCj6VkTFynXuChIDACwi8mRGCAHRTx7B0dENPYuIMDVVTUdXEGaQoSj0eNo6TqLh6Z1AqBvkBgRfWj5mec3GgPGPnDSRxcG16f1rEHaed0DPOfdKouYyFYepz9juPomag91uI4pfA/Smi+BWIXob8OSiKdDXNJhPtp/E8j29/+9tYlsVBBx0kxxfHQUafSSRt2Nqjz8rlMrlcDoBSqdSxTFwiaUfqhhhLgKlWq3T79pP2wXQSYNIosrn6IVOy6Wnux2kn6IzXRdTcj9NOzJH9OFMjFjGq0hASfvjQDzlh1xOYn5k/i2e1ialWE4fM734H996buGQ2bBjbJZPPJy6ZffeFo46CE06AJUs23TlLJBLJHEQIkQgrIwQXMSp+bB2IiQysmiPixxahjHC+JMJMH4oixXGJpFvSnqDqOH0/I50+I3uCRgpI7XqCZhrN0DAtHcMya0JQzRnU3BlE+p2h0RkUhxFRFBMGIaEf1cWfMJhAROI0oKpK25i3URFyTjvRp81+6bxjtuyr6ZMXVoQQ4H4fUfz3ZIV1NErvJTL6cRa55ZZbqFQqvPrVr2ZBF479Z599lhUrVgBb9/iijD6TSCQSybQThuGYAkylUsH3/a6PZ1nWmAKMbdsyB1gyYQzDoKenp60dO3VzjXTipGJOpVIhjmPK5TLlcvsBHV3XR0WpNQs5sh9nbJpFmhuevIHP3PIZLrn7Ei477jJW7rhy9k5spnjuOfi//4Pf/z5xybzyShJn1gldh4ULGy6ZY4+F1742WS+RSCRbCULEEA80YsZqkWOiyQ1TF2fo/rMnSqbufEldMEp9fiFoi5NbpSAvypBIZgDd0NF7dLI9MzNY29IT1KbnZ2RPUHI7WghqKxi5Hp7r1y84jIKIShBRKc1Md5CqqRi2gWkZGJaBbmrohp70Bek1Z1AaE6fUYuJSMSiKiMLRYpBX8RFxw0VUKVWplMboOJwGdEMbtwNopCDUEIAs7MyumPq/YsU/wHLuxsq/B3vR57Hzi1tcQjLaeubxfb/eJyujz2YG+Y1vDrBy5Ur2228/Lr300gnd7/3vfz+Dg4P87//+74ycVzf84Ac/4Mwzz+wYLSORSCaOEIINGzbgeR6WZTF//vwZ/6LY3AfTSYCpVquEYTj+wUgcCe36X5oFGMuy5IcpySanuR+nr69v1PaR/TgjBZ20H6dYLFIsFts+hmmaHWPVMpnMjPzdz8brxnSwU99O7LZgN/62/m+8+3/ezSkHnMI5R5yDpVtEccSfX/kz/eV+FmUXceg2h6KpMyDc+j5cfnnialmxAk47DcxJ9AP4PtxyS9Inc8898PTTiUtmrAjHXA622w5e9aqkS+aEE2CbbSb9VCQSiWQshIjAvy8RONSFYB60ySNkhAgh3tAkvqxNIsjqzpfUBbMe6O5zJwBKoUV8SSLIFtHog6n1v6i5GXtuEolk9tkUPUF+1a8LPx1dQC3xbyN6gjoISCN7guIoxit7eOWZEYIUBUwn6cQxLAPD1DFMHc3Q0HStJgYpKKpa8wUptc4gQRyN6AwKQgIv6Q3yKz5epSGgh0FEOORSHhrjQqWu2L5p/gujtpq2hpUxsDKZEUJPkzjktO8NSvdr9A61dwwZ1vQmK0RRxKN3PsGG1QPMX9rH3kfsPmcvVBVC8NJLLwHJBbfdXpwYhY3vQn+4/m6OfttK9Cm4rLZ0pFCzGXPZZZd1HR00l3n++edZvnw5Dz74IPvtt99sn45kBGvWrKnbFCUzz+rVq3nssceoVhtXtdi2zV577cXSpUsndUwhREfhpXkaLw4qRdf1cftgZDSUZHOlm36cdr046XxzP06a3zsS27Y7unEm048zE68bm4o9Fu7BjSfdyJfu+BJXPXQV333gu/zhpT/wjj3fwbfv+zbPDDxDJCI0RWNF3wouOPoCjt/l+Ok7gU9+Ei65pFVM+cQn4Kyz4Gtf63y/F16A666DO+6ARx6Bl1+GDg4sIHHDLFgAu+wChx4Kxx0HRx4pXTISiWSTIaq/QQxfAPGaxkp1CRTORbGPnfrxhd/ifGmIL/2tDph4AzCB77BKX01oaUSOKS3iS7JeUewpPweJRCIZD0VRsBwLy5nZnqCO8W8jen8qTUJQu56gdsdp7gnyXB/PnYArcYKYtoFpm5iOgWkb6GbNGaTraEbiClK1VmcQgporaIQY5IcEXoWgsgHfi/GqGoHX+N7kVyP8akRx48w5hBRFGbcDyG7qAWrtFGoVhf52/7Nc+62bGFrX6EWbt6yPf77k/ax8+2tm7DlMhpHfNz3P45Zbbhn3++a1/3kT3/301fXlL77zIq5ceDXv/8o7OfFDx834eW+OyG+HmzHSZjaaIAgwDGO2T2OLQgo1m47Vq1dz//33j1pfrVa5//77OfDAA0e9CUZR1FUfTLeYptlVH4xEsrWiaRq5XK7e4zWSIAg6xqq5rtvyP7tx48ZR91cUZUw3jmmaLULOZF435hq2bnPB0Rfw+uWv519/8688uPpBbn/+dnRVp2AW0FSNKI54cuOTnPzLk/nxW388PWLNJz8JF144en0UNdZ/+ctw223wm9/An/+cuGTWrRvbJZPNJi6ZffZpuGS2377z/hKJRDLDiOpvEINnMEogidcm63u/0VGsEaLSEF9qgosY2f0S9YMYnMAZqaAuaHLA1CLIRnTCoM5HUSbhcJRIJJLNFEVRMK0k7izfNzMOwJE9QZ36ftr2B1WanUJ+WwGpuSfIrwbJ8uB0PgO1NoFuxFiZGMuKMS2BYQoMS6AbAs3eEd2a3yQGUf8eJQQtzqAwiIjCRkyc7yXnnT7/OIpr9xN1UWwm2LhqgAve+XW+ctJl2NnOfUCjBCFntGA0VtRc6h7qxr0z2e+b1/7nTfzHKf9JJBruWJ8qxfVl/uOU/wSQYk0b5GjbHOSGG27g3e9+N5dffjknnXRSx/1GRp+tXLmSffbZB03T+OEPf4hpmpx//vm8+93v5vTTT+eaa65h8eLF/Md//AdvfOMbAbj99ts56qijuP766/nMZz7Dk08+yX777cf3vvc99t57767P+Te/+Q1nnnkmL730Eq997Wu56qqrWv5Rv/e973HxxRfz3HPPseOOO3LGGWdw2mmnAbB8+XIA9t9/fwCOPPJIbr/99nHvlzpxfv7zn3P55Zfz5z//mSuuuIL3vve9nH/++XznO99h3bp17LHHHnz1q1/luOPkC4Bk7iKE4LHHHhtzn4cffpj+/n48z6uLMkHQXVmioijj9sFYljVnbbYSyeaCYRgYhtG2IFAIge/7HWPVKpUKQoj6cjs0TasLN47j8Morr4x5Po899hhLlizZLBxuR+90NL89+bfsefmexCIma2QxtOTiC1VTKagFhv1hPnvrZzl2xbFTi0Hz/cRJMxYXXtheyEnRtMQls/POcMghSZfMUUdNLjZNIpFIZgghosRJ09bFkqwTQ/+GCF9sRJI1u2BEaQKPZiQCTJPbRakLMQsbzhh13iaPXJNIJBJJwkz3BMVx3CIEjSn8jHQMua2OoRZBqE1PUBiohEMq7X3t/bVp8mi6hp2tCSS2gemYGJaOYZloRtIZpKedQU3OIIEAQa0zKCYKE2dQFCZC0NMPPU8UdL7wK45i3OEK7nBlSuc/HoZljO4KahaEHIsNg+tRdQXd0tEtHcPSknkzmX/pgTUc/OqDm4QlE93UuerTPxvzsX9wzs85/n1/J2PQRiCFmjnGT3/6U0499VR++tOfcsIJJ0z4/j/84Q/55Cc/yT333MMvfvEL/vmf/5lf/epX/MM//APnnHMOX//613nPe97Diy++2BLrcvbZZ3PZZZexZMkSzjnnHN785jfz5JNPduVOcV2Xiy66iKuvvhpVVTn55JP5xCc+wU9+8hMAfvKTn3DeeefxzW9+k/33358HH3yQU045hWw2y/ve9z7uueceDjnkEG6++Wb22msvzNoAx3j3S/n0pz/NxRdfzP77749t21x22WVcfPHFXHnlley///58//vf58QTT+Sxxx5jl112afscPM/D8xqK+PDwcNv9tnRWr17N6tWr6+VgAA899BCOk+S7Ll26dM5fmb25smHDhnGdL2EY1jNBO5Fe7Z/NZltu04LzzWGwViLZUkkFU8uy2vbjpDGFndw41WqVKIrG7McZSXqlU09PD6ZpYhgGpmnWJ8Mw5pRA++zgs4RxSI/Vg603Ymw2VDYkmdgIHul/hDf+5I3s2LsjGSPDzvN25vRDTq/v+39P/B+RiMgYGbJGloyRqU95K888Z17SSTOWK6YTigJLl8KBByZ9NvPmwfz5yWSa8OSTybpcLnHWzKGfrUQi2XIRIoB4EOKBZBID9XkRPN4ad9b2AINQGkOYxm5xvqA1x48tajhjlF4URfYPSiQSydaMqqpNPUHdJQEJ4ScXBsTFptvm+TJCFCEuIuIifullqsOP4VVUqhU1uXVrU23eq6h44iQ8f8kIB9D43UKpgyYKo00imLTjUz88neX77lAXvTzXGzXvuX5NvErPvSFoVZv28SrJrV8JCLzGxb6BlywXB8aIcO6CX/KbUes8UcGjSkzjO1eRQVSRfD/y+iv88YY/87q/n1sxb7ONFGrmEN/61rc499xzue666zjyyCMndYxXvepVfPaznwXgM5/5DF/96ldZsGABp5xyCgDnnXce3/72t/nLX/7Cq1/96vr9Pve5z/F3f/d3QCL2bLvttvzqV7/i7W9/+7iPGQQBV1xxRT0e6/TTT+eLX/xiy7Evvvhi3vrWtwKJg+avf/0rV155Je973/tYuHAhAPPnz2fJkiVd3y/lzDPPrO8DcNFFF/GpT32Kd77znQD8+7//O7fddhuXXnop3/rWt9o+h6985St84Qujy8i2Nq688spRP4fTT28Mfn3uc5/j85///CY+q62DZqFwKkRRxNDQUMduDE3T0LRaJuyI+ZG3E9kmBSCJZOqksWeO4zB//vxR29N+nFS4Wbt2Lf39418ltmbNGtas6TxIp2naKPGm3XzzsqZpM/J/31/ur4sszURxhEDUr567b9V9PNr/KAAHb3Nwi1Dz+Ts+z9rS2rbH32PhHtzy3lvgmWcA+Pt3wtocZH3IBK3TdsPw6T807nvdruAagkywiuyjq8g82LhfzofF7b7fKEoi1hhGIuRYFtg2ZDKJkJPNQqGQTL29yTR/fuLUWbAAenoS0ScVfnK55L6qHAiVSLZUhIhADDVEl6ZJtBFikuXuxPsxMfYHY78R8WMLQV0MSk5+1pNIJBLJKISIQbjJ+1AqsogixKW60CLi0eta54tA9z05CmAZYM0H6HzhlRAQOtvhRa+nUqq2TNW2y5X68vDGEoP9Q8m0dojADzs+zkzxyupVLNinh8iMiPUYJRthRKBGGoZvoJdjNDdGLYXoFQOzquB4GkHVIqiGBNWQsBoSeGFtOSCohviVgOqwR2W4SmWoSqXoTag6rlte5lme4/GWdX/jofr8cvZg3cvrp/+BN3OkUDNHuOaaa+jv7+euu+7i4IMPnvRx9t133/q8pmnMnz+fffbZp75u8eLFAKMGdg477LD6/Lx589htt914/PHWf6hOZDKZlg6TpUuX1o9fLpd55pln+NCHPlQXiyBxBozVsTOR+x100EH1+eHhYVatWsXhhx/ess/hhx/Oww8/3PHxPvOZz3DWWWe1HGe77bbruP+Wykc/+lFOPPFEAB544AFOOeUUvvvd73LAAQcASDfNDGJZVlf7LV++HNu2iaKIMAxbbtutS29T0v18f3oLA1VVnbTQk86326bKwUiJpM7IfpxsNtuVULNs2TI0TcP3fYIgwPf9+rwQokUA6hZVVTuKOJ2WuxF1F2UXoSlJJ42qNf7/5znzEAiCKMCPfM589ZlsV9gON3BZmF3YcozXbPsa1lfW4wYubuBS9svJbVAma9QiHmqfW17qgTUd4r93Xw+fLu+fOGiKRS561YM8lakk3/ogDbcGYJthuPe7jfu+8x/hqXmQDQSZICQThGT9CpkAFrhwwa2NfW/YBQachuiTDcAJGgLQdu1MvpqWCD+mmQg/jpMIOLkc5POJ8NPTA319DddPPj9a9GledpxEWJJIJNOGEKI2ODVSWBlAxBvbijGIISY3YqKA0gtqX+skKlC9fvx7585CsQ6dxONKJBKJZHNECG+0YNIipJQQbZwtraJMmekY5Y9j8CoqFTdHxc1RdbNU3AwVN0PVtahWTCplk6qrUynrVIrDVIb+SrWsUimrVFytMV9OHDWVskYU/hj48ZTPrx2qpmA6JqZjYDgGhq23TJqloRkaWnM0mgrFdWWeuO3ZcY9/81V3ctuP70oEl7rYkgguURDPyHMa+fwMO3leuq0nkW/prWNgWLX1ts68hX0U+go4WQsn57Dq2TX86j8qLGQZkDhpHud+9uBA8vQCYGGzcNsFM/48NjekUDNH2H///XnggQf4/ve/z0EHHTTpK5ZGRpUpitKyLj1uHE/fP3W7x0yveC2Vkkzj7373uxx6aOsH/7GiViZyv2x26rmaaRTN1k67aLMDDjigLtRIZo758+dj2/aY8We2bbPnnntO+PVBiCQXtZOI043Q02lbShzH0y7+QDIYPJ3On/RWCkCSLYFuXzf233//tq8bQgjCMKwLN+2EnOZt6bo4jpPs6RGxoeORfiYZy7mzg74DOxR24NnBZymohfp566qe9PfELrsv2J1zjzi3Y0fNt97U3j2bPmcATjsNPvEJfnZNRMkE10imctN8IVDg3rvrnTOvufkzbDf8UkMACsp1IainsC1cfhMUizA8zJpr38rq4vPJt87mSQiWegYXhPsl+5bLXPHaF7l/vt8i/KTkPfjbNxvLH/h7eGApZIKITFAhE1TIBkNkgmTfy25q7PubFbA633AINQtBmQCWDyRXJLaQCj+p6ycVcvL5hvDT19cq8owUfkaKQKYpBSDJFkEiurhtHS2ijRBTnx/jat8xUQqjRRelD2Xkuvq2QtveFyEihH8fxGtpP5imgLoEzIPabJNIJBLJXCNxXpZbo8LqjpVknWjjbBntYumu73YkYUBdCEnEE5VK2ayJKhkqrk3FtamWTSquTsXVqZY1KmWFahkqZaiUI6qliEo5pFLyqZY7jSW4takdoxMIOqFbWl10MGwD06n1rdgauqmj6SqqoaFqSk1QUVq/PwlBHIukcyaMiaKY0IsaAoqXCCjlQTdxsVRDQn+S7/811vxt3bj7KKrS9JwMzNqtVe+dMZMpa+Fkbez0Nmfj5Gwy+QyZnIOTd8gWMmTyDtlCllxPFss2EUJwyy23jPt98+ijj275eYVhxJ0//zPF9bXIgdrHjzy9FJQkAjy/MMtr3iQvEBmJFGrmCCtWrODiiy9m5cqVaJrGN7/5zfHvNI3cfffdbL/99gAMDAzw5JNPsscee0z5uIsXL2bZsmU8++yznHTSSW33STtpmq/67+Z+7SgUCixbtoy77rqrJT7urrvu4pBDDpnks9j68H2fSy+9FKDrsnrJ1FAUhb322ov777+/4z577bXXpERcRVHqosV0kgpA0yX6NG9LB1PTAeHp/jtUFGVanT/NDiAZDSLZVEz1dSMVTgzD6Pqih9SB007IGUvkiaIIIUR9eSze1vs2Lh64mAF3AEuz0NCIifFiD1Mz+cCOH+CJx58Y08nT6fWu/rMwTTjrLHa7cIxOhrM/URdpAL5yzFfG/wHVhIwfvOd/GPaGW9w8laCCG7gYmgFfO7l+l1f//gLmb3yqLgAl4k8J1yuRVx14+KpE1BkaYv1j57Ku8uwo8QchyAZw2VPbgetCpcIPDyxy+3advyC+fAkotS9Npx8Pty6HrO+TCXyywXBLDNw3bgSzdqibd4Lne1vFn+ZpxQDozdcDKUrD8ZPGvaXCT3O021hun3bzXfQoSiRjIUS11uuycbToMjJarC66TPKiFCVbE1N6m8SVeaNFFyWd70FRpudvXFE0KJyLGDyDRJ5tFmuS10SlcE5bkUcikUgk00fyHbfZxdIkpMTl+joxlrhSd7F083jgVxUqrloTSpodJw6Vcq42b1Mp21Rci6prJI6V+v4KlbKgWhZUyhGeGxF43Vz4HdamCaKAaRsYjt5wc1gaum1gGCqqrqEZKoqm4lglerKrEIoGqMSxRhSrxJFKFKqU3R583yAKIkI/aor/CnAHK4nI4oUzEvs18jkZtp48r5qQEgURG14a7HiXw//pYHY9eCecvJMIKjmnJqJkaoJKcms51oxehDrZ75u6rvH+r7yT/zjlP4lFzIs8BYCg8bfz/i+/E12Xnz1GIoWaOcSuu+7KbbfdxsqVK9F1vT5Qvin44he/yPz581m8eDHnnnsuCxYs4C1vecu0HPsLX/gCZ5xxBj09PRx33HF4nsd9993HwMAAZ511FosWLcJxHG666Sa23XZbbNump6dn3Pt14uyzz+Zzn/scK1asYL/99uOqq67ioYce4ic/+cm0PJ+tgSAIuPrqqwFYsEBaETcVS5cu5cADD+Sxxx5ruWLBtm322muvORc91ywAmU2DmdPBWA6gqYhAqZtQCEEQBDMiRE6n86fZASQFIEk7NvXrRipy6vrEPkJGUdS1sPO6zOvQNI2rXryKNd4aPDxUVJZZy3jPNu9hebCc5557bszHa+7d6di5c/bZ5KtVrG99C6XZaaxpcNZZ8LWvTeZHBMCOvTt2ve+5rzu3632veO2rGPKG2sa6CSHgwkaH36v//A2yax+h7A3jVoqUK8O4fgnXdxFRiPrTL8PwMAwPMzj8AwZ5jsE4BhFDLBoOHyH41m0WVDyIY67ZE67drfM5PvFNKNSMVp8+Bn61uyATuDihS9Zf3+Lqueg66K392d6xA/x1YWPbSBfQLhvAqP2aBKDoemvcW3O0WzeiTzsRKJuFCf5tS+YGQgQ10WW0o2WU2yXdLjpdoTseJqjzRjlalBahZcQ2ZXad+4p9LPR+AzF8AcRNnWXqkkSksY+dvZOTSCSSzYDExVJidOF9OxdLLSKsxe1SW9fBxRJFiUulEd+l1ZwqNWElFU7cLJVyHs9VccsG1bKB6xq17alrRaHiJuKKmFSYTncii6ar9civ1LGimxq6oaEaKpquoaQOFaV2wVTtegEhau6UKCaOBFEYE/mJoJIKKH4loDzgEnoRIu6kpqQD/XFtaqY7QStFt3RMO4n1Mh2jHmtmZUzs1J2StbAzFnY2caQ4ORs7a5OpCSrZfKbuTsnmM2R7sjhZu62Ycucv/8zlZ17F+pc31Nct3G4+//z1D3DEW+eO02Sy3zdP/NBxAHzv01ezZv2LABhY5Bdmef+X31nfLmlFfhOZY+y2227ceuutdWfNxRdfvEke96tf/Sof//jHeeqpp9hvv/247rrrpm3g9cMf/jCZTIYLL7yQs88+m2w2yz777MOZZ54JJIOa3/jGN/jiF7/IeeedxxFHHMHtt98+7v06ccYZZzA0NMT/+3//j/7+fvbcc0+uvfZadtlll2l5PlsbS5Ysme1T2KpYunQpS5YsYcOGDXieh2VZzJ8/f6sbpFdVddrFH2CUA2i6ouCa4yTDMCQMwwlFQnXDdDp/mue3tr+tLZHN4XUj/buzbbur/V/P6/l0+GnueuEuVg+vps/sY5++fYjC0W6eKfXuvOENsHIly2+8keyaNXjbbsuat74VM5fDvP/+MXt3UjfSpvw5b1PYhm3Ypqt9zzj0jK6Pe0n5vQxWB1vEn3SqhlW0r30gEW2qVQ6+5wp4+R4q1RKuV6TslWpikYsbVcmc/SEolmFwkOHcHRTzqyg2OX+aI94u+m3jHG7YFX68b4cTBO75Lmxb6+s5/3Vw1f4hmWCYrD/cIv44AXzlBlhW61a/a7skLq5ZAHKa9t9tPTi1sYhYAcU0UXJTFH1GLmcyICM3uyYZDBtq62gR7aLF4oFkEGxS6B0cLR0ixpQ+UJw59fraLYp9LFjHgH8fxOtAXQjmQdJJI5FItmgSF0u1ybnSLK40nC0NF0sqsDTHhpXrLhYhIPCVRFBx1bqY0uxYaQgsWn2/SjlPtdzT5FTRm3pVFPzqdL2vCNpZRNLeFN2qOVRMvSGoaGqToJKIKQpNtYxxkqQRh4IojIiCRFRJ4768sk9pQziGmDJ9aKZWd9wkMV+pmKJiOSpWxsLO9WBlrJqIkkR9ObmaMyXvJHFfeacp5iuDk3OmPYFkPI5466G85u8P4tE7n2DD6gHmL+1j7yN23+Tn0Q2T/b554oeO48h/fA29vT8F4Lyff4Kj37ZSOmnGQBFCTOg/KQxDvvzlL/PBD36QbbfddqbOS7KJuP322znqqKMYGBigt7d3tk9nzjA8PExPTw9DQ0MUCoXZPp1NTrlcrpdVl0qlaekBkki2ZNKuj+kWgZojIWeKTkLPVF1Bm+MglmTzZyq9O5Ohm96dkcuGYWw1PVkDlQEGq4P1Pp+GEFSmXBrgpG2PxyhXoFjkF0//H39Yfz+uV8L1y4nwE1Zwoypu7HHbU6+hb9CDoSE+vePT/GjHoba9PgB3fw+2H0rmz38dXH5w53O8+UewZy0C/NJXw8WHJSKOE7R2+mR9+MLtsPPGZN97l8GdO7Tv/0kFoHwtJStUQbUd1FQAmoro07zsOHO+/yfpdSm2dbSIEZFjjW1DTC6HRBkRLdZGdFH6Wt0wSk6+X0kkEskcRYiwTfxXaxRYs4tFxLV1cWNfr1Ku9aKkgkpSPF+fr4srWus+YxbUz9z7hqIq6LaGaRnoloZm6mg1d4pmqKiqiqopjQ4VRQEhko9EUSqoxERhTOiHDYdKrUclDme+hF4ztNbeFMfAckzMjJH0pjhmTUixsLPN7pSGmOLkHLL5DJlChmzeSW4LWTnAvxkixxcTuh1nnrCjRtd1LrzwQt773vdO6QQlEolEItlSaO76mE5SZ8B0OX+ab1PS/cbrDZkoqqpO2vkzliC0tQxwSybHXO3dGUl6juOJOt307sxl+pw++py+rvZ9x4EH8o4uj3uuV+R0bygRfbwS5eIGKsMbKQ+vxy0NsOANB4AbwPAwr1p/F+8sP4brlxPhJ6xQjqu4sU8Zn9y2S0BPxCLXKBGpMGwl00g+84fG/J+2g4te0/kcf/kLePXLyfzV+8K5R1dwggqZoL9F/HFCOPd38Kq1yb4PLYHfrmjf/5MNYPf1jbi4QAOyWYxMfnqcP+myZbUVgBLRxW3raBkVL9a8nUledKAU2jpa2jpd1D5QCtIdIpFIJHOA5P2igoiGiKMicTREHA0TR8N1IUU0OVsUUSQKSlTLLr5bwXOreK6H54YjYr9SEUVrca60uFrqfSx9VN35CDFzoopqqJiWnrhTLA3NSEWVpEtFVRVUtSamUBNThEgElSgRU9L+lNAPG4KKm0wziaqr7cWUtIg+a2PXCumbxZRMzsbOOWTSIvqCk/SnFDLkClmyhQyGKXsEJZLJMqnos9e//vXccccd7LjjjtN8OpJmUsWxHTfeeCNHHHHEjJ/DG9/4Ru68886228455xzOOeecGT8HiUQi2Vpp7gOxrOnLtxdCjNkDNBURKCWO42kXfyARgKbT+dPcAyTZOtkUvTvpctqLlc67bvcdGV317oxY3lLjDfNWnryV72rfN/Ne3tzlcf+1WuKDG1fhDq6jPLQOd3gDbnEj5dIAbnmQ7c7ZAUohDA+zd/Vx3hM8QzlMIt/KcRVXBLgEuEpIT7VxxapbG6+oGMm0YcTjlpuSPh9akjh7OvGD/4U3PJPM/99ucMYbyxhReZSgkwng/90Kh7+U7Pv4AvjlHq0OoeZ9d1sPC2t/jr6hEOYNbEtHyeiQVSArwIkhC2TVZJ2jItL5rAqZEfPNy9kc2PNHOF7mjRZd6tFjPSiKHOiRSCSS6ST9DtDc35nON5Y94mgYEY3sYUkiwBRRIvSKeBWXwC3ju1X8ShXf9fGrPkElxKtEVF2lyZnSPhqsWYAJPBWwa9P0k8R+GRimhpb2qOgqqqbWO1TSAhUhQMRJd0riTokaDhUvJPAioiAiDmKqgQ9M/3ceSNw1hq1jOkaToGImQkp9SjtTLOycXYv5qt3W4r3SEvok8itDrieLZU9/zLhEIpk6kxJq3vjGN/LpT3+aRx55hAMPPHDUFYsnnnjitJzc1s5DDz3Ucds223SXTz4eK1euZKz0u+9973sd893nzZs3LecgkUgkkk2Loih10WI6af7yN91RcOl7VRzHxHFcH/CeLtLB+uly/jQ7gLbEgXLJxHt3gPrf7lgCz5R7d5pQVbUrt85s9u7MJRw7h7NsV1i267j7vr42deTyEEolGB7mlMENvGNgTSL+FDcmU3kQtzxI2R1i1zf1wlAAxSK78TIfWL26Jv54uMLH1WLKRiL49DX9+lMBKNBgSIOhEX+KxSZ9//GF8K1DOp/uZTfBPz2WzN+xneB9/+CjCL9F/Em7fU6/pyEWPdeXdAuNcv/UhKDdNjT6ggJLp9KbI2Pl0DPT1AGUzcIERVaJRCKZSzQ76DuLJ1EX+4SI2AVRRBFlVKWMiMoE1SJhtUhQqRBWXULPI6x6hF4iqvjVgKAS4VUi/EqM59KmyL41LiyOR35OmD6BRdUVDFNLulTSHhVNS8QUTWn5jJK6U6I07iuICIOoVkqfxH6lBNXErdL9p6guUah3phi2kfSmZMxavFdDTLEyZr14vt6bUhNR0hL6TN4h25OtR35ZtikvJpNItjIm3FEDjPlCoSjKJsnUl0hmEtlRIzMkJRLJ3GIsB9BERaDm+cl2k0yE6XT+NDuAttbB9K2NifbupMvT0bszlnNna+3d2RQIESU9LWl0mLcOhlbD0GrE8DoYWgfDGwmHN1IeHqBcLOKWK7hujFuNKHsxrhdzyGqFJQMCijEPWxG/3F5QURMHj2s0prIBn7sDVj6fPP7/7g6nvanz+X39JnhHTdS5eSd47z/UNjS/JtW+Yp5/m8IHH0jm/7wN/MM7k81mNFrU+fAD8LbHk+2v5OHbB7d3/2R92GUj7DiY7BtkLIq9GTJ2HsvJoWSnQQTKZkH+TUskWyXNFx6NJ5p0L6J03l8IgaJEKHGZ2C8j/DKR7xJ5ldqUCiteIjZUAvxqiF+J8CsRXkXgu4Kqy6goMK8ys3GQuqlgWIk7RTO0JO5LU1HUVkdvUkYviMOIKEoElSiICYOamDLzHfT1mK/UoWJlzMSdkgoq2YYzxaoLKYkzJe1MyeQcsj2tzhQ7Y8nPQBLJGMjxxYQZ66gBNsmghkQimT0cx+HRRx+tz0skEslso6oqpjn9Fv2RDqDpioJr/qwUhiFhGOJ53rSe+3Q6f5rnpQA0t5hK785IEWeu9O6k85tj785ESXL6i639LbUOFxFvHL0+HkhEmpGjVjowvzY1reoBesgDeUAZES3Wh6jdvqo24WehbEFJh7IKxRClWITjijA8DMUiJw4PcUxxI24t8s2tDCeTV8L1Suxd9EEvQRiy3RCcdi81x49oiD81MWhxsfE8miPefC2ZBpsuwB5wSPpxDINVy+D7B5Qb4k/ztYVC8Mm74My7k8WnMx5Hv8sDBlDFaHfPyffC+x9K9t3gwIWHd+4A2nkj7FrLpouyDusXZMmYWTJ2Hi2Xn3oHkOO07f+RSCRj0+w6mag4Mpn7jHcuoRfiV0KCqk/sucS+S+RX6uJK6Pk1cSUgqPo1gaXJtVIReK6oxYMlAksYTGSwX6tNXaKAaalopoJuJDHCiqai1C/8UWpxX4I4pqU/JQqjjmJK6AtCPwSmp09FtzQMy8DMGDWXStqbYmJnG86U5s4UO5v0pqRF9EnEl0MmnyFbSCYn52wVnzkkkrmIHF+cGFP2iVer1QlFPkgkkrmPqqrstddes30aEolEMuOoqlqPh5pOUhfEdItAzYMH3QwmTIaJCD0T2SYFoE1Hc+/ORL4QjRR3xhJ1tsbenUR0cetCS7O4ItoIMfV5Jvl/qhRa+1tqHS6jel3q2wooyjgDUQ6JujMGKpCrTR0RAqpVdisW+WxN4KH5Np3fobHuqOEhnn90OIl8qwzjVocp+yVcr0xZF4lA4nngeSxaA2fc3RB/ykarC2jb4capuE0v37ECJTOZUkFk48IsLCuArrOuN+RHB6xtPIfm5yMEp94H592RrFqtVTjkHyvAegCssOHqyQTwtgfgY/ck+5YN+NxRo11C6f7LB2Cf/uSc4myG1YszZM0kBs7I5lGmKgJZlhSAJJuU1HUyVUGk2+XJXiwcR3Et8iqoxXw15gOvSlwXVrxaJJhPWBNW/ErNtVKN8d1EXKm64LlMoaBeYTyBRdNBNxQ0Q6n1pygoilr7H1cQKIhYIGKIopg4FEmHShAj4g7WFAF+NYYqJO9Jk48Q1gwN02kqobc79KY0daakooqTFtDn7borJVtInCmZvBRTJJItETm+ODEmJdREUcSXv/xlrrjiCtauXcuTTz7JTjvtxL/927+x44478qEPfWi6z1MikUgkEolks6HZBTGdNF9ROl1RcOltSrrfRB0V46Gq6qSdP+P1AEmmh82xd2esSLbxeneEqEI8CCOcLaKNENMQXSb5f6Fka2JKb5O4Mm+06KKk8z0oyvS+fkwripK4QxwHFi3q7i6AWZt6mzcIAa7bIvbsMDzMp0eKPs23uxdhWbLtwGKRl34xhFsp4npFXD0VdARlE3YYLMFgCYC+DfD/7mx1/TSLQGmcGkBVB0WAUJLn65kKngkbFQUUhQ3lPqguBWDIDvjp/k81nk96W5ve9Qhc/NtkXSkoc/BbysA6APQ4EXPSDqA3PgLn3pkcIlbgrGPb9/9kguR8D1wNaBpks7y42Maxc2TsPI6dR83lp9YBNANOVsnMkb6ubgrHyXRfKCKEIAriJkGlJqZUg5a4r6AaEFZDIt8n8mvCiufX7hfgV0I8N6pNMcG0fpQZ/T6iGaDrCqoOqqrAKIcKNYeKSFwqY4kpNaIQolBARQCTE6g0Xa3HfBmOUY/6St0pjZgvs96ZYtcjvhJ3Sr2EPp8hW8iSLSQuFcOcw+9NEolEspkzKaHmggsu4Ic//CFf+9rXOOWUU+rr9957by699FIp1Egkmzm+7/PlL38ZgHPOOWdG4oYkEolEMnGanRKWZY1/hy5Jr4ztJOJMRQRKSa+ITR0Y00UqAE2X8yddJ3uAukNVVSzLmtDf41R6d+I4xvO8CUYJCkwjwNA9TN3F1IoY+hCmNoShu5h6GUMvY9YmQ3cxdBdV6TRAZoI6b5SjRWkRWkZsU6bv/3WLQ1EavTBLlkzqEBpJ+Fs+jhPRp4PAs3h4mP83UvQpFmGgtn+1CEuTdTtvLPHyJeDpNdEndffUBJ4lpXWwMRFbshZ8SmkVfypNHUC7bKydqGVRWWBjUCLQkuceKgrDFgzXXm/WKwtB2wWEwMXnv/a7L7lvk/ADQBxzwpPwneuAKCIuDnPYh4cRSn/95+I0uXqOfAL+/ebGz+z/vQE00V4A2nYYDn8JMAzI5Xh+sYVl58jYOTJOASOTn1oHkD7lYI/NAiHEuEXx0yGiNPepbJLnFYu6S8WviSiRHyeTFxF4IaEXEVZDgmrUcLRUQ4KKh1/18F0Pv+LjuT6eG1Ith8TRzBWVKEoiqqiaUnOoKDXdRQEBsQARJYJKFI4vpqREAURBuu/EhBVVU1o6U0zHTAQVx8TMmNhNMV9WKqTk7LpLJe1NSaK+MnUhJdeTxbTk93eJRDI3kOOLE0MRQkz43XDnnXfmyiuv5Oijjyafz/Pwww+z00478cQTT3DYYYcxMDAwE+cqkWwyui152lKRZV8SiUQimQ6aC3mnOwpuEh9hJ0Qqik2X86fZASQFoLERIkp6WppdLtEAUTiI7xXx/TJ+4BH4Pr4fEQQKfqgThBn8MIsfZuvzUTz5iGZdjzENBdPQMUwT07QxzRyG6WBZ1lbbu7PVEEVQLnd29Yzl+Bm5rU0kYKC2ijmpq6ev2ujJqejw/f0Z1f1TNsC1NQ7b4HDms4sgk6GSs9nndY/ianEjBq3pteb44hK+99L+EEWIMGC7V91KjGgVgOIYhOB1L8DPr2mc6+6nw3CT1mhE4ISJqHPIK3DF9Y1tnzom6R8a2f+TCWBJCY55liSqLZfjuSUWmpMlYyUCkJMpoGQnGf+WzUIXDsvm96Xpdpi0u89skV7EICJRF1FCLyT0YiI/IvQigkpA4IU1ASURUzw3caZ4FR/fTYUUn2rZw3OrtdvpveBi1LlrNUFFVVBU6n/HDYeKQERiRoWdFEVVMKyGK8VM474cEyubOFTsrFWP+ko7U9KYr4YzJelNSTpTsmQLGSzblJ8HJBLJFo8cX0zodpx5UpeyvPLKK+y8886j1s/EVZISiUQikUgkks0TRVHqAsZ0Xz01lgOo3fxYIlDzfHpFshCipYNlOplO50/qsJqrAlDS61IcHSEmBhAjIsca24Zo11qskVSsODrJt5hR9TvKiGixPiLmEUTzCaJ5BFEBP8jhhxmC0MIPdXxf1B07zbcAYagShuBWIqBSm8a+IC39W59IPNts9u5IxkDToFBIpqkShlAqtYg4xvAwRrFIYQyBxxke5l+KRdjYtK1arR00Akq1Kfl3ePruJC6tqjeJO7XbnP88bHgeSPY5b23T9oyBmzVxHQPX0djb6YU37pZE29k2RuHXGGpIUHOZBbVpGNjYuwQWrQTfB9/n2uU3MKQGo8QfhGC/NTWhptZF9Pa3witNP15FJAJQ1oc9XmoVi/7tKBhwWp0/2Vpk3AIX3vwkRJZFnMnw9CKDyLKwdAdDdzCNDFgOoWURWBaR4xDaNpFtJ7dOsq2+vmk5msb+n2bHZjqfToqiJF0jXrOIkrpRatFf9cnHdwM812sRUhpTlWqpSqVUJQxmVixKRZW6Q0Ukr94irhXTT0JMiWvOlrbt9e1QSCK+7GYhZWRvSq0zJS2hz9rYOYtMzsHJO8ltziFbcMgWkr6UXE8Wy7FkxKpEIpFINhmTEmr23HNP7rzzTnbYYYeW9ddccw3777//tJyYRCKRSCQSiUTSCVVVZ8Q6P9IBNF1RcM2RNKlwNLH4rvGZTudP87xSv5pZgHDrQsuoXpcRQkyj12WSA4VKYXSMmNI3utelvq2AorQ6WlRgomn6qUjXHL82m7077bZ16t2RzFF0HXp7k2mqBMGYrh61WCQzPExmDMePVizykb8MJcdKDkprufhG4Nn60iPpXupod48VPgsbGvt+6mCTobxJKWNQdnRKtkbZUihbCtvlCrz0j3sTaRqRqsK8m9H1ClWl8RoRAMNC0JPt4bkTDkavVNCqVW7Y90FW2T5KkwNIARCC5QOJUKN5Hprncfqb4fGFrT82M0rEnR0G4cafNNaf/zp4uTA6Ai4bQE8V/vFxhdhxiB2HZxab+Fkbx8hi6Q6mnkUzMoSGQ6hb+LqJp5p4ikFV0alg4AoNN1QohyrDARQ9wXAlZtgNqbo+lVJDVJlJp6iiJO4QRYV614qouVO6jPlqx0REFd3Sm2K+msSUmqDS7ExJe1NSV0pSQp8IKplC4k7JFbLJfM6RYopEIpFItggmJdScd955vO997+OVV14hjmN++ctf8re//Y0f/ehHXH/99eMfQCKRSCQSiUQimYOoqlofOJ9O0l6WqYhAndalTDRqR1V8TN1t6Wcx9RKmUR6xzq1vU9Vw/AO3e/5kEDW3i6L2oWjzQJ03WnSpd7z0oCizU1isKEpdGOmWTd+7w5hCTqdtcjBz86W5hySybSLDIOrtnVJsV1ypQLGIUiyilssopRJqqYRWLqO7Lnql0vbWqlTIpuv8CrHmotZee95/rw90anBfBTxRX7o3fW5KEvOWCkAVHVA8tnNvI8pkiLJZzszNY0Nep+xoifPHUmuTwoJt8qz74nEohoFqGJjVq8jG66gIn4gYIQTVWFAVgmw2w9oTVkIpeb6/2/NB/laoJMJPXQBKRIcFLvzTXwWa66K5LuccA3dv2/qM1FrPz3wX/vSfjfUXvQaeWDC6/2d+ANsFcNLD4KFTQedvfSpD8zWUQIdARwl0RGjiC4MKOlU0XKFTrc1XavdLtrXehkr7/3EhQESippt3FlU0U8O0dQxHb3GnWI6JlbWxMlaLO8XJpe4Uu+5KyRSSAvo08ivfm8XJOTIaUiKRSCSScZhURw3AnXfeyRe/+EUefvhhSqUSBxxwAOeddx5veMMbpvscJZJNjuyokRmSEolEIpFsDtSLqsMqYbABEW0gDjcg4gFElESLKWIQhUEUhlAZQlOGk0mdnKMninX8MFfrgsniB9mmbpjGfPO6WIwWXdL4n+mKgmvuAdocSH93Yzl12gk+YTg5sQyS2L1uI9lk787YtOs66bb0fTK9KDPdy9WJ5gjLdrFdqqqiqSp6GGJUq+iuW7/VKxU010UvlxOxo1xGLZdRS6WGMFQsQqmEUizWHT9K3H0h+1gIINBg2IANhs4GU8dVNJaut3BJRJBbdw3oz0LRVCgbUDaS24oh0AKNI3+7grgm3dz0D0/Qv7RIZMREerJWIfGn5Csql1++LTYhNiGfe/sGHtnOr29PxR+FpOPnhUsb5/m+t8DvVow+f7vWA/TgFWDUfiT/cQjct2x0/08qCL37LwqoibvnqYU6Q1kDU3Ow9Sy2mce2cli5AmqhgNbTg9ZbwJzfh7mgD3P+PPTenvYdQPqkrvGVSCQSyVaOHF9M6HacedJCjUSyJSOFGvlCKpFIJBLJbCFElPS0tOlvEe2ixeKBpAdmUugdHC29CHqJRIGYHsI4TxjnCcIcUWwQho2B5Ik4haYiMnRL80ByN0JPt1Fwc6UHaKS4041zZypdS9307oxcnq3endShtCmK4uNpEhMmQ7uOk7YCygT3abfcTvgMg5BKLa6rObqr03KlVKVa7rxPtVSl6taEYyGwiMgQkiEYdesQkq0tp/NOfZ90v8a+0y3bBihUMBhSNQZ0g42GxqChMaxpLNiQwUXHRefBFR7r+gSurVK1FTxHoWorBLZA0VX+/vnXkLVUcobgmu3/xJO5tXhqiK+GUBOAAAyh8OgTb8YMPPTA4yM7PMhv+zaM7gCq8dylYNWMlWe8Ea7Zc/Rz0OJE2PnTf8K8Wkrjdw6E23dsjX7LNE0n/c0kbySizfOLTNb3mWTMHBk7T8YpkM304GR6UHP59kJP83y6nM0mXVASiUQi2WKR44sJ3Y4zT+qyiJ122ol7772X+fPnt6wfHBzkgAMO4Nlnn+1wT4lEIpFIJBKJZOsh6XUpjhZdxAAi3thWjEEM0XWJcgsK1OLFRk5KixAzr0mYyY05oD7dQ2jNLoSpRsGN3JZef5YO1k9FnGhH6iyYLudPswNoIqJGelzbtru+z2z27hiGga7r6LqOYRijRIDm599OaJnI8lxwnYwnkExVUJnI34sQAq/S2oNS7iioVBLBpOxRKY8twgT+DAquioKHjofOAN3/jbc9VE30ydZEnFZhJySjhOT1iJwWkdNCsmpIVgnIiGQfJ/axowArTCYAA4GBTyGG7fxKx5S39z4z3tn9DSwL8nk+9FgB8ttBoYDI5/B7cpQLDm7eppKz6X3tjlAoQD7PKcrRvEEtJjFxhsDVYlw1ohy4VCpFzDO/AOUylEoUHrmMbdbdTTl0caMqfhyAEERCUBQC56R/hGIVSiX+uvQhbl/Q3yr+NP0/vfVxn/zGjbBxI9/dGa7at/2zcobh1v+AHYaS5av3het2Gx0BlwpB73rKZr6eh2yWFxaZrJpnkDVzZKwcWaeHTKZAJtuLkS2MFno6LTsObCbOSolEIpFImpmUUPP888+3zb/2PI9XXnllyiclkUhmF9u2ueeee+rzEolEIpFIUtHFbetoEW2EmPo8A//blQAA/i5JREFU3ffGtKAURosuSt/oXpf6tgKKMrevTm4e0J5IB0w3xHHcldCTznfbB5Q6J9IemplwBU2n86d5Ph3Qb+7d6VYMCcOwRbhJl5t/Rs37CyFaxLLJ9O5MJxN1j0zGcTKW62SiRGHU4jqplr2xHSrpfHlsV8tmH6ChkBTQ2xqGrWE6KqatYjoKlqNgZcB2BJYjsLMxdkbgZBXsjIqT1cjkDTI5AydvksnZZApZcoUs2UIeK1NA1Qqg5EDN125zNQF7xOtTFCUCyPBwPaKtZX7k7VjbXDc5pucl0/r1zU8XqzbNa/PjOLw2jcJxIJ+Hwu9rtwXOz+c5v3BwXeQJ81ncgo2bs3AzBvZrdoaeHsjneY//PK8J+nF1gRtVcQOXsl/G9YqUy4Pk/+VTUA2hVKL38e+xQ/8duGGFcljBjb26sFOJY+x/PBGGIyiVeGrRo/xh6ZpW8afpb/KNT1WZv64K69bxi23g0r3a/xkYw3D9FbBPf7J8zZ7w031GC0CpCPT2Zx2WKYm489ICgxfm6zhWjqydb7iAsr3Y2V6UZsFnLBHItmEOuColEolkc0KOL06MCQk11157bX3+N7/5DT09PfXlKIq45ZZb2HHHHaft5CQSyeygaRoHH3zwbJ+GRCKRSCQzihBViAdhhLNFtIsWq4sunUqyx0HJ1sSU3iZxZd5o0aUePdaDoozudZF0RlXVaRd/gFEOoKk6f9Lb5uisVACaTWFjU6AoSosbpFncmSyapo2KXrMsa8yItqn07gghCPxwbPGkZblSF1Q6iSlusULgzXws4Exi2DpGKqbYKqajYjlKTVChJqQIbEdgZ2LsTISdicjkQpxsiJMJyGQhk9fI5g2yBYNM3sbJOqh6AZQ8KFmUuqCSr61riCvJcmZmYvc0LRE8piMWO0wEj2kRfarV5JiVSjL193d8WB0o1KaRHFibAMhkGs+1JvqQ/0R9+exCH2cX3lvfJnI5qjmbctbAtTXmL94Zevogl+Md6x9n/w1PUg7KDfEnKONWi7juEH2nnAqhAaUSPU/9nBVrftMiAIUigjgmEAL7hDfAkAalEs/P/xt3b/dyq/jT9FryuhcqLFtdgbVrub4PvrRHmycdgzIMv/g+vPbFZNUNu8AVBzUcPy0uoFDhrS9k2ClKBKBVCyz+tgAyVo6MlSfrFBIRKNuLk+3FyPeM7fxJ501TCkASiWSLRY4vTowJddSkVwopijLqA7VhGOy4445cfPHFnHDCCdN7lhLJJmZr76iRSCQSiWRzQ4igJrqMdrSMcruk24U7yUczW+PDmuPFlPZuF0WxpvPpSmaYNPJrOjtOxtpnc0NRlLq7pJ3LJI04S2PPTNMc0w2kKEo9rm46e3dELAi8kKAaElQCgmqIXw2IvBgRCmJfEAUxkR8TeiFhNSL0QvxKiF8J8Cs+fiXAK3u4TcJKHM1eP81U0E2tIaY4iTvFshVMh5o7RWBnwMrE2E5cE1Ji7EwipDjZkGwuIJPzyWQ9srlkcjIhmp6tiSfZRDBJBRUlD2oWZdS63Kh5KU5PgiCYnMDTbp0/yQsRxiKXayP6jLgdY1uQc3BtjbIBC7OLMLTkb+SpDU/x+PrHqQSVRAAKyrh+mbI7hOsO8a87n8yyOAvlMj977jq+u+q6egRcOapSjf26uHPdqiM5cIMF5TJX9j7DF3Z6saMA9NP/gZXP1+b3gU+8ofNT/+618KankvnbdoSvHd7q+nHSCLhI5S0vZdnTSwSgtfMsHl4syJhZMnaerF1IIuCcAtlsH1auFyWfH18EMuT/k0QikcwVZqSjJr3qa/ny5dx7770sWLBgamcpkUjmJL7vc9lllwHw8Y9/fEauTpVIJBKJpBNCRElPSxuBRbSLFosHkh6YSaF3cLR0iBhT+kBx5kSp/NZEc7fNRDtMxtun3f6z2XUy1aL4dh0mqXOleWqOOOvWFdR8vHTf6SIKYyI/IvLjRECpzYdeVBdSgmpIWA3xa8KL5/p4rke1nNx6ZZ9KuYpX9vErPkF183OpaIaaRH05ekvUVyqkWI7AcmoRX5m47k5xsokzJZMNcbKJmJLNemSyPtl8lUzOQ9faCEyKM8KZ0uxYqQko47pY5GvirGEYMG9eMk0Vz5s+0SeNiCyVkmnVqsk9PaAH6FHVhuiTz7NLocAubQWeHihsB+Vn6+vetdvbeNfBH2js4zjECCpBhXJQptfuBS35vnvs4PNsv+5x3MBtCEBeCbcmAG1/0ltAmQelEvmXb2Hvl3+JG1aSKfYoxx6RiEAInNe9GvbIQanE2sKLPLzt860dQHVi9l5TZM9nk88x9+4KH3lNmx+Gn0wX/xze9Wiy6p5t4JyjW90/qRsoE2u86ZUsB1Z6IZtlfZ/FPUvjRACycg0BKNNDJtNLJteHli+MHf+WzSbuMolEIukSOb44MSbkqGlHtVqVGXOSLY6t3VFTLpfJ5XIAlEolstnsLJ+RRCKRSDZXkl6XYltHixgROdbYNgRM5iOqMiJarI3oovS1umGUnBxgnCTNg/Uz7TiZTddJJ+fIVAWVTkXxc5VULAuCgEq5SmmojDvsUq5N7rCLW6pQKVZxa8X0addKOnmuh+f6yXzZx3d9Ai8RX+Jo8+lSUTUVw9GTuC+rdmsb6C3Leq1bRcXMKEmPSiYik4nqQkouVyWbcyn0FMn3DNObHyLjFFHVbhw7WhtnysielW5cLJOqrZVIOiNEIvpMJdKteT6eZgebpk3I1TPmNstqiS0TQhDEAW7gkjEymDUBaHVxNY+te6whANX6f9zyEGV3gHctPZY9tMVQKnH7qj9y4Sv/hRtUEhdQXKUce3giBCH49qoD+Pu1vVAq8evMy3x4n+dbO4CauPC3cNIjyfzvd4B3/mPnH8t5d8Cp9yXzjy2Ef3nT6P6fTABZofOGNVleW0zi7YZ6LO5YFuBYWbJWPhGBMj2JAJTtJZedl8TAjdUBlMnAHH7/k0gkk0eOLybMiKMmJY5jLrjgAq644grWrl3Lk08+yU477cS//du/seOOO/KhD31o0icukUgkEolEIpmbJKKL29bRMiperHk7kxxkVwptHS1tnS5qHygFFGXrvdIzHUifbsdJp+V4ugfPJsB0CyRj3WdzFvKiKKqX0nfqR+lUUO8OVygPlXGLlVrPiodXSZwqk9JRNzGKqjSEFEcfVUhv1F0qSt2hYmeiuiMlm/PIZj2yeZdsvoplq3UhRqgOQWQShFn8MEsQZvCb5oMwSxiPfzFjtTZtKAJNpkBdizANME0Fw9AwTQPTMDEsB9PIYto5DCOLZVnT0rsjkUwrigK2nUyLFk3tWEIk3TvTIfoUi8nxoggGB5NpqhhGi3ijFAqY+TzmCIFnaT7P0hbxZ9tkfknTutpV5it5HSv59KiHiuKISlhJxJ+aAHSIu56f9j/aKgBVh3HLg7juEHu99TVgbg+lEpm1D3Lwyz+hHLi4YYVK5FGOq7jCJxYx2f32gUULoFRiwFzDk4ueaRv/BiFLBod47SNDADy7BE599cjfG1BOpjPvhk/elax+vhdOeuvoDqBsABkMjurP8neD8yCXo9zjcNM2FbJmLukBqsXAOdkkAq6Qm4+V6+0c/5bLJX+Dm/F7uEQi2fqYlFBz/vnn88Mf/pCvfe1rnHLKKfX1e++9N5deeqkUaiQSiUQikUg2A4So1npdNo4WXUZGi9VFl0lm2CvZmpjS2ySuzBstutSjx3q2iL6C5oipqYoj3ewzW7RzncyE40TTtFGF9FsCEy2or5YbJfSloTLlIZfycKW+zXM9/EpAGMzt/htFAd1KxA8zY2I6BlbGxHRMrEwyb2V07IyWTDkVO6PgZJPYLycbkskFZLIemaxLJuuSzQyTzQ9imUMoogiM32XTLbFQCSOHILQJI5swtgnD5DaIbMLIIYys+j5emCMMHYLIIYwtosgkFgYw9pXjYaQRRuBWIRnxrGUeUQLWdfhZKui63tILlE6WZWFZFrZtt6xP/58kkjmLoiRui0wGliyZ2rHiGFx3apFu6W2plBwzCGDjxmSaKpY1pqtHy+fJjdi2oFBgZaEA+fnJuiX5ZHubfpqDWMn/8a+j1gsh8CIPVVHrAtA+1SH+q/+Rejxco/9nELc8yIEn7g/WTlAuY69/nNe89MO6AFSOqkkMnPAIRER2z90gtxjKZYbUdTy34OkOAlBAoTTI3z0wCMDaPvjYISN/hySidhE++CCcf2uyen0GTnh3Q/xxwlYB6PCNOd6yfgFkswT5DL/cvkzGyJCx8mTsfNL/4xTIZHsp5OaTKywYuwPINKUAJJFIZoRJCTU/+tGP+M53vsPRRx/NqaeeWl//qle9iieeeGLaTk4ikUgkEolE0h1CBDXRZbSjZZTbJd0u3Ek+mtkaH9YcL6b0tXW7KIo1nU930jT3c0ynw6RT78lccZ3MdGzX1jTYG8cxnuvVY73GE1VSMaU0UK45VKpUSpUk/qvmUAm8EBHPXZuKbmrolo5pGxg1McXOWTUhxcTKJPNOzsbOWNg5EyejYmc1snlwMgInH5PJRIlTJe+RyZax7RKqUoK4BKJUi0ms3Yry1E565I9TyY7oXmmNAlPq/Sx5ULNN2/P1eQ0LXVEwa//f3fT6TGTbVF4vhBAEQUAQTEyYSnuR0v9lXdfrk2EYGIaBZVmYplkXegzDqL8G6Lq+1b0GSDZT0p6bWgTPlIjjRKzpVuAZS/Rxa5/FPC+Z1q+f+vnZdteRbkqhgD1iW0+hwGsLeyfL47j19uD1XMO/tN0WxmHixtYS4WiFX+JX/Y8l4k/gJgJQeYBKeYhyeZDD3rQ72LtCqYQ28BxHvPj9ZL+wghtXcSMPV3i4BGR2WQ7aNlAqURIDvDjvqY4CkPngAG95agCAoQz860gBKKhNw/BPj8FlNyWrPQ0O+3Ab90+okMXgoMEsJ61dBLkcIpvhpzsM45jZxAVk58g4aQdQD725BfQUFo3dAdRGYJNIJFsXkxJqXnnlFXbeeedR69PMYolEIpFIJBLJ5BEiSnpa2ggsol20WDyQDGxOCr2Do6VDxJjSN+3F0c1F8TPtOJlt18lE47cmG+G1uUd2TRdhEHYvpgyWKQ4UKQ2WKQ9XqBSTvpWqWxNUqgFhde66VDRDRTf1uqBiZgysjIWdq00ZEztrY2ctrIyViCpZm0zexsk5ZHIOds4im1PI5iGTj8nmAjKZKqpSqYsoQhSbBJXBRGCJm9eV6NrF4nWzk9FaZF8XVxrrlGYBpi6uNIsy2WmNRUz/x4xpHlQTQowp5rQTe4IgIAxDfN9ve99UnB7rMdN9p/pdvvn1qJ3g0yzspLft1jVvm8u9TZKtGFVtiB1TJQwnJvqMta1aTY5ZrSZTf//Uzy+TmXSPj968LZcjZ+Y4dNtDu3rYHYBf8JG224QQRCICNRnSXBp6XN/cAeQVccuDlIsbcd1BXnXccvjiHsnPeXAVR7/0vWS/0MWNqkkEXOzj4pPZcRkcvQOUSpS9Qdb01BxALUJ64nQM/+pz0t8SASjQ4OyDR5yoV5sG4A3PwA/+t7HpwI+AGY3o/4lUMhjsU8zw0VeW1IWcn203iGo5ZK0kBi7rFMg4PWSzvRSy81jQs3TsDiAZjSmRbDZMSqjZc889ufPOO9lhhx1a1l9zzTXsv//+03JiEolEIpFIJFsCSa9Lsa2jRYyIHGtsG2JyJRDKiGixNqKL0tfqhlFybQf04zgmTMWOKCbyU6GjQhSVplVEmQuuk01RFC+Fk84IIfCr/rj9KcXBMsUNRYoDJUpDLuUht9afUsUre3iVgKDq4/sh4Rx0qaiaimZqGKaGYRuYjoFZc6U4OQsn72Dn7ERUydk4WTsRVHLJbSbnkClkktu8Q7aQJVvI4ORsdD1qCCZ18aTU5FApIeJizU3XvL12K0qjXSwhMDyFSpoWQWXkfJOLZVTJfUOUmStuvE2Boih1UWM6aRZjUhHH87z65Pt+fQrDsC7+TLSTaroEn2aahZ/JCD2d1kkBSDJn0HXo7U2mqRIEU+vxab71a1G3rptMa9ZM/fxyua4Eno7bUhdQNouuNoYzLd3igKUHdHUKC4Cr+UDH7bGIQUleH/JRwE3rH2/q/ynilgdwS0kE3C7HLILP7AulEuHwBo596QrKgUslrFAOK/UIOFf4ZJctgJXLoVwmKBdZ3fNkG/dPDHgUn/H46OMD9bXnfBy85tHbSm3aCIe9BP/zX41NR3wAKkbDAZQJIBurZDDZ1XU464VldRHnF9sOEdlmIv5YeRw7RybTQzbTS09uPkt6tukc/5bJJIKlRCKZViYl1Jx33nm8733v45VXXiGOY375y1/yt7/9jR/96Edcf/31032OEolEIpFIJHOCRHRx2zpaRsWLNW9nklfgK4UWJ4tQehFKDzE9RKKHWBSIRIEwzhNGecLYIY6VLsQRnyhaRRS91FFQGesK7JlEUZQxxY/pLI2XrpPJ0amgPl1XHiwzuGGY4sYSxY1FSkMubupQKVfxyj5exSPwAgIvIvRDojnkUlFUpe5OMay0hN7EyprY2cSdkik4OHkHpyag2FkLJ5sIKolw4pDNZ8jkHTL5DNmeDNlCFsMY/fVLiDARSFpEluYosEFESyxYs/hSBL8EG0oIwmn8KZijBJNRLpY260a7WOQgzlwg7a/RdR3LmrzwFcdxXdAJgqBF7GkWfNIItlTsmQqpSDTdyR3pz2Qqok8nB5B8X5HMGoYB8+Yl01TxvM7CzkTFn7D2/lQqNfp9pkIaYzcV0Se9dZyWvhm16X3L0Az2XbxvV6eUAa7i5I7bhRD1x9FEzC3r/5YIQEEZ1x2iXNqIWxqkXB5gu6N64eP7QbmMKBY55uXLcf3UAVTBjRIBqCIC8gsL8LoVyc+1XGZV39NU1LiNAFTlkFeqnPVYQwD68qmwLtu0i1ubgD3Xwc0/ahzh2JNhba5J/PEhIzSywmAHz+HfntuuLuRcs80Q5YxOxsiStfNknDxZu4dMtod8dh7b9+3YOf5txO9DItnaUMQkv4XfeeedfPGLX+Thhx+mVCpxwAEHcN555/GGN7xhus9RItnkDA8P09PTw9DQEIXpsDNvZkRRxJ133gnAEUccgSatshKJZAtFiGqt12XjaNFlZLRYXXTxJ/VYsXCImoSVKM4TRLlkCnP4YRY/zOIFGTw/g+fbRE2iy2y7TjaF40S6TqafwA/aOlTKgy5DG4YZWp8IKsMDJdzh1KGSiC5eLfIrqIYEXkAURIRhhIjmgEtFAc3Q0A2tpT/FdBqCipO3yRQcsj0ZMgUHO9twpTg5m0xdSHHI9mTJ5jNkCxkM0+jq7zARbisjulVG9qykLpZWZ0uri2WyXVEdfjBjuVjUPIqST/paWrpaWkUWRTGn8ZwkWzNpd06za2es5XR+KhcLtBNL0ojNmSa92GAsoac5Gm4850+zA0i+P0o2S4RIRJ+puHua56f7/1jTJifwtFtnWbMuMjy14alE/PHLlN1BKqUB3OIAZXeQBbHN32cPrIs6Z73yfTb4g7hBBTeqUI6quMKjLHz2Kmf5rwd3ru+7/7HPsdaORghACXusg1uaRJ0jPgDPdNAKtx2Ge77bWP6Hd8CT82vdP3UHkE4GnUWRzYVP7lgXcn65bIiNGaUeAZex82ScHjKZArnsPHaZt3Pn+Lc58LvZWpHjiwndjjNPWqiRzDwrV65kv/3249JLL53Q/d7//vczODjI//7v/87IeXXDD37wA84880wGBwdn7RymwtYu1EgkkskjhGDDhg14nodlWcyfP3+z+2ItRAT+fRCvA3UhmAdNa7b/TCFEgIgGENEG4nADcbQREW1siRdTxGAyMYTKEKpSndRjRbGOXxNXgjCLH2TrQksQNuab18Vi+qJsRrpOxhI/piqoTGVwyPcDrvvWb3j2r88zf9s+jj/laBYvXbzZ/U9sCoQQVF2vRVApD5UZXF9kaN0QwxuKFAeKFAfKlFOHSpOg4lcDgmpAUHOnREFEFMVTyKyaBpRa1JeuJmKK2XCnmI6BlbXqcV+poJLryybiSU1McVIhpZBJnCm1qC/LNqf0d5S4WJq6VeqOllRoKSYulhbxpUlcSUWXybrl2mKNEFdGiCgtLpbmiLBmUSYjXSySzZ60q2csIafd8lSEmGaBpPm9r/l1Ju37SV0+cRzXXUObQgSaivNHVVVc1yUMQ2zbZsGCBfXt8j15fLaEz/dbBEJApTI10af5drqHQ3V93Ni2rreZc+uCiecHn0/i3/wy5fIAbnEjbs0FlIs03po9qO6Y+tyan/OKtw43dJMIuMjDjT1cfLapGFx/3671fY885iWeKoRtfxfLinDfdxrLb3o3PLi0/fkVPHjim43lk94K9y1r6gAKUwHIoCBMrnh8RV3IuXbJEKuyMRmz5gCy8mQyBbKZXjKZHvaYtxtKrWdJZDL1eXK5xMUmaUsUR/z5lT/TX1zDoqdWcWi5D23ZNnDEEVtlb1K348yTij5rplQqjfpQIge2Z5fLLrts1uJKJFsOq1ev5sorr+SjH/0oS5d2eDeUSCQtrF69mscee4xqtTH4b9s2e+2112bzfySqv0EMXwBxUw61ugQK56LYx07qmOlgxsRK332Ih2uiyiCKSIQVTR1CU4bRlCKaOoyhldDVEoZewtAqACiAVpvaMuJ7dRyrIwSW3LiiSxSbow7UVvywNHKZmSmKn+t855NXc80l17V0hPz8S//HwW/bh9Mv/fBm8z/RjiiMGmLKsMvQuiEG+ocY3jDM0PrmuC+X8nCFak1Q8SuJoOJXA0I/JAwioiAmjuJZ7VJRNSURVAwF3VTRTQPDthIxJWPWiuctnEIimOR6E0El11sTVUZ0pqQOFduxpv1vtRE/OJiU2sflRgRYTTwRHZwtrS6WyjSeldrGudIqoiht+lla95UuFokkpbmrJ5vNjn+HGlEUjencaSf6hLVIpjAM6/Pdous6pmmSyWQwTXOUSyZ9v24WfNK+oFTgGXk7cl3zWMtkzrEbptP503y7pQgZW8Ln+y0GRUm6UTIZWLJkaseK46R7Zzr6fNI4tzCEjRuTaaqY5tQi3dL5fH5axIQde3fset8vjBEBN5KfF1dT9IuUq8VE+LnlJtyrv49bGkRPX/7mz4d3v5ujtn+Z7bxVVIJaB1BUpRwnHUB5XYFDd4VyGUolhvOvULQCii1pnyEQkvcq8MAD9bU/exvc0VdbqNamoWRREfDyJY0jfPTNcPNOjQ6gbKiQEXoyKSbf+esKzGwBcjluXDzMM7kgEYBqHUBZp5D0AGX72HPebuj5HsjliLMZ1Fy+4QDSpzxcP6v8+qlfc+4t5/LMur8ReVXUWJDdCBfdCidXtoXLLoO3vnW2T3NOMqnf/HPPPcfpp5/O7bff3vJmJYRAUZQp59BKpkZPT89sn4JkMycIAi677DL+/d//neOPP15+AJVIumD16tXcf//9o9ZXq1Xuv/9+DjzwwDnzv5ReDTpSIFH8m8mEnwZaJQgRrUEMfIzV7mcY9g4dJaqMJ8IIEaNrVUy9hKmXMfUyRu22edlJl80yhu6iKBMfuBZCwQ8zdYEliPKEcS7pbxF5orhQ63VJel6E0oui5lDVJrHE1FBtFVvTyHYpqMhIkla+88mr+e+Lrh21XsSCe/77L1waXsmZ35z5CwGaC+oH1w8zsGaQgf7BetxXcaBEabCMO1zBLaaCStKfkjhUwnp/ShRGxFFMPEuxX4qqJIKKrqEbKpqR9KeYtUJ6K2MmDpW8XRdKUkGlZ0Ehif+q9aVk8g5Z+yEy8edwMlVUtfk5JX/HSu83Ji3OdkKIYEREWJOjJRVZOrlYmu8zrS4We5Rg0upiyTUV3jeLLE37Khn5/y+RzAE0TcNxHBzH6fo+I3t3uo1ng8kJJ5qmYRgGpmnWJ9u26/Mjt+m6Xh9jaSfmjCX6hGGI67oUi8Uxzyk9znSjquqkOn+66QHaVGxOn+8lEyTtucnlpn6sOE7EmukQfdxaHKrvw/r1yTRVbHv6RJ9pdkIszS9lKbX/oV/+Ek7/+mh3zcaN8M1v8olrrul6cP8qdz3D3jButYhb3Eh5eD1uaYByaQBRrcDxh9ZFndetv5EFlZeSDqCwQjmq4MZJB5AQEcrBu9Uj4MrZNVR1n6oOG4DEuh7Upgr6fQ/U3ez/dwJc2/v/2XvzMMeqOv//de5NbvZKKrVXbzRN09AL+yqiuGADiqO4sozrODrqqOOIfgW/g/jFcWXEEVH8IYiOgIigouIGog6yI1uzNPRCL1Vd1ZWq7Ou99/z+uEkqqUqqUtVV1dt5Pc95ktzl3JNUJbk57/t+f3Dq/+TKbbxEEM9/C0LlRO2LXwe3rQafWSMA2S4CuPBjcPXGw4h4HFHnD90png7lCLgD+L1BAt42/L5yC0RY17EaIxSBYBDT70UPhREVAWgBPj9/88JvuOj2iygUsvjTBXQbkhoMdcCHz4Po7Ts4561vhRn8PQ8mZiXUXHTRRUgpuf766+npUfEVC8Wvf/1rLrjgAq655houvPDCpttNjD4744wzWLduHbquc+ONN2IYBldccQUXXHABH/3oR7ntttvo6enhW9/6FmeffTYA9957L6961av41a9+xWc/+1k2btzIMcccw3XXXcfatWtbHvPvfvc7PvGJT7B9+3Ze/vKXc8MNN1RPZGzb5oorruB73/seu3fv5sgjj+TLX/4yZ511FgBbt25l+fLl/OQnP+Fb3/oWjzzyCGvXruXHP/4xiUSCf/mXf+G5557j9NNP54c//CFdXV0t9auYnmKxyFe+8hWAOS/cqVAciEgp2bBhw5TbbNiwgd7e3qbfmY1cJ9M9bmWbZvs0GAGvOupL4J4c3yuEc77c7voOjz8bRdfMGoHFEV8CrgyGt0aEcdeLMJqYXSSIZQewZJsjqhDGFhEkEdAiINpBjyK0doQeRdM70F0R3C4Dz37iOjkQKRZL/Owbv5pym7//4hmeeP8Tde8Jy7JIjaaJDY4yNpxgbDhOciRFctQRUxxBJUsulS8XpK+vn2IWrRpBpVyLYKE1FeFMTGm6QHfrTg0VQ68RVBwxxRvwODVSynFfofYgoWiAUDREuDNEMBysxn1VCtO75vDKOikt5O53gd3IVSIBgUz+J3heixB62cWSmSCupOuiwhq6WOxypFhlGbOLGmyMVuNYaRQFFizXYqmvzzLR+SKEiqxQKA5mNE3D6/Xi9Xpb3mdP6u5UzsVqL3idDiFEUyGn8tjn89U9dpevoL/77run7Nvj8XDqqafWxbi1IgJNta5CRQSbayoXysyV86c2Hq6WuTi/VxwkaNq4oLGnmGZz0afVOj6V28rnTD7vtOHhPR+f379nkW6V+8FgvWhgWfDxjzeOo5PS+UH6iU/AP/xDS2JRp7+TTn+n82AaLfVfeE/LT/+afIJEIUE2myCTjJFLjZJJjZLNxMlnk2h3nlwVdV4WuwdffgvZUkUAypO1C2RkgSwl/OsOh7QjFmWDuynpRUo6JD0wUQDSHnkUCs4Yfn8m/PgonOuWMuVWw8Pfg0Vlff6Lr4TvHe8IQIEi+C0Nv9QdBxAG/7VpBYvcHRAI8OfODA+1pQgYAXyeAH5viIAv7AhA/jDrOlcTCHdBIEDJ70EEQ7jaIuDzVScQLNvi0rsvpWAWaEsXEeWfYzkbKEDJA597NazfJNFn8Pc8mJjVL74nnniCRx99lFWrVs31eBRNuOmmm/jQhz7ETTfdxBve8IYZ73/jjTfy6U9/moceeoif/OQn/Mu//At33HEHb37zm7nkkkv4xje+wT/+4z+ybds2/H5/db+LL76Yb37zm/T29nLJJZdw7rnnsnHjxuqJ31Rks1m+/vWv86Mf/QhN07jooov41Kc+xY9//GPAiWi78sorufbaazn22GO5/vrreeMb38iGDRtYuXJltZ/LLruMq666iqVLl/K+972PCy64gFAoxDe/+U38fj9vf/vb+Y//+A++853vzKjfWgqFAoVCofo4mUzO+DU+EBgcHGRwcJBcbnzi5vHHH69eldbX16euGFIoGhCLxab9wZ3P5/nLX/6CpmkNBZS9FVlZqXXSEXoRn5GYYjvweeKcdfz/QROzvOpS+EGLgoiA1l5ujtBCbROV+2Hcwo2aRt2/uPOa32FbUwtz0pb81xuv5xviBqRtz3lE+HQITaBpAs2lobvGBRXD68btdeOpEVT8bb4JgkqQSFcb4a4wbdEQgbJ7xR/y43bv+zEFUlrI/B/q4w0nbwX2IHL45UiKjtjCHNZfEL6yoNKkoH1TF0ugvF8IhE9NjCkUir1CrXDSKrV1d2Yi8ti2jZRy0u/VVtB1fVqnTKFQIJ/P09nZOaO+m1Fxbc9E2GlVGKqcK1cubprrCwqFEHUijpSypfP7WCw2Z6+fQoHLBZGI0/aUUmnqGj0zcfxURNds1mm7pjqPbJFgcFy4Adixo/m2UsL27fDXv8IZZ+z5sWdJ2Bsm7A1DmGkFoHfxPt7VYr9fK6b5j3ySTDZONhlzHECpMbLpMbLZBP5bj4NMDtJpTon/DXIvkC1lqxFwWStPVhbJUiJ4xHKIO9tmAzGkKJJ1Q9YNzvm8TUUAsh97DMrTn395BXznRMb1oXT9GO++EY4sG7yuPgW+dhq4LQiUygKQrVN0azzdUSBY0rBtSUEHV83XkF6C56Pww0Vw1vbt9O3lv+e+yKx+TZ544ols375dCTULxLe//W0uvfRS7rzzTl75ylfOqo+jjz6az33ucwB89rOf5ctf/jKdnZ184AMfAKgKHU8++SSnnHJKdb/LLruMM888E3DEnsWLF3PHHXfw9re/fdpjlkolvvvd77JixQoAPvrRj/KFL3yhuv7rX/86n/nMZ3jnO98JwFe+8hX+9Kc/cdVVV/Htb3+7ut2nPvUp1q93ojc+/vGPc/7553P33Xdz2mmnAfD+97+fH/zgBzPut5YvfelLXH755dM+pwOda6+9dtLr8NGPfrR6/7LLLuPzn//8Ao9Kodj3afWH83TRE3tKJdN94hWVU91WriAUhVL1JG0qmoo0og3cq8G1GqEvrhdeyk0IT+N9FQcUA5uGWtpO2hI5F5YXAbpLx/C58Aa9BNv9hLvb6FwUpWdZF0uOWMSha5fRtajDEVMM9wE5we+4XpJgDYE9XL2V9lDNsmGwR2g5OkzGJizQJ8d+1blZyi6WhkXuK/cDysWiUCgOOmrr7syE6eruNHLuVOLYWo0ze/jhhwkEAtXYuInN4/G0/L1ZuQBIn+MrpGtje+fK+VO5XxGAKk6pmQpAW7duxbIs2tvbZyTeKRTzjtsN0ajT9pRCwRFtZhvpVnu/EhmZTo/X92mVwcE9fy77IEEjSNAIQls/TFN+6S18gLe02O/lZp5P5ZNk0qPkEjGy6VEyyVhZAIrTedoayJYgnebE+CPk88+TKWUdF5CVJ2PnydpFMhQJrVgEYWfbTGAUKFHSIa5DvCwA5V1gCchrNkk/2ALHCVT+k2dsQMD7AnAZ8PkD9O+5J8xKqLnuuuv40Ic+xM6dO1m7du2kk42jjjpqTgangNtuu43h4WHuu+8+TjzxxFn3U/s30XWdjo4O1q1bV13W09MDwPAEK+Spp55avR+NRlm1ahXPPvtsS8f0+/1VkQYcN0al/2QyycDAQFVsqXDaaafxxBNPNB17ZZwTxz6bfmv57Gc/yyc/+cnq42QyyZIlS1p6ngcSH/zgB3njG99ILpfj5S9/OQBXX3119f9AuWkUisZ4PK0JEO3t7dWrG5tFlO2Js0ZKWf2xPlOioU2csifXX8gkFB+A4gNYhLDpQYpepNYHWh+4+hF6P5prEbq7F01XE7UHKv0relraTnNraEI4dV9sOfuYMglWySJXssglC4wNJNi+oclJv3AmkTRdQ3NpuFwaLsOp9eL2OnVevAEP3mClzotT46WtHEkW7g4T7Y7Q0R+loy+K17cw4qOUubLIMlS9lXXiS3k5rV5tLWjpBQ99HuE5ZVxkwXtAilwKhUKxr7IndXeGh4d58sknp93esiySyWTTVIlKPJzP58Pv9+P1evH7/dVxeb3eORdmJlIrAM21GFLrAKoVckZHR3n++een3X/Xrl3sKrsL/H4/kUiESCRCe3s7bW1t8/7aKBQLgsfjtD11j0npiD4TRZy//Q0uuWT6/dWc1Izwurx4g166gt3TCkBn8UFaLRjxGavERwvl+j/x3ewe28FP/v4jfjzwO6BIQXd+begSfIybcwKa8y9wdQbnWOrvOYlZCTW7d+9m06ZNvPe9760uE0IgpawWulPMDcceeyyPPfYY119/PSeccMKsfxxPFNMqV/TUPgaa1C2YHY2OOZsJyEbjnLhsT8ft8Xhanmg9kKlEm2Uy4yGXxxxzDMcdd9xeHJVCse/T0dGB1+udMh7B6/Xyspe9bNrP8YpgM1WtmZnWpZlq3wqjqUPJFcN43YlJNWrAOaHKFyPc/9xH8HmSeI0xfMYYPiNed9/tyqGRQiMF8kXnwn0Lxz5deY5SI1cMky+1ky9FKZodFK0OilYnpt2JaXeDFqpmkFcKx1buz/SxpurVLCjnfng937v4R1PGnwlN8G93vJf1Z6+ve08UCiVGd40SGxhjbNcYY7sTJGMpEiMpp0ZNIksmmSWXLteoyRYp5kuUCiZm0SzXqLGxLbvsMJlwYOkImpbt1LNx/i1nFiUz+cmApgmErqHrGrrbqUnj8rgxasQfX6hSkyZAqCz+tHUGiHQKol2Szp487Z1JXPrIuPhSEWLkDCJZRQT0btB6yrfdCL0HtG4o30oRgZEznWM0FGwEaL0I/zsQQk0wKRQKxf5ERVhZsmQJGzdunPb89KSTTiKXy5HP58lms+RyuWrL5/PYtk02myWbzRKLTXRaOng8nqaOHJ/Ph9u977pZNU1rKP5Eo1FeeumlKV8/t9tNd3c3iUSCdDpdfZ0GBgYAZ66ira2tTrwJBAL77GuhUMw7QoDX67Tu7vHlL385XHMN7NzZuE6NELB4MZx++sKNVdEUt+4m4o8Sydok/vhLXr/tc6StHG5A9zu/LtqK4DWd+xWhxnLDkTF4107QlyxRf88GzEqoed/73sexxx7LzTffTE9Pj/qSmUdWrFjBlVdeyRlnnIGu61x99dULevwHHniApUuXAjA2NsbGjRs58sgj97jftrY2+vv7ue++++ri3O677z5OOumkfa5fhUKhmAohBGvWrOHRRx9tus2aNWta+r5cSFFBSllX2FbmgfynyqXEa7dzbtPiYyw/7NQ60SdlWcRzFlbaeYydRtd249Z2Y+gxDH0EwzWK1z2K1xjD646jaTY+zxg+zxiwueHYSqaXfDFCrthOrthOPhchW76fK0YolMJI2foEcu2VmDMVeWYjEB3M50aG4eYt//YGfvr1Xzbd5th/WM3Rxx496XXyeNz0Leuhb1lrrpxWyGVy7N4ZY3TXGGPDCcaGEiRjSVJjaVKjGbLJLLlknmw6RyFTpJgviz95E7PkiD+2ZWNbEmk3KnAKtiXBsrCwIFciN3mrGSFEuY6OHkJ3taG7BW5D4PZqGF4dj9+FN2DgCxn4Q36CkRChaDuhjk7au6O094Rp747QuaiDcGcb2oSreQUg2y5Fxj/GZHeN8zcRbZcokUahUCj2Y1o9P21ra6OtSRF027bJ5/N14k1ty2az2LZdraETj8cb9uNyuaYUcrzefc+x2crrd9RRR1VTJ0qlEvF4vNrGxsYoFoskEgkSiQQvvfQS4LwWFeGm0rxe74I8J4Vin0XX4ZvfhLe+1TkRrhVrKp8NV12lCs/vA+za9SIP/eIa3viL5+APfyBsmhzzNtgZgvNzK2g/8RX8a+EOCq4cerqAZgMa4Aa3CVfcA7oU6u/ZhFkJNS+99BK//OUvOeyww+Z6PIoGHH744fzpT3/ijDPOwOVycdVVVy3Ysb/whS/Q0dFBT08Pl156KZ2dnbzpTW+ak74vvvhiLrvsMlasWMExxxzDDTfcwOOPP86Pf/zjfbLfg5Xe3mn8kQqFAnAcaccffzwbNmyou/LO6/WyZs2afTI6UAjhxEBpmuNU9L4Rmfcgk1+sKzQu9D5E2yX0eNezJ9PnUkpsq4RpDiHNAaS5E2kNgL0LYe9Ck7vQ5BCaSOB25XG7dhHyNy5UKaWgZLVTMKPkS1HyFRGnECFbCJPJhymWPFQmnStFfCu57fNNRbBpJvrMtTi0r01u/PNX/xGA2/7rzjpxQ2iCE9+yjo9e9U8L9p7wBXwsPXwxSw9fPCf9WWaSTHwbIzu2MjIwQGJ4hPjuBMlYmuRYnky8SDZpkk1DPiPI56CYg1IBSkWJWZTYpsSyJNKSDS8alBKkJbEtiTnzJMOGCCEQuhP7prs1XG4XbuNU3B4Tw2vj9YPXL/GFXATalxGMbiEU/bET+9bVRrQ3QrS3nc7+KMFwQLnUFAqFYj9gT89PNU3D7/fj9/sbrq/UdZnoxKltlbo5qVSqab1GIUQ1Xm1iq8Ss7Y0IsZm8fm63m66uLrq6ugDntcnlcnXiTTwexzRNRkZGGBkZqe7r8/nqhJtwOIzLNavpOoVi/+W88+C22+CjH62vRbN4sTOpf955e21oBzvFbIrf3fZlfvL3/+FefRvChlP+At0mcNxxfO/ENxF+x7sR5Qv92194K5fefSmbxPNYhTzYEmLwjXvgnPwSuO0q9fdswqw++V/96lfzxBNPKKFmAVm1ahX33HNP1Vlz5ZVXLshxv/zlL/Pxj3+cF154gWOOOYY777xzzjJhP/axj5FIJPj3f/93hoeHWb16Nb/85S9ZuXLlPtnvwYTH4+FXv/oVAMuWLdvLo1Eo9h/6+vro7e0lFotRKBTweDx0dHTsc5PoUyG868HzWig+AvZu0LrAOGFOrqwXQqC7DHTXEqB5HTBpZ8EeBGsQrAFk+dZZNgDWIEKUMFyjGK5RQs0uQhR+pNbnNNGDRQ82PZiyG9PupGR1YEt9VrFxjbarjeGc+Hi+aSQMzZd7qFVh6J+/+o+854p3cue3f8fmZ7bSsbidcz7wGnr69k03tpTFSZFjsloTZhjKNWGEzBAEgr1wyHTXMmgd5cixchSZ1o2oxpKV48i0KLYtScRSjOyMMTo0Rnw4URV/UmNpMvEMmWSOfCrvxL5VIt/yJUrVyDcL25RI224i/kikKbFNG7MABZopQCbwfLlNjdAEmibQXE7km8ut4/a4y/V+3Hj8Hnzlej/+sI9QJEioI0hbNESkO0y0t51oT4SuxR34Aq3XX1AoFApF68zn+akQAsMwMAyDSCTScBvLspq6cSpunYqokcs196QahjGlK8cwjHk5v5jt6yeEqIpc/f39gHN+mEql6oSbVCpVfe6D5clpIQShUKhOvAmFQvvk+ZNCMaecdx68/vVONBrAz34G//APynmxN7AsNvz6B9xy79X8zHySuGFD+c9wcjJA7FPvpvv8j8GqVUQm7HrOynNYv2I9D+58kMH4Trb88m4ON4Oc852z4Ywz1N9zCoScRdGQ733ve1xxxRW8733vY926dZNqkbzxjW+cswEq9g733nsvr3rVqxgbG2t6wnUgk0wmCYfDJBKJpjZwhUKhUOwdpLTBjtWJN1UxxxoEewDs0RZ6Eo4QpfeB3g9aH0LvH3+s94Fob/lHcSVGbk9qCM2kHtFs6r7NFfMVGddoXcX5NVuktJz/l0q9F3sIWRFkrNo6MGOtdyqCdTVf0LsRVfGlUhumEyHmtuDxTCiVSowNJYgNjhIbHCW+O0liJEkyliI9liGTzJBJ5Orr/eSK1Xo/ZsnCLtf7se0G9X7mA+FMTmm6hl4RfwxH/DG8bgy/gS/gwRus1PvxE4wEqq6fSGcb0d52OhZFifa04/HuvddfoVAoFK0hpZwyXi2Xy7XkiNY0rerA8Xq9VSdObbzavugGNU1zUmRaoTC5fp6u65Mi03w+dZGD4gCluxt274YnnoCjjtrbozl4kBIeeghuvpk7HryRj5wWr67qLbh5e/Bk3nHOxSx/+bnjkXSKlmh1nnlWQs1UX25CiLrixIr9EyXUKKFGoVAo9mekzFcdOViD5Yi1GjHHGoCmjoJavHXCjdD7QasVc3oRwjPfT6chFdfObESe2QhEe1sYmizkaBjuAh53Aq87gcedwNDHcLvGMLQ4Ln0Ul4ihizGEaNXdZJRFlu6q6CJq3DCVdUILzOvz3VfJ54vEdo4wumuM0aE48eEEiViK1Gia9FiadCJLNpUjnyqQzxQo5IqO6ydfwixamOa4+CPlwok/muaIP5pLw+XWcRkuR/zxOa4fb8CDL+SIP8FwgGB7gLaOEJHONiJdYaJ97XT2RYn0qCgahUKhWGgq8bW1TpyJQk4jYaMRzeLVKgLPvvIZ3ygyrdE8m8fjIRKJ0N7eXhVv9pXnoFDsEevWwdNPw+9/D2eeubdHc8BjbXiKv9zyFVx/vIfTH3CcfQkPnPQhjVcZq3jHqR/gFW/4CLpbXQQ1W1qdZ57VJ/hCRnkoJhMMBpuuu+uuuzj99NPnfQxnn302f/3rXxuuu+SSS7jkkkvmfQyK+aNUKlVr+lx44YWTXHMKhUKxryOEF1zLnUalUs04UkrHdWMP1Is5FUeONQj2CJAHa4vTaDyvLLVOR7jRasScqkunH7TovERVaJqGpmkL9oO8VRFoLhxFUubK4ksSrzuJ13CEGK+RwOtOlsWZJLpeamnsUgoKpRD5UphCsY18KVxzv41CKUy+GKZk+RGiWYycia4Poesjc+og2p9iTLxeg0Ur+lm0on9O+pNSkk5mGR0cZXRojNFdceK7E6RiaRKjKTJjGTLJLNlkjny6QCFbI/4ULMySE/tmm47rp7Ye0vhBwLYktmVB0aJIa/8zUyEECM0RfirOH7dnXPzx+j14gx58QZ8j/rQHCEWCjvjTHSbS1UZHXzudizppiwb3ySu8FQqFYl9BCIHb7cbtdjed3LIsq6krpxKxZts2+XyefD7P2FhjF63b7Z4yXs3j8SzI93bleJUaOFLKhpFphUKBoaEhhoaGqvs2ikxT3zOK/Y6eHkeoqfnfVswxL73E1puu4Za//5Cftu9iMATHHgqnP+mHf/gHwhdcwBOvfgVe/55dvK7mF2fGrBw1ir3Liy++2HTdokWLFsT+unPnzqb5sdFolGg0Ou9jmE8OdkdNJpOpCoLpdJpA4OC8clihUBzcODVLdpUj1iaIOVZZ4CE/bT+OS6N/yog1IZoV2jmwkLJUjq0bKkePTagDU7kvky33ackQluzAtKOYdpSS1U7RilA02ymYYQrFMPlSENsWU4pLe4uK4LandYQmrmu2/f4kDM0Gy7JIJzLs3hFjdNcY8d0JxoYT5ci3susnniWXzpPL5ClknMi3YsHELMe+2aaNZdlISy6Yk0xoAqEJdF1Dc2u43C7cHpcT+eYz8PgNfEEvvpCPQJufYLufUDRIuCNEuDtCtDtCtDdC56IO/CGfmpRTKBSKGqSUFAqFKePVSqXphXxN0ya5cmoj1rxeL/oC1V4wTZNEIlEn3jSao9E0rWFk2oF+PqDYz7nwQrjpJrjySvjkJ/f2aA4chofJ3Po//OpP1/IT90YeWDy+KuIKct6i13LZu2/A3RaZs0Oq+UWHeXXUgPNC//nPf2bbtm0Ui/XRIR/72Mdm262iBQ477LC9PQQWLVq0t4egUCgUCsW8IoQBrqVOqyyrWe9EN8XrhBtZ68ixBsDeDRTB2uq0yr4TjiVFe52YI2odOXpfud7Jvjvx6rwWYzU1X5zb8VowFSFmhNbzrrwTar50I/TaCDJnuVt42dPrsqSUc+4Kmup+rTBUibBrJX9/LqiIN7N1BM1024WeCNJ1nXC0jXC0DY5aPid9mqZJfHeC2MAYo8NjjA3FSexOkRx1Yt8yCcf1k0vlnMi3bNFx/pSFH6tkOc4fSyJtm0bajyw7gmzThgIUWopmnBqhCTRdoOk6ulsrR76Niz/egAdf0Is/5MMf8RMq1/tp6wwS6YoQ7Yk4sW/9Ubz+g0NMVigUByZCCLxeL16vl/b29obb1MarNYpYq7hystks2Wy26bE8Hs+Urhy32z0n340ul4uOjg46Ojqqy/L5/KTINNM0GR0dZXR0vH6jYRiTItPUVe6KfYrubudWOWr2nGQSfv5zR/j64x/5+OstfrPSWaUZBmeEj+Edr/kY6499G4auos32NrMSav7+979zzjnnkM1myWQyRKNRRkZG8Pv9dHd3K6FGoVAoFArFAY8QAkQ7aO3gXu0sm7CN48oZqquPIytunMoymXVEDnMMzA3OfpOO5kbqvVVHTp2Yo/c5Lp15qpsi7XSd+DLJBVNZ3nKklAu0rrpaMKJaE2a8NgwiuGCT/EKIqriwEEgpp42Mm0mk3HTCUa0rpCIMLRRzJfq0su98CUMul4vOvg46+zqm37gFpJQUi0XGhhKMDMQYHYqT2J10Yt9G06THMqQTWXLJLLl0ud5PtlCOfDMpFUyscr0fy7KdyLcm4o9lS6ySTSkP0FoNh6YI572i6eORby5DdyLfvOP1frwhL4E2x/kTigYJdQQJR9to74kQ7W0n2ufcGoaaFFQoFPsOLpeLUChEKBRquL4SndbMkZPNZrFtm0KhQKFQIB6PN+xH13X8fj9er7fOjVPrypntd5nX66W3t5fe3l7A+b7JZDLE43HGxsaIx+Mkk0mKxSLDw8MMDw9X9w0EAnXiTVtbm3JnKvYePT3OrRJqZkc+D7/5DUO33sBPt/+WNz9lsijlrHpz6TCeCZd450nv420v+wB9ob69O1ZFHbMSav7t3/6Nc889l+9+97uEw2EeeOAB3G43F110ER//+MfneowKhUKhUCgU+yWOK2cJsGR8Wc16x4mSrIo4WAPIGlHHEXTKIoi13WmVfSccS4pIfZxajajjiDldCKHXHLtY43RxBBdZJ8iUb2Wm9SesRescMGg9iKr7pSzEaNF92h20EAghFrTYb0UYmuuaQs3WNRKGWomUmQvm2hU01b6zncASQuDxeOhd2k3v0u45ed5SSnKZHKO7xojtGnNi34aTJGMpUmMpUmMZsokc2VSOXCpPPltwIt9yjvhjFS3MkoVtlZ0/soH4I8v/S7bjECI3B39TAZrmiD+ay4l8cxku3F4XHq+BJ2DgCXjwB30Ewj4CET/Bcr2fcKcj/nT0ttPRFyXS3bZgYqtCoTj40DQNv9+P3+9vuF5KSalUaujGqbRisYhlWaRSKVKpVMN+Ku6fRm6cirDT6medEIJgMEgwGGTxYifjyLIskslkVbiJx+PVi7AzmQw7d+6sPt+2trY68cbv96vINMXCoISamWOa8Kc/Ubr5x/z+sVv5yaE57lkO9mIodnbxyeM+Auefz1mHreAcceDHIe+vzKpGTSQS4cEHH2TVqlVEIhHuv/9+jjzySB588EHe/e5389xzz83HWBWKBUPVqFEZkgqFQrGv4NR1Ga4RbwYnR6zJxj/26xGAAWiABTOJVhLBSZFjolZ80bvLQpCyyyuoi3jbU9Gnlcd7CyHEnLuCptp2oa9sllKSjKcZHRwlNjjG2HCcxEiSxEgl8i1DJpEjl8w59X6yRYrZIsVCqVzvx6o6f+xytNtCIAQIXas6f1yGI/4YXheG1xF+vEEP/qCXQNhPIBIg1B4k3NlGuDNEtKedaF870d522qJBdUW5QqGYMyzLaurGqbh1WpmiMwxjyng1wzBmNAlbLBbrhJt4PN7wAgu3212NSquIN4ahzv0U88BvfgOvfz0ceyw89tjeHs2+i5TwwANw8808+/ubuLk/xu1HwqgP0DTw+Tip/0T++VWf4pzDX79XhqjmFx3mtUaN2+2unrB2d3ezbds2jjzySMLhMNu3b59mb4VCoVAoFApFqwjhBn0RUusHVxKsYUTV8VJ2wZg7y8LNbqduTsM6MJLpo48M0MKgdZbdOYeAawXCtbwcu9aNEAvnBFHsnyykqCClnNIxNB8CUe2xF1Isqo3oWwiBSAhBuD1EuD3E8tXL5uQ5mKZJcjRFbGCU0aE4Y0NjxHc7wk9qLE06niabzDuun3SeQq5c7ydfwixWxB8b27KRFefPBKQEadrYpo1ZgEJmbur9CE2g6+ORby7DheEzMHxuvH6n3o8v5CMQ9hNsDxBqDxDuDNPe1UZ7d5iO/g6ife34Q6qIt0JxsKLretXh0ggp5ZTxarlcDtM0KRaLFItFEolEw340Tas6cBpFrHm93rrvacMw6OnpoafsYpBSks1mJ0WmlUoldu/eze7du6v7+v3+OvGmrU25GxVzgHLUTM3TTzs1Z265BbZsIeeCcz8MWUOAz0dPuJ+3nfge3rnufA5tP3Rvj1YxA2b1S/vYY4/l4YcfZuXKlbzyla/kP/7jPxgZGeFHP/oRa9eunesxKhQKhUKhUBzQSJkvx5ANVSPHZE1NGCo1Yci32KPmiC0Vt4voAi0AuEFIkAUn0syKlWvlDIJMAEWwdzvNfHZ8fDX9Sq2nQcRa//gyEVKTkIoFQwhRdbYsRCFkKWVToWc+YuQmCkOmaWKa5rw/TxivLzRV9NtsxCCXV6fvsB4Wr+qvWz+bz43KazI2HCc26ES+jQ0nSIw4sW+Zcr2fbDJHLpUr1/spUsyXKBVKmAULs2Q6rh/L+ds2q/cjbYlt2pQKc/P6C02g6QJN19HdGm7DhctTdv34neYP+fCFvATDAYLRcedPe3eE9u4InYuiRHsjeHyeORmTQqHYuwghqmJKMyrxas0i1gqFArZtV6PMmtEsXq0i8AQCAQKBAIsWLQIct2wymawTbzKZDNlslmw2y8DAQPU5TIxMCwQC6txQMTMqQs3wMNi24w452NmyBW65BeumH/O/qQ38ZRl8bguIQADfm97EW1cXGO1t4x3rLuCVh7wSl6YurtsfmVX02SOPPEIqleJVr3oVw8PDvOtd7+Jvf/sbK1eu5Prrr+foo4+ej7EqFAvGwR59Zpomd9xxBwBvfvObFzRHX6FQKA4kpDTBHqmr+yJrasJUb2Wy9U5FuC6CbLwOTHdNHZjOGTtfpJ0Ge1c5Ym3AiVerxK3ZA2DtAlqYoBSBsvvGEW5EVdSpLOtxXEIKhWJaJgpDcykINdquVhhaaGYjCM1WMJpKGJJSUigUiA2OERscJT6cYGzIEX9SY2kn9i2ZJZfMk8vkyafL9X7ypbLzx6nhY5nO6yntBvV+5gNRjuMrR77pbh234cLtcZw/Hn+53k/Ihz/k1PsJtQdpi4YIl10/0V4n8i3SE8Yw1Oe0QrE/YlnWtK6cVj7r3W73lPFqHo+HUqlEIpGoE2+KxckuRpfLVXXdVAQcj0cJzIopKBTA63Xux2IQje7d8ewthobg1lvh5pvZ+uz93LoGbl0DAyHA4+Guw7/A0W/9CAQCSCn3SUFUzS86tDrPPGOhRkrJ9u3b6e7uxlt50ygUBxgHu1CjUCgUiqlxCm2P1btd6lww5Vt7hNZn6Lw1NV+cWzFBkEHvRoi9c/4lpVUWncoCjj2ILIs6ldo5yLEWehLl5zjuwhFaX91jRHif/KGhUBzo1Ma5zVdNodr7s7hmcM6YyxpC0+0rpSSXyTG6K87IQIyxoTiJWIrkSIpkLOW4fhJZMskc+UyeQqZIIVukVChRKpiYRROrZGNbFra1cPV+EKBpFfFHd8Qfjwu3x43hc+Pxe/BWxJ+wj0A4QFs0QCgaItIVJtoTccSfvnYiXW2q3o9CsQ9QEaOnEnIa1aeZiKZpDV05mqZRLBbJZrNVB04jYcjn89WJN5FIREWmKeppb4d4HJ55Bo48cm+PZuFIJOCOO+Cmm8j++Y/8+jDJT9bC35YAhgE+H+FwN+eteRv/fPw/sywyN/G0ivll3oQa27bxer1s2LCBlStX7vFAFYp9ESXUKBQKxcGL4yypjxyTdeJL+T7T/4h10EHrqhFhuhF14kt5+QEQGSZlbly0sQYcIceuceZYA7T0ugl/1ZGD3uvEq+l95Yi18jKhitcqFPs7FRfPfNYUqn28N5lLV1Cl5VI54sNJErEUqZEUiVia9GiadDxDeixDphL5li6QzxYo5hzXT6lgll0/jvOnEu22EAgBQteqzh+X4XKcP143Hp+BJ2DgDXjxh7wEIn4CbQHaOpzIt7aONqK9ETp6o0T7IgQjASX+KBTzgGmak8SbbDZLPp+v3raCx+PB6/VWo0lN0ySfzzfcXwhBKBSqE25Cof3/3FixBxxxBDz/PPzpT3DGGXt7NPNLLge//jXcfLNzW3Dqit69HP7xHW7w+RA+P6889FW8c+07Wb9iPR6XcqXtT7Q6zzxjv5GmaaxcuZJYLKaEGoXiAEVZExUKxYGIlOX6KzW1X2RNTZjqrWye5z0JLVqOGqt1wfTUu2C0KEIcHBNJQvjAdajTgIk/raW0wR4tR6kNTohYK4s6dgxkFqxNTqOxJ0lqXTXiTd+4mFOJWRPt6se9QrGPUxEcFuJcU0rZsmNorgSjWuZdLIpCMOomSDtCRGclCEkpKWQKpGIZErtTZMaypMfKbp94lmwqTz6VJ5cuu35yRYq5IqWCWSf+2JZEWjaNLgmVEqRpY5s2ZgEKmckxSTNFaAKhCSfyzaXjMnTH9eN1Y/gMvAEPvqAXXznyLRh2xJ+2jrLzp7edjt52on0R/CH/Ho9HodjfcblchEIhQqFQw/W2bU8br2ZZFoVCgUJ5wrkRlRjKSsxnMpkkmUyybdu26vpKnZtKm6p+j+IAo6fHEWqGhvb2SOYH04S774abboI77mDITvGz1eA7Et6bPwIuuIBXvuNtnPz3z/LKZa/k7WveTn+of2+Pesao+cWZMasaNXfeeSdf/epX+c53vsPatWvnY1wKxV7lYHfUZDIZgsEgAOl0mkAgsJdHpFAoFM1xJv9jdS6YSRFk1lCLsVxlRKC+5oveM8EF0w1al3J1zANS5p16ODX1cerq5VgDQPMf/eN46uPVakSdynIh1JVoCoVifqitLzQfsXGN1u0tKoJbo1pAAPlkgcxYlkw8RzaeJ5vIkk3myacK5JJ58plCOe6tUK71Y9ZEvlnYpo1t2dgLVe8HR/zRys4fl6HjcuvVyLeq+BPy4g/5CEYCBCOVyLc2It1hoj3tdPS1E+2NYHjVuYLi4EJKSalUqjpxGgk5jWrZtEJFRIpEInR2dtLR0aEmfg9U3v52+OlP4ZvfhI99bG+PZm6wbbj/fsc5c+utlGK7+eOhcMtauOcwHcvvpad9MQ//61O49AOjVpyaX3SYN0cNwLve9S6y2SxHH300hmFMUrRHR0dn061CoVAoFApFFacOTKpGcBmqccHU1oYZoaUi9wC4J9eBqRNkusvLgvP51BRTIIQXXIc4rbKsZv14faDx+jiyRtRxbncDBbC2OI1mrpyOmoi1sphTG7N2ELmhFArF3CKEqAoXC0GtMDSfdYVqxacKlQg702z+Xay1QajNR2ipD2jfo+dqlSxKWZNsokA+URZ8UgXySUfwyWcKFNNFCtlSWfhxxB+zaGKWrLL447xeson4I22JZTvblvKtRp1OQU29H03XcLl1XLX1fnwevEHH+RNo8xOM+AlGg7RFQ0Q6w0S6w3T0RmjvbSfSE8btVhPTin0XIQSGYWAYBuFwuOE2lmU1FHAq0Wq5XK5hHTPTNBkbG2NsbIwtW5xzPE3T8Hg8+P1+wuEwkUgEv9+Pz+fDMAzlsN5f6elxbvd3R42U8NRTjnPmllvgpZd4vgNuXge3rdMZjXjA5wPD4IT+Ezh/7fkLdU2CYh9kVt/uV1111RwPQ6FQKBQKxcGE45qoFVuGkHWPy03mWuxRgNZZ43apRJB117tgVBzWfo8QAkTUiZ1zO87uyRFrxXFXjj1YL+ZYA46gI3NlJ1YMzKed/SYdzUDqfeMuHK0SsebUyUHrQ2gqJkehUOx99oYwNF+RcY3W1U7Y6m4dPazjDXuAuUk/MIsm2bE82USOXLJAPpl3btNFCpkixUzRqfGTMynmSpgFE7NgUZro+rGa1PuRYFsS27IAi2JursQfDU0X6C4d3dDr6/34DbxBx/Xjb3OcP6H28ci39u4wHX3ttPdGCHe2qXo/igVF13WCwWD1SvuJSCknxatlMhlSqVTVkVP5XLBtu7pNLBar60cIgc/nqwo3ldtK83q96n9/X6W727ndX4WazZsd58xNN8Ezz4wvDwa58aJD+EH3AHg8dAe6edvqt/HOte9kRXTF3huvYp9gVkLNu9/97rkeh0KhUCgUigMAKU3H4VKJHLOHa2LIaoQYmWi9UxGuii/1dWBql3UihLq6VOEghAGupU6rLKtZ77hyEnVxatKeEK9mDwNFsF5yWmXfCceSIjIhYq2/xqXTV47IUxMACoXiwEIIsaBxQxXXznzWFPIH/Vj9zuNZJMRPopgtkk3kySby5BI58skiuVSBQqoS9VaimC1SzJmU8uPij1WysEr2eL0feyrxx8a2wCxakN3jISOEQOgCXdccQcyt4/bUiz++oBd/mw9/m59gJEBbR4hwNFSNfGvviRDtixAI+9UEuGLWVASWqWrSlEol4vE4sViMeDxOJpMhn8/XvX+llGSzWbLZ5m8Qr9dbJ95MbG73gRFBtd9RcdQMD+/dccyEwUG49VZHoHnwQWwB9y2Bm8/VeF/wdE5480fg9a/n/NQmhh/8Ju9c+07OOOQMXJr6Hatw2OP/hHw+Pylb8mCs6aFQKBQKxYHMeNzUcF3tFznBFePEkLU6ueGdUPOlB1EnyPSA3uUUqFco5hDHlRMBLQLu1c6yCdtIWSr/n1cEnJpaOZVlMgMyDmYcTOdKucn//W6k3lNXH2c8Yq3s0tEOzqxmhUKhaJVKHZyFEoca1ReaTwdRq2MqZk0yY1lyCcfxk0vkKaQd508xU3b/VJw/+ZIj/FQj3+yy80cibZtGWpSUEmlKbNOmVGg1VnZqhCac2DeXhu7ScRku3B4XhtftuH4CXrxBD/42P4FwWfyJBol0hQl3tRHtcWr9tPdG8AfVOaFiHLfbTVdXF11dXdVlUkoymUw1Hm10dJR0Oj1lP/l8nnw+z9hY43qWbrd7SiHH4/Eox/58sL9En8XjcPvtjnPmT38C22ZbGG49TfCTU0LsDAvw+fCsPZYTznobAOv867jujdft3XEr9klmdZaTyWT4zGc+w6233jrJVgi0fKKhUCgUCoVi7yPtTJ34Uu+Cqbml1ZgOHbSuOhFG1IovlfsipH7UKPZZhHCDazGweHxZzfpqDaWa+jh18WrWoCNeUgJrh9PKb6HJrpzweLya3oeoEXUcMacLIRYmzkihUCgU48LQQlCpLzRXNYVaEYwq2KZNPl0gE8+TS+bIxwvk0gXyqQKFVJFCtkAxW6KQdcQfs2BSKpiYxXHnj23ZSMvGnrLej8QybUqYQGGPXzNRV+9Hw2W4cHlcjuvHZ+AJeKqRb4Fq5FuQcEeY9u42on1Roj1h2nsiGF5jj8ej2HcQQlQj1ZYsWQI4c5TJZJKxsTHi8TjxeLyhw0YIgdvtxuVyIaWkVCphmialUolSqUQymWx4TE3TGrpy/H5/dflCxVIeUOzLQk02C7/6leOc+c1voFjE1OAXq+CWV0a5r8906s5oGm2eNs478jzOX3v+3h61Yj9gVkLNpz/9af70pz/xne98h3/8x3/k29/+Njt37uTaa6/ly1/+8lyPUaFQKBQKxSyQsugUVa9xwUh7qEZ8KbtgZKb1TkV7NX5s3AXTUxdL5hRgVz9GFAc2jiunzamQ7T7CWTZhGycKcLg+Yq0s6jiPB0EmnRg2MwHmc85+k46mI7XeejGnGq1Wduloofl+ygqFQqGYB2rrCy1ExFJFGJprV5Bpmti2TSFXID2WIT2aJT2WIZcokEvmKaSLFDLl2LdMiVKuRDFvYuZNzGKN+GPa2KZ0BCA5lfjjbF/Kwx6LP8L5O2i6hu7S0GvEH6MS+xbwVGPfnHo/Ado62oh0R+jsbSfaEyHaHyXS3bagsYCK6dF1nfb2dtrb26vLCoVCVbSptFKpRLFYrEsNcrlchEIh/H4/brcbIQSFQoF8Pk82myWfz2Pb9rTxah6PZ9p4NXUB2wRqhRopYW+/PqUS/PGPjnPm5z+HWqfW6tVoF5zPV8O3sb0wjBBeTl96OuevPZ+zDjsLj8uz14at2L+Y1bfHnXfeyQ9/+EPOOOMM3vve93L66adz2GGHsWzZMn784x9z4YUXzvU4FQrFAmIYBjfccEP1vkKh2LeQ0gZ7tMbxMjTugKlzxoy23qkI1Istek+NC6Zy2+XU/lAoFC0hhGvcFVNZNmEbaaerjhyswbIrp+LIGQRrF2CCvdNpTV05wZq6OLXxauVbrdtxCSkUCoXioKZWGFoIJgpDjQSfZgJRxc2Qy+RI7E6RHEmTiqVJj2XIJnLkUnlyyTz5dMX5U6SUrzh/Kq4fR/yRpuP6aVbvR8px8YcczIX4o2kCURF/XDouQ6+KP4avHP0W9OAL+Qi0+Qi0OzV/2qIh2nvKNX96I0S62nC73ei6jqZp1Vs1sT97PB4PPT099JTFgEotm1rXTTKZxDTNaoxaBb/fTyQSobe3l0gkgmEYFAoFcrlcw2ZZFoVCoSoONULX9aoDx+/3TxJyvF7vwff37u52bvN5SKVgb5TZsG247z7HOXPrrVBOldrth9teF+V3J3fw0/Nuxn30cWhC8JEnlhLLxnj7mrezqG3Rwo93H0TNL84MIWdRJS8YDPLMM8+wdOlSFi9ezO23385JJ53Eli1bWLdu3bT5jwrFvk4ymSQcDpNIJFTNJYVCsWBUo5RqBBisYWRdBNmw45Kh1dxwdxMBprY2TDdCC87nU1MoFLNESqvsjBuvjzMpYk3GW+hJK38G1NTK0SaIOaLt4JsEUCgUCsUBhZRySkGoIv4kx5LEh5KMDsVJxlKkRzOkRjNkk1myybwT/5YpUMiV6/6UnT9W0Yl8s0yrXO+nifgzDwgBQtPQ9HLNH7eOy63j8ui4PW7cPjcevxuP34Mv5MHX5sMf9hKsCEAdIafuT2+YQDiAy+Wqina1IlCjx0KIg+4cwbIsUqlUnXiTyUxOIhBC0NbWRiQSob29nUgkQiAQQAhRjVDL5XJks9mGQs7Eut+NEEI0jFerRKwdsPFqwSBkMrBxI6xcuTDHlBKeeMJxztxyC2zfDkBJg7uPDXPLmX3cHR7Fcjuv9/937v/H6w9//cKMTbHf0uo886wcNYceeihbtmxh6dKlHHHEEdx6662cdNJJ3HnnnUQikdmOWaFQKBSKAxYp8+NRY1aTOjD2MMhciz0K0DrrRBgxQXxx6sC0H3Q/qhSKAwkhdNB7ncaxzrIJ2zh1pgbr49XKoo4j5uwCSmDvcloTVw4igKyNU6tz5PQ5Qq9y1SkUCoViH0YIgcvlmj5+bOncHM+yLEqlEvl8nvjuOLsHxogPxxkbipOMpUmNpcnEs2QSWfKpPPly/FsxV6JYKGHW1PyxTbss/tg0uqRaSpx6QBZQtGi9fmRzhCbKNX8EuktHd5cFII/LEYC8bgyfC8Nv4A0YeIIeAmEfvjZHAAp1BGjrChHqCBEI+RqKPFMJQM0eL1SNqKnQdZ1IJFI3z1ksFkkkEnXiTWVZIpHgpZdeAsDtdhMOh6vCTSQSIRwONzyOZVlN3TiVJqWs3m+GYRhTxqsZhrH//S7s6YHNm534s/kWal580XHO3HQTPPdcdfFAb4Dr3rGS2xYlGNHyQALQOb7/eN655p2cvuz0+R2X4qBiVo6ab3zjG+i6zsc+9jH++Mc/cu6551ZV4v/6r//i4x//+HyMVaFYMA52R41pmvzud78DYP369SpjV6GYAqcGxUhdzRc5QZDBGnJqULSKaKup99LIBdMDWoeKMVIoFC3hxCWO1ESs1Yg5lVs5Nn1HCNC6mkSslZeJyP43CaBQKBQKxT5ExQmUz+dJjKSIDYwyumuMxEiS+EjScQCNZcgksmSTOfLpAoVswYl+K5hl8cd0nD+W7Yg7duN6P/NBRfjRdG3c+WPURL/53Lh9LgyfgSfgxhP04A0aeEMefGEvvjYPgXY/oY4AHp9nj0WfVh1Ds6EioMTj8ap4k0gksG170rY+n68q2rS3txMOh1tywUgpyefzUwo5pjl92oKmaQ2dOLXxavuCQFbHy14G998PP/sZnHfe3Pc/MAA/+Ykj0Dz8cHWx9BiI178BLriA508+jFf95GwAugJdvG3123jHmnewsmOBHD77OWp+0WFeHDW2bfO1r32NX/7ylxSLRQYGBrjssst47rnnePTRRznssMM46qij9njwCoVi71IoFHjDG94AQDqdPmg/SBUHN04MWXyCC6YiwtS6YEaAySfijfFMqPlS64LpKd92IYRvHp+ZQqE42BBCc4RevRs42lk2YRspc47zxqqplWNPEHMojrv/So87+006mtdx5ZSFG6H3g1bjzNF7EUIVVFUoFAqFohkVR4nb7SYUCrF4ef/0O01DJfotm80zNjjK6FCc+HCCseE4ydE0qdEM6bE02WSObKos/mQKFHIlSvkSpULJcf6YNc4f2Vj8kbbEsiVWqdXfSNMgyuKPpqG5xp0/FeHHqfvjwu136v54Am48AQ/ekIE35Ag//ogXX9iJgtNck8WIymveisjTbLuKg0bTNAqFAtlsllQqRTqdros9GxwcdJ6WEIRCoTrxJhgMThKNhBBVMaUZlXi1Sstms+Tz+epxC4UCtm2TyWQaxrdVaBavVmlu9wJfKFiuIcTQ0Nz1OTbmCD833QT33kvFvmZrgr+9+QRueVkI92Gr+MYbrwFgFfDhEz/MyYtO5oxDzsCtq4slZ4KaX5wZM3p1vvjFL/L5z3+e1772tfh8Pr75zW8yPDzM9ddfz7Jly+ZrjAqFQqFQzCnSztaJL04MWUWQqakFw/R5wQ66E0M2sQ5MVYApT5Cq+g8KhWIfRQgfuJY7jUZCjgR7tOrIqYo5VZfOYFm4zoO1xWk0vnhXap1VR05VzKlGrPWDFlWflQqFQqFQzCEVUcEwDCKRNpYfuWf9SSmxbRvTNEkn04zuijO6a4yxoQSJkSSp0TTJ0RSZeLZO/Clmi+PiT6Xmj2lhW3a15s/kg4G0yrWHSlBquVbnFAjQNIHQNXRdQ3NrTr2fWvHH58bwuzD8jvDjqbh+2jx425waQIF2H96QMSsnipSSZDJJMplk27Zt1eVutxvDMPB4PHi9XgzDaNk95PP5CAaDk4Ql27andeVUtsnn84yNNXZau91uvF4vfr+/elsr5Hg8nrk9h5sroSaTgTvvdJwzd90FpfHYwO2vOp5bz17CTwJb2ZHbARKMzZu4vJCkzeM4Hz73is/t2fEVihaZkVDzwx/+kGuuuYYPfvCDAPzxj3/k9a9/Pdddd92+Z49TKBQKxUGHlMVyvM947Rc5MYLMHgaZbr1T0V4TOebcilrxRespTyoegMUbFQqFoowQAvQOp7nXOcsmbCNloc6Vgz0wLuZUbsmX4yJHgKec/SYdzVN25YzXx6kTc/Q+hPDO7xNWKBQKhULRFCFEVQjwdHno6OqAdXvWp5QS0zQd8SeRYWRnjNGhMRK7U4ztTpCKOcJPKp4hl8yRS+fJpfMUsyWK+SKlvBP55jh/bGzLRtrNxR/bkmBZWFjQapnQKRBCIPTx2LeJkW9uj8uJfCs7f4yAgTfowds27vwJtPvwhX0Y/sKUzpeZMpXIEwgEqk6eigBXid+r/D1KpVK1HlOpVCKVSjV9DRo5cSrCjs/naynurcqeCDXFIvz+944484tfOGJNhXXruOedJ/Pd/gH+N/Z3YABy0OZp401HvIl3rn0nISM082MqFHvIjISabdu2cc4551Qfv/a1r0UIwcDAAIsXL57zwSkUCoVCAZX6CqM1YktNHZia2jDYo613KgJ1EWST6sCU76vC2QqFQtEaQnjAtcxplWU1652IlLE64WZSxJo9DBTA2uq0yr4TjiW1aF2kmqgRdZzbDifyTaFQKBQKxX6BEAK3243b7cbn89HV27nHfVZcP6VSicRIktFdY8R2jZHYnSQxkiI1miY1liaTyFbFn3ymSDFbdMSfwrj4U4l8s227ceSblEhTYpsAFlCavNEMEZqo1vypRL7pho7LcOH2Vlw/hiP8+N14g86tJ2g4rp+wF3/Yi7/dj+F1USrt+ZimQkpJNpslm8023aYiErlcLlwuV9VBZBgGXq8Xt9uNy+VC0zRCXi9tQHH7drLxeEOxqc44YNvw1786sWa33Qaj4/MD8pBlyAsuQDv/Ali7lucevob//cuvAXj50pdz/trzOXvl2Xhd6mIgxd5jRkKNaZp4vfX/sG63e97f6Ip9jzPOOINjjjmGq666ar/qW6FQTI2UFhQfAXu3UzDaOGFenSLOpF16QuTYELJWfLGGnfG0bHF317td9O6yAFPvghFacN6el0KhUCgmI4QAEQUtCu41zrIJ20hZLLtyxiPVxiPWyoKOzJbF+1Ewn3b2m3Q093itHK23Xswpx64JzT8vz3Ohv0sVCoVCoVA0RtO0qggQCAToX9a3R/3VRr7l83kSIyliO0cZG46TGHHEHyfyLUcmniGXypHPFJyaP7liud6PWa33Y5k20rKx7eb1fqTtiD9mwdqjsQNOvR9Rdvy4ys1w3D66oWN4XRi+stOnHPfmC3rxtnnwhjz427x4w95y/JuB5tKq9Y9apeLYaWUuuW90lOMB+7772HnxxWw5+2wwxi+ktKTFC5mNmAMbWfn4i5z126cI7I5V1xejUV5Y/3J+emqEX4tnuOCwLtZrGtpzz3Gc9zjes+o9nHvouSwOLUbTNLZv2U6pVMK2bTweDy7NxQM/+zvDW0foP6yXN37kbDweVaNmJkg5/o89MjKC3+9XEcdTMCOhRkrJe97zHjye8QKg+XyeD33oQwQCgeqy22+/fe5GqFAo9iq7du1ixYoVe3sYigVA5n+HTH4R7F3jC7VeaLsU4V0/8/5koU58qa8DU44is4dAtuozF6B1TIgg657kikFE1FXUCoVCsZ8ihAGupU6rLKtZ7wj8yXEHjjWArHXkWANlV04JrG1Oq+w74VhSROrj1GodOXofaF0zFljm+rtUoVAoFArFvkNd5JvHQzgcZumKPUsYklJWY8ay2TzxXWPEhpyaP8mRFMmY4/zJJLJkEjmyyaxT8ydToJQrUcyXqrV+rJI9Xu9HNhB/ZPl4toVVqogrhT0af6XejyP+6NXIN7fXjeF1O8JPwMDj9+AJGHgCTq0fx/njuH+MoIEn5Hbq/bic3/JH3HADK+64AwBvPM6a667jyOuvZ/Ob3sRz730vT23+LT8c/DE7tAQ2En0xrDgPLr/Pw5q+0/jVyxfzq/adPJ76G3bKBuDnG3/OSnNldegv42XENseIEZv0tP56wyP8/RfP1EXn/X+f/h+Oe9MazvinkxvGyLVSR2im2+7Posbg4CCPPPJI9fHvf/97li9fzpo1a+jr2zPR9EBlRkLNu9/97knLLrroojkbjEKh2PdQQs3Bgcz/Dhn/GJPO5OwhZ3nkv6sTTFKaYMfqBBdpTYggs4ZBxlsfgGibHDlWI8g4QkwHQqirVxQKheJgxnHlhEELg9uphDzZlVMqfyfViDk1Dh2snSAzzveUGQfzWWe/SUdzIfXesnhTiVgbd+Sg99W5M2fyXapQKBQKhUIBzrlNJQbM6/USjUY4dHXr+0spSafTxOPxakskEtX1xbxJLp4jm8hj5WysvE0xU6KYMUnH04ztjjt1fnKlsuPHwixYWEXTqfVTadPU+7EtC7M4B64f4J/kk6xg46TlwrZZcfvtPLbhV3ztTUUKOvhLoNtQcOk82w1vfYtFm3gCW/wdkRIIITgyfCTrF63n1YteTdgbrjqjLMsim80Sj8frjvPXGx7hsTs2TH6qtuTR259GSsnp7z1hTp7rdNRGvO2pONTKvnMlDA0ODvLoo49SKIwLgWNjY/T19fHoo49y/PHHK7GmATMSam644Yb5GodiP+fXv/41F1xwAddccw0XXnhh0+3e8573EI/HOfbYY7n66qspFApccMEF/Pd//zdGjX3Rtm0+/elPc91112EYBh/60If4/Oc/X12/bds2/vVf/5W7774bTdM466yz+Na3vkVPudDYE088wSc+8QkeeeQRhBCsXLmSa6+9lhNOWJgP0v0dwzD4zGc+w1e+8hXcbjUxfqAjpeVc/dvIa11eJuOfQurfBbm7XADabrF3z+TIsTrxpdu5Ynme4mcUCoVCcfAhhBv0RU6rLJuwjbRTZSHHqZEjax051qBz0QEmWDucVk7nmOzKaSsLN31QeqjBFpW9BDL5n+B5rYpBUygUCoVCMWcIIQiFQoRCIZYsWQKAZVkkEok68WaqujHN8Hq9vOY1rwGoChumaZIcTTK6K87oUJyxoTjJWIpkLE26XO8nm8qTSzqun2KuSKEsAplFx8ljmZbj+mkg/rikzVvLIs3E8zcBWAK+dIYj0ngLgrzQKaEjTYE0JaVAkVF7FP9QiJ5nFtPz9BJ8oyH+Kp7kf/WnHfePS8Pldmr96IaGy+PEv7n9blwenU1/28ZUPP7LZ/j0tR9D00U1+s2yrOprNPH+TNZZllUXF1aJilsoWhWBplu3YYMjdLlcLt7ylrfws5/9DF0fPwfesGEDvb29+7VjaD6YkVCjUDTipptu4kMf+hA33XQTb3jDG6bd/u6778br9XLvvfeydetW3vve99LR0cEXv/jF6jY33ngjn/zkJ3nwwQe5//77ec973sNpp53GmWeeiW3b/MM//APBYJA///nPmKbJRz7yEd7xjndw7733AnDhhRdy7LHH8p3vfAdd13n88cenFBwKhUKdyptMJmf/guzHDA4OMjg4CMBhhx0GwJNPPonL5XxU9PX1KcX7QKT4SH1ES0MKYE2+oqQeD7gOAdehoB+KcC13Jq9EAETQudUCgEd9GSsUCoViryK0EGirwL3KeTxhveMe3T0hYm2CmCOTTjOTwPPTHFE6glDycvC8DPQloC9GaOH5eHoKhUKhUCj2c2oj0Won8SttJsvdbjeGYVAsFmc0hnw+TywWo7OzszoJbxgGfr+f3sW9s3timQw88wzymWewX3gBuXUr7NiBNThIKhUjUUzwdw+sHQZvuUztb1bCr1dCzA8vtsOTPc5lMFmXBCyMnAthg0DgKujYLskRvzmW9m1dNa8nSNN2LjktWhSZfb1125Lc+z9/4y2fmH4OdDZU/vatiDp7IghVHjcShva0Hv3o6Cijo6MA1XnErVu3VsWaaDRa/d9SjKOEGsUe8e1vf5tLL72UO++8k1e+8pUt7WMYBtdffz1+v581a9bwhS98gYsvvpj/9//+H5rmZFEeddRRXHbZZQCsXLmSq6++mrvvvpszzzyTu+++m6eeeootW7ZUrxb44Q9/yJo1a3j44Yc58cQT2bZtGxdffDFHHHFEtY+p+NKXvsTll18+25fhgOHaa6+d9Dp84AMfqN6/7LLL6pxNigMEe/ccdVQA83mn0fiaYgcXUgTGhRsxoZWXiVpxp7o+OGkfdWWyQqFQKOYaIVzluLPxC1Qmu3LSzoUO1gAy/1vI3TZ9x7lbkLlbxvsQoapog74Y4Rq/j74YITxTdKZQKBQKhWJvIaWcExGl2bqFdFFMRe1FzU2xbdi8GZ55Bp5/HrZsQW7fRnr3ALHMbmKlJDGR4+WbSvjL8/8/Ww23rYaYD2JHQOxYKNX8tL/nRjhixLm/sQPucBJvybtAlk/KhBAIKdC8At3UsW0JUiApIiM2YodoHNc2BwxsGpqXfqE+Dm8hqAg2sxF5Gj3OZrPcdNNN3HzzzXXHufrqq6v3zz///KpbSzGOEmoUs+a2225jeHiY++67jxNPPLHl/Y4++mj8/vGYo1NPPZV0Os327dtZtmwZ4Ag1tfT19TE8PAzAs88+y5IlS6oiDcDq1auJRCI8++yznHjiiXzyk5/kn/7pn/jRj37Ea1/7Wt72trdNWWfls5/9LJ/85Cerj5PJZF3/Bwsf/OAHeeMb34hlWdx66618/etfr4uMU26aAxSta/ptANquQLgOdXL97Uw53z8NMoOsPq5pdcvSICtWaxNkwmlTnHu2ejolha+p2FMVc7Rgg22Ck/fBq9w+CoVCoWgJoQVBOwxchwEeZCtCjfsUIOfEqdkxkCkwn3EaDaLVtO6yaLOkRsgpizlat7pYQaFQKBSKJkycSJ6NWDLV8oUUUipuFpfLVRc3NbE1W99oeTKZrCv03ghXMkng0Ufh179GbnqRzLZNxGLbGUnvZrQYZ4Qcb3imRCjnvBY/PBr+5yhHfBk5DEqr6vu7+0Y4siy+7GwT/OUQQAgQAonAFgJ/EXpSJQo1pziveMlx13RmYTAAnz0TpKljWk5yjo3ExrHf2JoNtkAb1RuKNEIT6G4dw+vC8Bu4vDq+kAd/uw9/u5/EriSbH9g+7d+kf0XPtNvsL2iaVr1wfi4YGRnhrLPO4qSTTsK2bf73f/+XO+64g4985CPV9J5oNIrHoy5ImogSahSz5thjj+Wxxx7j+uuv54QTTpjTyc2JMWVCiBl9CX7+85/nggsu4Ne//jV33XUXl112GbfccgtvfvObG27v8XjUBwTj0WaZTIavf/3rAKxZs4bjjjtuL49MMa8YJ4DWW87jbySPCNB6Eb63NJ0QauXdL6XtiDVlcWeymJMBO41sKvaMb4PMMF4wIOc0Rpofu4XxOeizdPsEG4pEQqivWYVCoTgoaPW7NHpD9btU2tnxGjjWDqS1vebxduc70x52WukxZ5+6Pt1IfVFVyBH6YnCNizqIsLr4QKFQKBT7LI2ElEaCiGma2LY9aV2z5XtLSJlKRJmJgDJx+VwWeAegWITnnsO7YQNL//Br0rtfIpveTbqUIGlniGt53vV3m3DWQgDfPQGuO84RXwqLgEX13R3zEhyZc+6PeeHpbqrCixQCj6kRzLvx5D1cHzmCTKmb7QUvo1sSdKbiuLOG03Ie3FkDjyn4FbdTKxscN+g0AFPA94+DpzpAtyQajtAjBCDANmyi+Q7OfeU59C7tZsnKRSw7YgmLD++nLRqqG7uUkrvvvpt8Pl9dZhZNrnn7TVM6cTRd49wPr5/tX+CAp6Ojg/7+fqLRKPl8njvuuAOApUuXVoUar9dLR0fH3hzmPomaQVLMmhUrVnDllVdyxhlnoOt6nYVtKp544glyuRw+nw+ABx54gGAw2LKD5cgjj2T79u1s3769us8zzzxDPB5n9erV1e0OP/xwDj/8cP7t3/6N888/nxtuuKGpUKNQHMwIoUPbpcj4x3Akl9oTEueEULRdssdX7QqhOYIGwam3a7E/KYuO6NPUzVN2+zQRhCbtA4A1XnNgLtw+eCcLPpMEoCBiouDTSCQSPjXhplAoFPsos/kuFZoftMPBfXjNVg5SSpBjYG53RBtrB7Ii4Fg7nBo5lMDa6jQafDeJILI2Vk1fUhZyKrFq3jl9DRQKhUJxYFErpEwllszUtVJZX1sXY77ZU7FkquVzLqTMBtuGgQGyTzzCyAuPE9v2PCMj2xlNDTFSjBOTWT52v00kWQTb5r9OhW+dBIUoEJ3c3Ws3QqQciFHQYaCsb0gEhiUI51z48y6MrMGP3EvJurrYbAaIbSzStzuDO+upii+6OX7u83j1noV/OIh/uGZuQDgCiBbQ+YW1mjfnn0Ey4fwI0CV8htfy4dAjFANF/C4/uqZj2RZZM0tID/GDd13POSvPmfZlE0KwZs0aHn300eoyl+Hi2H9YzWN3NK/R+5Z/ewOG0bwO9sFOo9d1ImvWrNn775t9ECXUKPaIww8/nD/96U+cccYZuFwurrrqqmn3KRaLvP/97+dzn/scW7du5bLLLuOjH/1oyza71772taxbt44LL7yQq666CtM0+fCHP8wrX/lKTjjhBHK5HBdffDFvfetbWb58OTt27ODhhx/mLW95yx4+24OT3t5ZFohT7FcI73qI/Dcy+UUnb7+C1utMLHn3vatFhDBAREFrcGZZu10LfY27faaIbrMz9W6fRoLPRLcPebDzQGzq47fyhNHG3T6NxJyJbp8G9Xzq3T7qxFKhUCjmkrn8LhVCON9xRhQ42llWs15KE6xdzd049ojz3WU+6zSmilWrdeRUYtV6VKyaQqFQ7ONUhJS5qIfSaPlCCinzJaLsM0LKLMnHR9j9+N+IbXyckR3PE9u9jVhqmFhhjJjM8H//LOiIF8A0ueIVcE2lKoEGdJdbmbc+ApHyxYguCwrlGWHDEkSygrasji/nxp0x+GmplzydbKWNnc9Ilr5Uwp1znC+6WT+V/HDljgB/3MAfd8QXTXcixlwBF4bfjSdg4Gvz4I/4CER9tHWH6FzcTu/ybvqW9xAKh/D5fPh8PrxeL/bnP4/2zW+CZVWPJXQdPvlJzv/qVwm/8BsuvftSNo1twjItdKGzqmMVV7z6ipZEmgp9fX0cf/zxbNiwoeqsOf29Tvz/33/xTJ2zRtM13vJvb+Cfv/qPLfd/sFJ5XR966KHqsvb2drxeL2vWrFGlFZqghBrFHrNq1SruueeeqrPmyiuvnHL717zmNaxcuZJXvOIVFAoFzj///BkVqBdC8Itf/IJ//dd/5RWveAWapnHWWWfxrW99C3CulIjFYrzrXe9iaGiIzs5OzjvvPC6//PI9eZoHLUqoOXgQ3vXgeS0UHwF7t1O7xjjhoJiomR+3T7PotkZun4mCz8TaPhKwnVoGMuUcxGpy7FbHiGfKeLeKu6dxfZ+J+/n32x8/CoVCMZcs1HepEC7HHeNa7DyesF7KHFg7q46cejfOjvJ3zXSxav31bpzaaDURUZ/7CoVCMQ1TxXLNRZ2UhRJShBDzJqLs70LKbIilhtmx4X5GNj5ObMdGYiPbiaWGiBXjxOwMV97joiuWh2KRr75C8t0TanYOlFuZf/ordDilWYiU07s8JrTnHPEllNXx5Vy4sx7uKnRxO1FeIsTmpwxWPA/unIFW0hHlMwkbKAD/C9WTC08avFmB7tJw+Vy4fS5HdAl58EV8BNp9hDoDhLoDhHtDhHuChNpDeL3equgy8b7X60XXpzk3uvJK+NKX4JprYNMmWLECPvxhMAwAzll5DutXrOfBnQ8ynBmmO9DNyYtORtdmfs7V19dHb28vsViMfD5PoVDgmG8eg+tbLu77ySMMbB6if0UP5354vXLSzIC+vj7Wrl1bffy6172OpUuXHlTv95ki5EJK5IqDnve85z3E43F+/vOf7+2hTEkymSQcDpNIJGhra9vbw1lwMpkMwaAzYZ1OpwkEAtPsoVAo5gvH7ZObwu3jCDqyTtyZIu6N4jyMUgPhnzLeDa3W7TNdDSBjHsaoUCgUCqiJVbN2gLmjRsipiDkDUC7I2xQRqDpxHCGnfN+1BPRFCOFbkOeiUCgUs0VK2bTY/GxcKo2W700hZaZiiRJS9oxtiW1s2vKYEzu2fSMjI9uIpYfL4kuW63/vo2d3FgoF/t9pFt85sXlfv/8RrB127n/7RPjaadCRhWgWwjnNEV+ybtxZg9XPRsmmw2wnxGa3n6Tw1gkvjRACNJeOy9Bxe10YAQNv0MAX9hJo9xHsDBDqKosufSH8bd6afcUkwWXiY4/HM6eF6RX7N5s3b2bFihXAwT2/2Oo8s3LUKBQKhUKxD+O4fSZcOtVouxb7k7LUXPCpc/s0E3wmun1sp8m002AO3D5Gk3i3endP624f9UNBoVAoKlRj1bQouI9yltWsl9ICe6jsxplYG2eH48KRGTCfdxqNYtW6JseqVaLVtN6Dwq2rUCj2jKmElLkQUfamkDKXIorL5VKT4vPEs7ufZcPOvzOyZQOxnS8Si20viy8JYmS5/a4wfUMZyOW48dTSZPHFKDdgOJehp1zzpTcNfSmI5hzxJZLVCOY0/Fk3rqzB4+kIfyPEDkJsfjTI4Q8HkeXvzUS5VXhGgObWcLkd0aXD73ZElzYv/nYfwai/TnQJRH1N/19cLldD4aV2mdvtVqKdQjGPKKFGMadUXBiNuOuuuxZwJAqFQqFohBBuEBEgAlPMk7VW20dOdvtMEnMyyIm1fJrUAHKM9gBFkEWwxqY+fmvPGFnr9mkg+LTu9gkqt49CoTjgEUIHvd9pnNwgVi0/LtqYE904O8qf6budVvq7s09dDy6k3jfZjVMRckS7mgRSKPYDmgkpcyWi7C0hZbZiyVTLlZCy9yhaRVyaC6184dajA4/y6MDDjAxuJjbwIiOx7YxmRhgpJYiR457f9rB4IA2ZDD87KT9e86WWcvLV7mSWvqRz/5A4rBmGjqr4Igjm9Kr4sikR4gmC7CTI9sdC9D8WJi9cjAKjNV1ruuBBt44r4sLwufEE3SwJeQlExp0ubT1Bwj0hgp0+XEZr07qGYUwpwHi9XlwuNUWsUOxt1LtQMac8/vjjTdctWrSI008/feEGo5g1brebr371q9X7CoVC0Qjnqmw/4Ae6mm/XYn9Sms2FnJr4Ntk0Am5CzR9sQI6vm+rYrY4Rd2OxZ4LAI8pxb83dPkHl9lEoFPslQnjBdZjTPBPdOBJkYly0MXcga9041k6gVF6/3dln0gECyEZuHL0cq6b5F+iZKhT7N42ElLkSUSrLFwohxJQCyp7WS1FCyv5DySoRy8Xo9Hfi0pwpzb+89Bfu23YfI/EBYrs2ExvdSSw7QsxMkpIFHvr9MhYPpJHJFL85IcN3Tmh+5h8bfonFMef+qhE4/SUndqwjB+1ZQTCr4c+5MLIedo36eYEggwTY/mSIjifbiOElVj6/F1q5rotHxx124wkaeIMe/BEvR7b7CXUFae9rI7ooTHt/GLfPXa1rZNt2S6+HEGKS+NLIFaP+xxV7C5fLxXvf+158Pp+aX2wBVaNGoWjAwV6jRqFQKPZ3nNObfPNaPZNq+0zn9snPz0CnjW4LILSKsNNkm4pohKGuQlcoFPs0TqzacI0bZ3u9G8cenr4TrWPcgaMvRtTcR+9DCHUtomL/YKKQMpdOlIUWUjRNmzKWa6JY0mx5M2FFTTIfuJSsEqO5UUayIxzecThu3ZnIveuFu7h7y93EMrsZ2b2NWHyA0fwYSTMDlsX9f17Joq1xSCT40vEZvnNCc2HjNz+GY3Y59391OPxmZVl8yUIkJ2jLCvxZN0bOwJP0kbD8DBFgB0Feoo2dhDA1zRFdDBcurwuP34036MEXcSLGQh1+2rqCRBe307U0SltnCCEEQojq+9w0TUqlUssijK7r0wowHo9Hnf8r9ml27drFI488Qnt7O6eddtreHs5eQ9WoUSgUCoVCcdDi/GDxge4DOptv12J/jtsn29i5Myu3T3nyZA7dPuBCVgSdKdw8YkpHUGW5X9WQUCgUc44Tq9bnNOPEBrFqhRr3zQ6kWevG2Q4yBXbMaaXHnX3qetDLsWq1bpwl48KOFlUTWoqWqRVSGokisxFQJq5fKBoJKXMZ8aWEFEWFivBSEV9OXnwyhu5EB9/2zG385oXfEMvFGEkMEkvsIllIgmmCaXLPHw9jybYEeirJIydkuOmExu8R3YbkC0+zrKztn7odCjp0Zp3YsWgW2nIawawLd9bAKni4Bx/D+BnYGMS7McSzepisJ4DbW44YCxn4FnkItPsIlEWXjp4Ahy9up6O/vRoNpmkamqZN+nwoFovk85ULuyTJZHLK18ntdjcVXypN1YNRKA4+lFCjUCgmYVkWjz32GADHHXccuq4m6xQKxcGNEC4QbcDULsuWa/tQmFTLp5EANMnx0ygSTubKPZsg406b4kK9lmPehK/eydNAAJra7VMjGqGu9lMoFNMjhAdcK5zG5M9UaSfqHDjSrHHjWDtwYtUq9x9oEKvmr4lVm+jGWex8pin2GyoTpXMholSihiauXyhmIqTMphC9ElIUs8W0TUZzo8SyMUdgyY5w9mFn43F5APjB4z/gjufucNZnRkhkYshSCVlyxJc77zqU5dtTGNkUz5yY5rcnTn5faRKiOZCbNxAYcZa9ejMEC07kWGcW2st1XwI5Hb3gJiW93I+XIXwMbQni2t7GBm+UMX8EI+TF1+3FH/ESiDq1XcI9QSL9bRzaFWBt0I9hGHg8HjweD263u+49UvlMME2TQqFAPp8nHo+3/Jp5PJ6mAkxlmZpjURwsWJbFxo0baWtr45RTTlH/+9Ogos8UigYc7NFnmUyGYDAIQDqdJhBQP1oVCoViX0VKq8btk24a9yabCj4T3T7mPIzSNWW8W2WZqAg8EwWfiQKRcvsoFIoJSGmXY9W2T3Dj1MaqTfPTV4vW1MNZXOPIqcSqqWz1mSClnNN6KI3aQjFRSJkrEaX2Cn2FYiGYKLxUbs9fez4+tw+Aax6+hpufvplYNkY8N4ZVLCGLJcf5Ypnc8vNDOGwggy+f5pqT01x7Uv17sSK8dGThe3fCylFn+aN98HS3I7x05BznS3sWvAWdvHSTwiCOl5jmY8QVYtgTZlewi9GObvT2Nkd06XBqu4R7Q0T6Q3j8Bpqm1QkvlfuGYeByOden17pfKuJLPp8nl8thmq2d+2qa1tD5UivAeDwe9X5WKGrYvHkzK1Y4F+AczPOLKvpMoVAoFAqF4iBACB1ECAhNvV0LfTnX7xQb1PPJTHIATV3fp7Jvttyz6RQYl4m5cfvgnRzf1lJ9nwb74FVuH4XiAEAIDfRep9EsVm3nFLFqSbBHnVZ60tmnrofaWLWJbpwloHXsd58ljYSUuRRR9paQMpciSuX+/va3VRw8WLbFWH6MkexInfgykh3hIyd9BL/bD8DX//Z1rv/79YxmRrFMG9s0oVQCy0JYFh0/+RKrhrIEzSxDp6R58WSz+jnqqggvZfHlkKGNLC0ne739WThuaFx86chCWx4sqZNHJ43BM5qXuO5nNN2GsCO8EO3mocMXI/u6CPWECPcGifS14W0bFzmibje9hsGJNcLLRBEGHAGmVCpVxZdcLkc2m2V0dJR8Pt9yPRiXyzVtPRjDUPUgFQrF/KKEGoVCoVAoFAoFUKnt4wHhca4sn2rbFvqT0i67fSbGu9UIOvY0bp9a0YhSuec82HlgZOrjtzBG0JGzcvs0jnxThcwVin0TJ1btUKfRKFYtWR+rZm2HqpizEyjWxKo1+HwRPqS+qIkbZzFCC854zBOFlD0pKt8s6muhqAgpcxnnpYQUxYFIRXipiC21rpdYNsalr7iUoBHEtm0uuetSbnjqekzTwrZsbMsG00RYFpq06HvrdzliJE/EyhJ/WYaxU0pogC6hPV8WV8oCy7HxF1laLrHynqdh/Uvj6yN5xyVjolFAJyvcbHZ5SRoBkrSB3cHmZb08vXQp1uHLaVsSJdjlr3OWCCHwGAaHeDysmiC4TBRhdF2nVCpVXS8VASaZTFYfFwoFWg0IMgyjpXowCoVCsbdRvyQVCoVCoVAoFPOCEJojaDD1BGWr02tSFhvHu01wAMmG8W7pyfsAYDlX0svkHLl9PC26fYL1gk8jkUj41OSjQrFACK0NtNXgXu08rlk3Hqs27sBx6uOUBR17CCFzYL7oNCZ/ZpiyjZLVQ9HqpmB1Uyh1kSt2OK0QwbTEJHFloYWU+RJRlJCiONhJFpLsSu9qKr587XVfQy+42PniLi6//zLuiv26LLw4dZiwbTTbQpM2S8+/lTWxIlGZQzsthXZKEU+t8FJ2tXRm4dWZzfSXU70+8gT843PO+vacI9ZIwEZQEjo5zc1Oj5esN0A6GMHu6GTb0Yt48fDl2Eevgmhk0vPSdR2Px0O7YdBbFlsmul5q68AIIRoKMGNjY3XLisViS6+rEGLaejAV4UehUCj2B5RQo1AoFAqFQqHYLxDCABGdY7dPMzdPA7dPw0i4iW6fAtgFIDb18Vt5wmhI4W8u5lTdPjWiT5NtnO3U1aKKg4uKI2W2jpPGy4NY1uFY1oqqkKIJE68xht8Tw+8ZxWc4t35PDJ9nFMOVRRdJdFcSr+uFBuMU5IsRsoUo2WIHuUKUbKGDbCFKrthBoRRC1/dcLJlquRJSFIqZMZga5KXES9XIsZHsCKO5UUayI+zO7OYLq79IaluW4a3DfHfXNdwn/oK0HeFF2hKkRLNtNGxWvvtujhoz6STH0pclME4tECkLL10TxJfzcpvpKZ9EfPpR+OTfHceLq0bXtQFT6BR1NzG/l5w/SD4cwezrYefyxWw+ZCmppUvJdXfDhHoqtSJLdILY0qz+Czift8VisakDprKs1UjESj2YZgJMpR6M+uxSKBQHEkqoUSgUCoVCoVAcdMyP26dZdFtNbZ8Jjxtt49T2ca5zdZalnYM0mdto3e1jTHb71Ik5wca1fRo6fvxqckSxx0gp51hEqV++UI4UW7oomL2YchGZ0mRBxO0q4DNieN0jeN3DGPpuDH0Yt7YLlxhCiCI+zxg+zxgdbGpwBC/oi8DlxKmJ2to4+pJZxaopFIrJvBB7gY2xjcRysToBZiA2yK74Li72X0JuZ4GRnaPc7voJj7c/irQlUjoNKdGQ6Ngc++ENrBsz6SbHulPjvHhcns4cdGVlnQDTmYU35TdRuQRl9UPwhQfAPeHjSwKW0DB1N6mgl2IwRKmjnWJPF7HubrL9/aSWLCG9eDG211vdT9O0Se6WkGHQ2UCEcbvddXFlFWzbrqsBM9EBk8vlyOfzLUeRud3uhvFjtaJMxYGjUCgUBxNKqFEoFAqFQqFQKPYQx+1jgNY+9XYt9OW4fXJTu31kBmnXP24a90YlQqToFEpndOrjt/KEEVO7fcruHjHhcfMaQEZLR1UsLLZtz5uIstDRXhMdJXMV9VXpa7YTik6s2ki1Ns54fZxyzJo9COTB2uQ0Jr9HpYg4wo2rUh9nvDYOer96fykOKmxpIxDV9+TfB//O08NPVyPHdo4OMDgyyFByiNHcKP8y/AnygyUSu5P8adHveH7phrLoArL8bnPEF8njN1zKUaMmx5IlduIYxXV5OrOSrpykuyzAdJbFl1dnN9JWHtOp98NX7588VglIIbB0F/mQDzMYpBgJk49GyXV1kentJbNoEallyyi2j59fuN3uSbVdAh5PnQOmcutyuab8fLIsi1wuRyqVmiS81NaDaZVKFNlUNWFqnTgKhUKhGEd9OioUikm43W4uu+yy6n2FQqFQKBQLh+P2CQCBqbdrsT8pS00En4m1fZoJPhPdPjbODFZNrZ89dvu4y8LNRCdP/WNRFXeCk8SeerfP5CuCD0SaCSkTRZFK4fiZiit7Q0iZSiSZqbhSWbYnQsp8I4QGerfTON5ZVrNeyiJYg+O1cSqCjlm+lXGnmXEwn3b2qTuChtR6qkJOvRtnMWhdB837RbF/IqUkVUwRNIJo5f/V/932vzwy8AiD8UG2D+1g19gudqdHiBfHSNkpLnzonzGHLdKJDI+s+RsvHfkCSFn33hCAjs2uW37AUaMmPWQIHjNKh1akKyvpydp05xgXYLJwXOqZ6jfzqx+G/3y4yZgB2+WiGPBg+v0U29ooRCLkOzvJ9vQ44suSJWT6+qAspEwUXjweD4Fy/ZeJyxu5Xhq9bqVSaUoBJp/PUyqVpu0LnHowU4kvlXowrYxNoVAcPLhcLs4///yqU04xNUK26k1UKA4ikskk4XCYRCJBW1vb9DsoFAqFQqFQHAQ4VxlPcPvUiTsVt096im3GawBB61fpto4A4Z9S8Gnd7RPcIzdCrZAylVgyUwFlbwkpc1FUvtHyfVlI2deRdnqyG6d8H3MHkJ+mB48Tq9ZQyFmC0EIL8TQUBxEV4SWWjbEssqwqvtz57K+4e8Mf2T68k6HkMKPZGHEzQYYUpjR5/S/fgT0ChWyBZ059jB1HbWnYv4bkoh+s5eiYSR8ZnloT44nDMnTnJL1ZuyzASLrK4stho+BpoWyKBKSmYRsGps9HMRikGImMu1/6+sgsXkxq6VLMYBBd1ycJLM3uzzTmS0pZjSJrJsDkcrmWvyN0XZ+2HoxhGOpzWqFQzJhdu3bxyCOP0N7ezmmnnba3h7PXaHWeWTlqFAqFQqFQKBQKRUsIURZB8ANdzbdrsT8pzamFnNraPk1rANWIQo3cPs2O3eIYbenCxoct/djSi2X7sGwvlu3BtLyYtgfTMiiZzm2xZFAyDQolN6ZplNd7sCwvpm0A83O18VwVlW+0XAkp+y5CC4J2JLiPdB7XrJNSlmPVdlTFHFm5b1Zi1QpgbXZasVGsWnjcfeOaGKu2SMWqKarCy2hulJHsCMf2HotAMLIjxo33/5A/7/gLI6ndjBbGSNoJsiKDKS2klLzyxtcjEjpWyeKFM55i4NitDY8hAPfQBo6KWSwizeZtI2wUgr6sTV/Ooq8swHTlnNovXZlH0cv7vmUDsKHJ2AGEwHK7ML1ezECAYlsb+WjUcb/09pLu7ye1dCn5ri6McgH7ibVdPIZB24Tluq43Pug0WJZVVw+mkQBTKBRmVA9mKgGmEkWmPuMVCoVi76OEGoVCMQnbtnn22WcBOPLII5V9WaFQKBQKxbwghAtEGAhDgzmtiiOl6iyRFpbdzHFiYls5pJ1G2qmyY8eJaxNkEWQQMosmctXm0gq49AK6ni/fz+PSC7i0ArpeKo/RRCeFLlLOoGY391bFsj1loceLJX1I6cPGX71F+JEEEBWXjxZCaAGEFkTTQ05ztaHrIXTdh76HNVIUBy5CCNC7nMaxzrKa9VKWyrFq2xu4cbaDHAOZADPhxKoVJgo5YjxWTV+CcE2MVetWsWr7IVJK0sU0sVyMWDbGSHaEEyMnseuFYQa3DHPr5p/wSOYh4qU4KZkiq2ewsJxoMQmnfO9M3GlHwNv0qqfZ2UR80Ys6vtIu1hVMFpNi19Y4O0su+rMWi3I2/VmL3qxFT1bSmQOP9eD4zs+XW7PnANi6juXxOO6XUMhxv3R0ONFjvb2kli0jt3Qp7lCoqeMl5PGwpKbmy55+zpqmOaUAk8/nKRaL03dUZqL40sgVM1vBSKFQKOYC27Z56aWXGBsb49RTT1Xzi9Ogos8UigYc7NFnmUyGYDAIQDqdJhCYOiNfoVAoFArFwYeUEinlnBSVb7Z8oX6qCCEaOEvAY5i4XSXcriJuvYjb5Qg7br2ArhfQtbzTRA5N5KsCkCMMOeIQMouQGZoW8tkjXFPGu9XV9mm6TWWZHyHUhJ5iHCdWbedkN05FzJG5aXowxmPV9CUIV60bZwlCO/h+Z+0NpJRkShlGsiPEsjF2xXfxwpZNHFM4nti2MYa3xfhN7pc85XmcjEiTdWWxhYWUVOu6nPLd12JkvQBsOmMDO4+bHDumF124cwan3nYMq+MmS0iRXDpCojvNopzFkpxFf86kP2PSm7Xwma27L6EsEmoaltuN5fVSCgYphMNO9FhnJ9m+PjKLFpE/9FBEX19VcGkmwlRcL3MhclfqwUwlwOTzeUzTbKk/TdOmFWBUPRiFQrE/sHnzZlasWAEc3POLKvpMoVAoFAqFQqE4iJFStlxsfrbL96aQsqdxXgsZ7eW8ToVJtXzG49zGH8uJ8W4TI+FkpmaC3HQcDzLhpL41O36r4xS+8bo9DQQfRI3Tp2F9n+D4PniUy2c/x4lVWwXuVc7jmnVOrFpsXLSxttc7cqxBoAjWFqfRKFatrc6B4zhyltTEqnkW5Hnub0gpyZayxHIxdiV3sWnLZjZv38q2Xds5PnYy8YEkY8MJ7m37Axu7nyHvzmFpVlV0qXDyta/Fk6mIL88yeNxA+QBO00s67qyBO+dB6CaHyDjLRJqXv1DCHA2zNGexJG+yJGOyKF0iVMqh2WkE94wfZFu5TfV8ANvlwvJ6Mf1+iqEQhfZ2ch0djvjS309xxQqsQw7BEwg0FF+CNcvmWrywbXvaejD5fL7lejAul2vaejAzrVmjUCgUigMDJdQoFAqFQqFQKBR7gWZCymwKy+9rQspcF53f368adibcvKB7gY6pt22hPyktkNkJ9Xwm1vepqe3TqL5PXW2f8lXeMlcWgUaaH7vF5ww6spmTp0YAEg3dPRMFoIBy++xjOLFqnU7jGGdZzXonVm1XczeOHQOZBPMZp9FAyKnGqtVGqy1x2gEWq5YtZdmd3s2mlzbzwpZNbN35EgOxAYaSuzn+xVNIjWRIj6Z5cOVf2XrYRizNavhefPbabVXxZeiMYdKLy5GNEnSzLLxkPbizBgKbXleBFe4MZ2wxcMX6WZ63WJYtsSRTIJov4DYzaGYc5G+dv68EdpTbFEhAahq2YTjiSzBIMRwm39FBrrub/KJF5Jcvxzz8cFzRaJ3LpSK4dJbvz6doYVnWlAJMpR5MqxiG0VI9GIVCoVAoGqG+IRQKhUKhUCgUigY0ElLmUkRpNQJlLqgVUuZaRKk4UhQLhxA6iBAQmnq7FvpyxLziZPGmFbdPg22Q2XLPljMRL5Nz4/bBO0HMmez2qXf8BBuLRFoA8Kqr1ecZIdzgWuI0Jv8vSjtTjlWruHHGnTlOrFoW7CGnlR519qnrwY3UF427cfTFzrEqwo4I79W/ca6UY8vAVp7buJHNL21h+9B2BuNDjGRGiBfHOOahU8gnCuTSeR4/9QEGjnipcUcCsvfIqviS681jak6M4rjw4rhejLwHb8BDt8/HSk+Ws3Z3E/yzjxV5k+WZIp25LN5CBlchiVYogLXN+buUgK3TPycJIAS2241Zcb+0tTniS2cnxUWLKC5fjrlqFSxahMfnm+R+iZbvz3fdlEos53T1YEqlUkv9CSGmrQezEM9LoVAoFAc2SqhRKBQKhUKhUOyXTBRS5lpEsaz5qCnSGCHElELJTASWigOldrkSUhTNcCazPSA8oEWn3raF/qS0y26fifFuNYKOPRO3T2UiNQ92HohNffwWxui4ffytu32qDp/GIpEQ6mf1TBFaALTDwX2487hmnZQS5BiY22scObWxagNACaytTqPB312EkLVuHH0x1ESrzTRWLZ/N8/Szz/L0C8+wdcdWdo4MMJwcZjQ3SsJKkCbFUb87BTNjUiqYPHvmYwytbmA78TstuLULT9oHgJZ2Jvc1U8Odc9wuRt6Dt+DFZ/rpXtRJtzfKIb4i79BcdDxxKCvzRfqyafzZJO50Ei2VQORyUHoRUXFSTuN6qb7egHS5sCrul1CIQiRCobOTYn8/peXLKR12GPZhh+EJhyfFjkXLtwsljEkpKRaL09aDafU7XNf1lurBKHFXoVAoFPONOqNUKBQKhUKhUMwLtUJKI0HENE1s2560rtnyRuLKQqFp2pSxXK2IJVMJLkpIURwoCKE5ggbBqbdrsT8piw3i3SYLOnI6wacq/IDj9kk5bU7cPp4a4SY4ScgZd/sEp90G4TvoJ4SFECCiYESBo51lNeulNMuxak3cOPaI87c1n3Ua9X9L04Shnb0Mbu/liZc0nt9tsiteYncuS7yYJSUzZLQMeXeWo3/6MmTB6eD5sx6vF1/KokuFxbmVeLKO+OLOGmiW5oguOQ9GwYuv6MNvBwjRxpoTjqQ32kN/WKdXX8misRRL8mnaUmO4RoaRu3cj4qOIzHZE4Umw7ZbfM5XnKzUN2+3G8nophkIU29oodnZS6uujtHQppRUrsI84Aldf36TYsUDZHbLQ/4u2bTes/zJRlGk11tPtdk8pwKh6MAqFQqHYl1BCjUKhUCgUCsVBSkVIaSaizNSd0mj9QtFISJnLiC8lpCgUewchDGfSfk7dPo3cPE3cPg0j4dIT3D4FsAvA6NTHb+UJo427fRrU6hl3+9S6exrEu1XdPu6Wjro/IYTLcce4FmPbJzG6K87Ai4Ps2jLM0LYYT+16jM2pjYzmR0iYSVIiQ04vUPAUKHqLHPeDV6BbLkDy/PpHGVqzw9EVG2iLeVcOT94RXzwpL56UF6PgwVvw4TP9BGSQsCtM1BPlxHeezOL+fnp7w/TrCZbk4wRHBpBbtiB374ChIcTYACL1PCL/V4Rpzkh8AZBCYLtcWB4PJb+fUlsbpY4OSr29lJYswVqxAmvVKrRDD8UTCNS5XwKGsVe/yypRZFPVhJlJPRiPxzOlAOPz+VQUmUKhUCj2K5RQo1AoJuF2u/nUpz5Vva9QKBSKvUMzIWUuI74WiolCyp7UQ1FCikKhmA3z4/Zp4ORp6vZpIvhUa/tIwC5vlwaGoMnHdOtuH6NGvGkU3RacUNtnKsePf96dB+l4mh0v7GLbph2MbYuze8coo7vGeDa/gR1iG0k7WXW7FDwFSr4CJX+Rk797JrrpTMo/v/5xR3xpQslfQk85UyGBRJC2WBvekkHAMghKjXaXi06fRm9I4+T/M8yypRaLluXo1rIYW/zYm3TsrQZyoIQYGkKMbkWkcmjZOxClEkg5c/eLrjvRYz4fZihEKRrF7O7GXLQI85BDsFetgtWrMaLROveLfx9wg0gpKZVKTcWXyvJW67JpmtawHkytIOPxeNT3vkKhUOwHuFwu3vzmN1cdjIqpUUKNQqGYhGEYfO1rX9vbw1AoFIp9HinlnNZD2VeElLkUUSoRYGpCRaFQHGg4bh8DtPapt2uhL8ftk5va7SMzyAYOoPF9aiLiKJZ7LoIsgjU29fFbe8Y1bp9G9X0cB1Cltk+x4GFgq83AliI7t2bZOhijNKCT2J0jGcvxgv95hoKDZF0ZCkaeordAyV+g5CtiekxO+++z0E1nymJa8cVXwJ0N4jZcdGa60UYgIAO06WE6vFG6Qt30d/RxSP8yXnbPqSxftQx/0AfxOPLppzE3bMB+4QXkli3w0na0kWFEPImWyaIVSnXRY618m0kAIbDdbkyvFzMYwIxEHPGlrx/7kEOwV65Erl6Ne+lSPD5fVXzx7UMuECklhUJh2nowtj1FhmANuq5Pcr9MfLyQ9W4UCoVCMb8YhsH73vc+2tvbMQxjbw9nn0cJNQqFQqFQKA5YJgopcymiVOqoLBStCCl7slxNiigUCsXew3H7BIDA1Nu12J+UpQaCTyO3TyPBZ7IDyDQlu3e6GNwKu7abDO5Ms304y66UjXtHG+mEm1xKY/PiQWI9YxS8RUq+Yll4KWF6nJi40352FnrJmYZ48XXPs2vt9ubPIVIiUPLgC7gwZT/tcQ9hdxudvgi9kW4W9yzi0CWHcsTha1j95WMxXB5nR9PEeu45zKeewn7uOeTmzYjnXkAM34c2OoqWTqPl88hSCVF+TVu9xlcC0uXC8hhYfj9mOIAZDWL1+LEWGdjL3XC4gXaYwBPIYrhSGK4sbiEBExgG3QW6AbqG0Iugj4C+GFxLQHhbHMmeY1nWtPVgCoVCy/VgDMNoqR6MQqFQKBSKxiihZi/xnve8h3g8zs9//vO9PZSDAvV6zwzbttm2bRsAS5cuVVdBKxQtIKUkFotRKBTweDx0dHSoie8WaFVIme3yvSGkzIeIooQUhUKh2PcpFkvcec3vGNg0RP+KHs798HoMw5mYtmyLB3c+yHBmmO5ANycvOhldmz/nhBBuEBEgAhMOY9s28eEEO1/cxeDmYXZv283Qzt3sHBlgOGkRy2UJvNiPlcryutxzPLNujIeXmWzyeyj6SpT8RUd46QP64LTfjYsvu48bY9eayeKLI4gI/IuzdAmDYMQiHPETL/bQFRAsimgs7YaVS2wOXSzp9um0/fvz1e8+KcEc1Ck9m0BujMPmFxD/W0IbLqKP5hGpIlauiFY0QUp0Jj3tpkhAahq2243l92O1tWF1dGD19GAvXoy9fDniyCPR1q7F6OvD4/Hg0nXcE76XpZQg42DtAGsHsrSd2GiCQjKFx7WNqP8RhCiCtc1pNHAyiQBSX+wIN/oSRPnWEXIWI4SvpedUiSKbqiZMsVicviNACDFtPRiv16vqwSgUCoViEpZlMTQ0RCqVYuXKlXR1danftVOghJoDhC1btnDppZdy7733Mjo6SmdnJ8cffzxf+cpXeOCBB3jve9877f6HHHII999/Py9/+cs566yz+PWvfw04IseNN97YdN9ly5axdevWhtutX7+e3/72t5P2+eAHP8h1113HLbfcwtve9rZZPGPFfJLL5Vi+fDkAL774IitWrNjLI1Io9m0GBwfZsGED+Xy+uszr9bJmzRr6+vr24sj2nFohZa5FlL0hpMyXiKKEFIVCoTi4+d6nf8TPvvErbGv8e+17F/+It/zbG1j8gQ4uvftSNo1twpIWutBZ0b6CL77mi5yz8pw9PnYmmWXnxgEGNw8z9NJuRnbGGB6MMTQ2xEh2hHgxTkomiW7owSpa2LZk+4kvMnroMMVK1FigVGfm+d6Di7mo+CI68KlueOkwZ/LARMfCqYuioeEtellyQj99oT7au8OsXXwoyfYxFnUvYsXS5aw4ZAW94R46/Z20edrQvq6V3T5ZbCtNcXQXpaefRm54Hh5/CX45iD44gh5LYCbS6JkcWqGIZll4AM8MXhcpBLZLx/YaWEEvVsSD1enD7vMgl3rgUB39CA3X8hKGkUPTbDQq7po8iBEQOdAGQDzhOJ6KATADSOE0MamWjxP/NjjSyzPPaeTzpfJoTsLrvYjVR/bT15UGcwfS2g7W9qqwgz3sOJjM553GZCHHFp0U5WHkzUPIlxZTKHWSL4XJF7zkixr5fIF8Pj+zejBGDq9rB14j7jR3Aq+RxBt6Bf7Of8bj8ahzHIVCoVDMmMHBQR555BH+6Z/+CYDvfe97LF++/ICYJ5kvlFBzAFAqlTjzzDNZtWoVt99+O319fezYsYO77rqLeDzOO97xDs4666zq9ueddx5r167lC1/4QnVZV1cXAN///vf513/9V77//e8zMDBAf38/3/zmN/nyl79c3bavr48bbrih2mftlTNnnXUWN9xwQ/WxxzP5VDqbzXLLLbfw6U9/muuvv36PhJpisagyDueZXbt2KaFGoZiCwcFBHn300UnL8/k8jz76KMcff/y8noRUhJT5EFEWWkiZy8LySkhRKBQKxULxvU//iJ9+/ZeTltuWzXd+fi0b/Y+DIfG7/OiajmVbbBzdyEW3X8T/nPc/dWJNsVBk4MUhBjfvYtfW3ezeHmN0cIzY0Ci7UyOMFmIkrSQZkSHvytLz2FJEORBt62nPMbJykKK/iLmkBEvqx/Oyp9bjsssyRCRLYtGos6cQaAiE0DAKHpZmi6x3v4hWNly86TlYNwQdWejMWXRe8F46Pv9Vwt4wmhh33lfOSQq5HOamTVhPPgl334XYuhVt506yw8Po8TiudBotl0MzTbxS0ppHpHwMQOo6tseDHQhghcPYXZ3YvV3IpX2Iw/rRjlyCe20vrpCNRhpNZtAnRrs1qgFkZ4DKRTclxx0j4zDFqVCjULBdY+t4bNN7yo/Gzz3y+RyP/X0Txx1+D72dI+PijutwcB+LLT0UCpAv2OUmyechX9TJFwzyxRCFUhhbTpzGyZVbPS6Xjdej4fN68fra8PrCk1wxeu4biNz3mzy7J6GYQ3g/0/wFUCgUCoWiAZV5klKpVF02NjZGX1/fgsyT7K8ooWYOue2227j88st58cUX8fv9HHvssfziF7/A6/Vy8cUXc/3116PrOu9///tbznkFOOOMM1i7di0AP/rRj3C73fzLv/wLX/jCFxBCsGHDBjZt2sTdd9/NsmXLAMflctppp1X78PnGT38Nw8Dv99Pb21t3nHQ6zU9+8hMeeeQRdu3axQ9+8AMuueQSwuEw4XC4bttIJDJpf3CEmUbLa/npT3/K6tWr+T//5//Q39/P9u3bWbJkyZT7VKhEmJ144ol8+9vfxuPxsGXLFrZv386///u/8/vf/x5N0zj99NP55je/ySGHHNJSvwqFQjEbpJRs2LBhym02bNhAR0cHtm3PSWH5fU1ImQsRpVJsXgkpCoVCodjfKBZL/Owbv2q4TgrJi69+mnwpT5vWRqloUrRK2LaNtCHpSvHOb1/Iut+fSF7LkTfylHwFlt5/eFV8efHVT7P7iJ2Y3SVkg6/Jzqf7cRUd8aXkL5KLZhzhRWhoQsNn+wgRIuyK8Pb/+0ZWLltB3/IedkeGSOoJugJddPo7ifqiPHrfoxRTac5529sQ9rjE8PJtToOyMPG17xPbbZEYHEQfGkIfHcWVTKLncmjFIn7bbrmWTrVPIbANA9vvxw6FsDs6kL29yCVLECtWoK9ejevoo9EXLUJoGjMNZm69to8JMtukVk+6Ku7IJvV/pJ3lme1vaXJUAUie2nQK6fSfKJhh8sUI+WKYfClMoRSClp6ZjcedxuNO4TMSeNwJvMYoPiNevp/A607g0idGm3lA7wa9H+QSyC+G3PVTHyp7A3bw39A0dXGkQqFQKFqj1XmS3t5eNQcwASXUzBGDg4Ocf/75fPWrX+XNb34zqVSKv/71r0gpufLKK/nBD37A9ddfz5FHHsmVV17JHXfcwatf/eqW+7/xxht5//vfz0MPPcQjjzzCP//zP7N06VI+8IEP0NXVhaZp3HbbbXziE5+YdTbsrbfeyhFHHMGqVau46KKL+MQnPsFnP/vZGb1p7r33Xrq7u2lvb+fVr341V1xxBR0dHXXbfP/73+eiiy4iHA5z9tln84Mf/ID/+3//b8vHuPvuu2lra+MPf/gD4DiK1q9fz6mnnspf//pXXC4XV1xxBWeddRZPPvlkS46bQqFAoVCoPk4mky2P50BicHCQwcFBcrnxK7Ief/zxqtDX19enFG+FooZYLFYXd9aIfD7P73//+wUZT6tCyUwElspjJaQoFAqFQjGZO6/5XV3cWS2JRTFy0QxaSSdbGD+/Nj0lbMMCIBWJ89Ab/oxmj0/QL3r0UFwlNy6Xju7VsPwWmtDRNIHf9hPS2mj3ROkMdPKZn/87q49cRdeSTjaObmQ0N0qnv5MOXwcRb2SKOjhH1D0aGRmhWCiy/K670Ka4CEQASElnTYpCMyQg3W5srxcZDGK3t2N3d8PixYhDD0U/8khca9ciDj8cDGNGdWXmCyFcINqAtqm3a7J8ZGSEfPGBKfcsWQE2DryhyfFtvEYer5HB606V48hieN0jeN278boTeNxJNM1q6fnUUyhHrW0HHmxxHxuyN0HwPbM4nkKhUCgORmKxGAMDA4yOjtbVQ9uyZUt1jjYajRKLxejs7Nxbw9wnUULNHDE4OIhpmpx33nlVV8u6desAuOqqq/jsZz/LeeedB8B3v/tdfve7382o/yVLlvCNb3wDIQSrVq3iqaee4hvf+AYf+MAHWLRoEf/93//Npz/9aS6//HJOOOEEXvWqV3HhhRdy6KGHtnyMioACToRZIpHgz3/+M2eccUZL+5911lmcd955LF++nE2bNnHJJZdw9tlnc//991fFoxdeeIEHHniA22+/HYCLLrqIT37yk3zuc59reQIwEAhw3XXXVd/c//M//4Nt21x33XXVPm644QYikQj33nsvr3vd66bt80tf+hKXX355S8c/kLn22msnvQ4f/ehHq/cvu+wyPv/5zy/wqBSKfZdagXdv4Ha7MQwDwzBwu90NhZdKgftmjxstV6KMQqFQKBStMbBpqOm6YqCAFBLNdr5ThRAIAZoQSCGQ5eCsTm8nh/gOoautm0Wd/Vy+6zK6I90AbEtsI1vK0unvpN3bPoXwAkd0HtF03XRUzmn8g4MtbW/ruiO8RCLQ1YXs70csW4Z2+OG41qyBNWsQ7e0IWvOIHCi0em4YjUaJRqPVKLJKHJlhGE3PwaS0atw+6cbRbbVun1rHj50qx7ilnD4o0Di4rQHWtta2UygUCoUC57vwt7/9LTfffHPd8u9+97vV++effz6vec1rFnpo+zxKqJkjjj76aF7zmtewbt061q9fz+te9zre+ta3omkag4ODnHzyydVtXS4XJ5xwwoziz0455ZS6E7ZTTz2VK6+8Esuy0HWdj3zkI7zrXe/i3nvv5YEHHuCnP/0p//mf/8kvf/lLzjzzzGn7f/7553nooYe44447qmN8xzvewfe///2WhZp3vvOd1fvr1q3jqKOOYsWKFdx7773VN9/111/P+vXrq4rpOeecw/vf/37uueeelt+g69atq3PJPPHEE7z44ouEQqG67fL5PJs2bWqpz89+9rN88pOfrD5OJpMtx7EdSHzwgx/kjW98I7lcjpe//OUAXH311Zx66qkAyk2jUEygUR2uRixZsgSv11sXVzYxvmxixFll2VTfFaVSiVKpRCaTmaunVKVVUWemolCjbZQopFAoFIr9lf4VPU3XGRkPQgqkJgkGA3gDznmDLW3yZh635qZgFfjZRT/lZUte1rCPpeGl8zLuiVTOabItnu9rX/862ic+MY8j2j9p9dzw8MMPn/FVxELoIEJAaOrtWuhLSonMfB/SX51+Y31h/gcVCoVCcWDg8Xg466yzOOmkkygWi3zmM06tsw996EOsWrUKcC5YaPU782BCCTVzhK7r/OEPf+Bvf/sbv//97/nWt77FpZdeWo3nWghCoRDnnnsu5557LldccQXr16/niiuuaEmo+f73v49pmvT391eXSSnxeDxcffXVk2rUtMKhhx5KZ2cnL774Iq95zWuwLIsbb7yRXbt24XKN/+tZlsX111/fslATCATqHqfTaY4//nh+/OMfT9q2q6urpT49Ho/6gGA82qx20veYY47huOOO24ujUij2XTo6OvB6vVPGn3m9Xo466qhZixEzEXWmWz7dvrWiUGVZbfG/+aJVUWcmApAShRQKhUKxEJz74fV87+IfNYw/C+/swDcaINuRxvCPX2iWLCSrQs2a7jWcvOjkSfsuNJVzmi1nn82R3/8+QsqGE/4SELoOH/7wQg9xv6DVc8OJ8eALjRAC6X8XpL8O/397dx7eVJm3cfybk6TpBoUW2hTZFBBkFxBUHDcUXGBGQEdFURBBVNxQUdRBQdyQzcFBGQXccHlHcRmXcRQHFxRQFBhBZagCKmmhLaV72uSc94/Y2NItXVPo/bmuXj056++EkrTPned5qGq+QwOixzVWWSIicgRISEigXbt2xMfHl3k/PProo+natSvQNN4LmyIFNfXIZrMxdOhQhg4dyqxZs+jUqRNr1qwhOTmZDRs2cOqppwLg8/nYtGlTjRq/N2woO4bs+vXr6datW6Xz0dhsNnr06MHnn39e7bl9Ph/PPfccCxYsKDdM2AUXXMBLL73E1KlTQ661xC+//EJGRkawF8a7775LTk4O33zzTZm6v/32WyZOnEhWVhatWrWq8XUGDBjAK6+8QmJiIi1bVj2WsITG4XBw0UUX8Y9//KPWcx6JNAc2m41evXqxadOmSvfp1atXncIBwzAwDAOn01nrc4SqdGhTl0AolJAoXKFQQwRCCoVERJqviAgnY28ZyT/mv1Vum82y0fWj3nw7ZiMZWem0ahmYM8Zus2NhUWwWc3nfy6sczqyxlP6dxhsfT1RGRiCUKbVP8PH06RDCPKDNUWP8blhfDCMCM3oi5C+vfKfoiRiG/q1FRCR0pd8L7XY7Q4cOZd26dRjG74OhNpX3wqZGQU092bBhA2vWrGH48OEkJiayYcMG9u/fz3HHHcdNN93Eww8/TLdu3ejRowcLFy4kKyurRuffs2cP06dP55prruHrr79myZIlLFiwAAhM9n7vvfcyfvx4evbsSUREBB9//DErVqwIdi+ryttvv82BAweYNGlSuZ4zY8eOZfny5dUGNbm5ucyePZuxY8fidrtJSUlhxowZdO3alREjRgCBXjvnn38+/fr1K3Nsz549ueWWW1i1ahXXX399TZ4WAC677DIeffRR/vSnPzFnzhzat2/P7t27Wb16NTNmzKB9+/Y1Pmdz53K5eOyxx+jZs2dwziURqVhycjIDBw5k27ZtZT4tEhkZSa9evQ6rIQPDEQrVNRA6dH1F+5QOhUzTxDTNsIRCDREIKRQSEQm/KfPGA/DaorfL9Kwx7AYDI06A1bDzzG/Jsg4SEe3EbthpE90Gv+nnuS3PcXnfy0mMSQxX+UFJSUn0WLWKqIyMCrfb7PZASDMvhOGymrHKfjd0uVz07t27Sf1uaLS8A7PgH2BlH7olENK0rL49QURE5FAl74Vbt25lypQpdOzYkcTExMOynaQxKaipJy1btuSTTz5h8eLFZGdn06lTJxYsWMC5557L2Wefjcfj4corr8QwDK666ipGjx7NwYMHQz7/FVdcQUFBAYMHD8Zut3PTTTcxZcoUANq3b0/nzp2ZPXs2u3btwmazBR/fcsst1Z57+fLlnHXWWRUObzZ27FjmzZvH1q1b6du3b6XnsNvtbN26lWeffZasrCzatWvH8OHDuf/++3G5XKSlpfHOO+/w4osvljvWMAxGjx7N8uXLaxXUREdH88knn3DHHXcwZswYcnJyOOqooxg2bJh62NRBcnIy9913X7jLEDksJCcn43a7ycjIwOv14nK5SEhIUON5FUpCocZQEs7UtjdQTYaSawqhUEMFQgqFREQqN2XeeCbMvYR/Ln2fvSlptOuSxKjrRhAR4WT5Xat46ZHXOXhUBra2FvcsvY0z+p/GH1/+Iz+k/8DUt6fyfxf9Hw4jvH+eH3zjDbq8/DIAvuOOI+2dd4hbtYqY1FRsXbsGhjtTT5qQlP7dcPPmzRQWFtK9e/cm1zBl+vb/HtJEDAd7YmBOmuhx6kkjIiJ1UvKet2nTJiZPnkyfPn3UTlINm1WTGe0lLE4//XT69+/P4sWLw11Ks5GdnU1cXBwHDx5slmGPZVmkp6cD0KZNG72IioiEqLJQqCGGkjPNqsaUbzglIU5tQp6a7qv3HxE5Urzx+Hv87cYVADhdThZ/Ogf7MTbOXXUuuUW5XHfCddxz6j3hKzA9HbN9ewyvF390NPa0NIiNDV89R5AdO3awY8cOkpKSOOGEE8JdThnmwbuh4B+AAxK/bbQP0YiISPPg8Xj46KOPiIuL4/zzz2+2f9+F2s6sHjUiUk5+fj6JiYHhF3Jzc4mJiQlzRSIih4eSnkIOR8P/imVZVqMEQiXfSzRmSFRVKFTfPYea6x8NItI4Lph2LgnJrbn/4oUUe4u54aS7mfPmHSwcsZAp/5zC018/zcT+Ezmq5VGNX5xpYp14IobXi2Wzkf3GG7RWSFNv3G43O3bsYP/+/RQXFzfKELMhK/xX4HvEYIU0IiJS7woKCrj88ssBtS+GQkFNmO3Zs4eePXtWun379u2NWE34xVbxB8F7773HH/7wh0asRkREpOmy2Ww4HI6whEL1PbdQUw6FGmIoOYVCIs3TH8aeyIK1s5kxbDa+Yj9/GfUw05+eyt1/uJtTOp4SnpAGYPx4bCkpWMCOyZM59qyzwlPHEapFixbExMSQl5fHvn37OOqoMP07H8L0rgcrJ/Agtvoh00VERKRhKagJs3bt2rF58+Yqt69du7bR6gm3qp6LpvILrYiISHMTrlCoIQKhphIKNUYgpFBIpOnpc8pxPLl5PtefcCfefC8LJj3BhDkX0++efuEp6Nln4bd5RPcNHEjRtGl63ahnNpuN5ORkdu7cicfjaTp/1+b+NfDd1gojIkw/fyIiIhKkoCbMHA4HXbt2DXcZTYaeCxERkeYtHKFQXYaHC3XfikIhn8/X4PcYaihUH8PLadgckdB0Oq49z+1cwuQ+08nOyOWZWa+QsfcANy6dzNa0rbyz4x3uPOXOhg9MfvgBJk0CoDA+ni9nzeLEJjbZ/ZGiJKjZt28fPp+vUd7jqmKaPij+JvAgcmRYaxEREZEABTUiIiIi0iyVhEKNwbKsRgmEwhkK2Wy2akOd+uo5pFBIDnfx7tY8/9NSpvSZTtrudP755L/Zk/Yzr5+2ioLiAjrGdeSyvpc1XAFFRXDyyeD3YzmdfDZ/PhGRkSQkJDTcNZuxli1bEh0dTX5+Pvv37yc53IFY/rOAP7Dc4sawliIiIiIBCmpERERERBpY6RCjoVUWCtV3IHRoKGRZFj6fLyyhUEMOJadQSBpKdGwUz/xvCdMGzyRl8y62vP4d7e1d+N+Qb7nro7vok9SHvkl9G+biw4ZBZiYAux5+mMK2bemUnKxhzxqIzWbD7Xbz448/4vF4mkBQsyrw3d4Fw2gV1lJEREQkQEGNiIiIiMgRJNyhUEPOLVT6uuEIheoybFwo4ZFCoebH4XCw9KtHuPv8h/jq/c04X21JdGQceX2zmPzPybx/+fu0imxVvxedNQs++wwAc+pUdvTqBcXF4Q8PjnDJycn8+OOPpKWl4ff7G+U1uiKmLxXMXwIPYiaFpQYREREpT0GNiJTjcDi48sorg8siIiIiFTlcQqHa9Bwqfd3GDoVC7RFUl7mFFAo1HYZh8NB7dzN/0lLeX/kfOvxfd7bGfMGeY/Zww3s38OwFz2LY6unf66OP4P77A8t9+pAxZw7FGzYQERFBfHx8/VxDKtSqVSsiIyMpLCwkPT2dpKSk8BSSu/C3BSdEjglPDSIi0izY7XbOPPNMXC6X2hdDoGdIRMpxuVw888wz4S5DREREJOhwCIVqO5Rc6es2RiAEVYdC9RkI2e12bDabhtQKwW3Lr6PNUfGsmvsax77Wny2Xr+MD6wP+uuGv3HzizXW/QHo6nH9+YDk2Fj7/HM+PPwLgdrsV3jWwkuHPdu3ahcfjCV9Q4/0g8D3iJP2bi4hIg3K5XNxyyy20bt0al8sV7nKaPAU1IiIiIiIipYQzFGrIQCicoVB9DxtXWVB0uIdCE+ZcQkK7eP56/VN0+aA3/xuxhbX//Zgbh9xYt141pgknngiFhWCzwUcfYUZHk5qaCqBhzxpJcnIyu3btIi0tDdM0Gz0oMb2fgpUXeBB7S6NeW0RERKqmoEZEyrEsi/z8fACio6MP6z92RURERJqycIVCoYY9dRlervR1D13XkOoyHFxNjjUMo0F+Tx41dTjxya2ZM/ZRnAUR5O92siH5G04aObD2Jx0/HlJSAsuPPgonnEBmejpFRUU4nU4SEhLqp3ipUnx8PC6XC6/XS3p6OomJiY1bQO7jge9GPEZEr8a9toiINDuWZVFYWEhBQQGWZal9sRoKakSknPz8fGJjYwHIzc0lJiYmzBWJiIiISF2FIxSqS++fmhxbWrhCoZoMB1ddSNT/rJ48vOYv3DXiAXx+P7P+9DA3PTGZc68eht2o4b/fs8/Ciy8Gls85B269FYC9e/cCGvasMZUMf7Z79248Hk+jBjWmWQTFWwIPIv/UaNcVEZHmq6CggIsuughQ+2IoFNSIiIiIiIhIvSodCjmdzga9lmVZZXrt1FePoMqCotIaOhQa99goXrrlbQp9Xq57/Xo6bWvPvaPuDjkQcu3eTaerrsIG+BMTSXvqKexpaRiGgcfjAQK9PAoKCsqcR594bTjJycns3r278Yc/y18BmIANYm9onGuKiIhIyBTUiIiIiIiIyGGrZF4awzDCFgrVJOipyfByrY+KY8Lfx/DYg0+R1usX0viFxSueYOq4idUXW1TE8AkTsJkmpt3Ofx5+mMLNm8vttmXLlnLratpDqLZDyTXHUCg+Ph6n00lRURGZmZm0adOmcS6c/3Lgu+NYDCO2ca4pIiIiIVNQIyIiIiIiIhKCxgyFgGBgM/y8szljwjlsP3YLH7V9n6Sn2vHg3++pcni5TpdfTkRODhaQMncuLXr2JPq3bXl5efh8vuBcO36/H8uygtctOUdxcXGD32Nt5geq7fByTSEUMgwDt9vNzz//jMfjaZSgxvT9DGZgqDtirm7w64mIiEjNKagRERERERERaYJKgpRW8a1Y/+rH9LqhHz+32M3qhJcw/uTgic8exeGo4M/6WbPgm28AsE2dSrc77wxusiyLDz74AIBBgwYF50kpHfjUZW6hUHoNhSsUaohAqDahUHJyMj///DOpqan07t274QOk3EW/LUSAa1TDXktERERqRUGNiIiIiIiISBPninCxYdE6et/Xl8z4TN5LfJMJ3b08tXUhUTGRv++4di3MnRtY7tMHnniizHkyMjIoKirC6XSW6c1REgo1Zk+hugZCNQ2FSnoghSMUKv24JMjxer18+eWXxMTE1KnnULVBj3dN4LvrlMabE0dERERqREGNiIiIiIiIyGEgITqBt29+i7OeOJv9x3r4+teNXH70dTz134XEJ7WCzEw47zywLIiNhc8/L3cOj8cDgNvtDlujfUko1BiqGh6uvucWqk0otG/fvjrf46EhUOkgJz5mC90SC7As+N+vo/Dv3VannkNNYfg4ERGRI5GCGhEpx263c+GFFwaXRURERESkaRjYbiALxsxn1lv3Ep0ZS3Z6Dld2ncYTXz5M+1FnQEEB2Gzw0UeBsKYUy7JITU0FAsNvNQcloVCFQ8TVs8pCoYrWZWVlsWfPHhwOBx07dqyyl1FFIZFpmuWuW1EodGzbfwDgLW7Bzl0W8FOd7rEkxKnJkHG1HUpOoZCIyOHNMAyGDh2K0+lU+2IIFNSISDmRkZH84x//CHcZIiIiIiJSgYn9J/Kn7n9iQ7tvWDR1GYV5Xn7odQrtzd2BHR59FE44odxxmZmZeL3ecsOeSf2oSSh01FFH8euvv+Lz+UhOTqZ169Y1upZlWSEEQgW0Mn4BoJBzOPbYY2vUc6h0eFTi0JCoIVUVCtX33EIKhURE6l9kZCR33nknrVu3JjIysvoDmjkFNSIiIiIiIiKHEZvNRkJ0AudNPovW7la8Pf5qTs0JhDSZx59I/K23Vnjc3r17AUhKStJcJWFmt9tJSkpi7969pKam1jiosdlsOByOKkMhM+evkGcBNlq1v5t4I7pWtR4aCjXkUHJNLRSq70BIoZCIiFRGQY2IiIiIiIjIYSqnxRZeHb+F2M0w5bNILvmmHTc88T5/vHZEmf2a47BnTZ3b7Wbv3r14PB569OhR/w34Bb+NkuA4DqOWIQ2EFgrVl9KhUEMEQk01FGqIQEihkIjI4UVBjYiUk5eXR+xv41nn5uYSExMT5opERERERKScoiIKb7+FnNNgyRBYe2AAbDdYcv3TZPyaycS5lwZ3LRn2zOFw0LZt2zAWLSUSExMxDIP8/Hyys7OJi4urt3Obvl1gpgUexFxTb+dtaOEIhRo6EAp3KBRKL6G6BkUl1xERKS0/P59Ro0YBal8MhYIaERERERERkcPRsGH88ascvmwBy4e15qfJ++m6pD3FP5q8+OBq0vdmcvuK6wHweDxAoBeHGlSbBofDQWJiIqmpqaSmptZrUEPOwt8WIjGizq2/8x5BSkKhxmBZVoMFQqGEQj6fr8Hv0WazVRvq1FfPIb2GiciRSEGNiIiIiIiIyOFm1iz47LPAYvfJbD7Gw6a9m/Dek07yw8eStiOdfz+zlsy9B5j7zsxgUKNhz5oWt9tNamoqHo+H7t2719+JvWsD312n1d85pdZKhxgNrbJQqL4DoUNDIcuy8Pl8YQmFGnJuIYVCItJYFNSIiIiIiIiIHE7WroW5cwPLvXvjfOLv/D3Hw9nPn813Gd/R77F+tL6vG99v+B9f/XsLU4+/jVFzziAiMoI2bdqEtXQpKykpCZvNRm5uLjk5ObRo0aLO5zQL3gMKAw9a3FLn88nhJdyhUEMOJVf6uuEIhWoyFFxthpdTKCTSvCmoERERERERETlcZGbCeeeBZUFsLHz+OQDJLZJ5cuSTXPLqJbz87cs8/dzTtL49ji/e+opd3/7CM9es5vbV1zZK462Ezul00rZtW/bt24fH46mXoIa8ZYHvRhKG45i6n0+kEk0xFKqvuYVKX7ephkJ1mW9IoZBI06OgJkwmTJhAVlYWb7zxRrhLaRbuu+8+3njjDTZv3hzuUkRERERERGrHNGHIECgoAJsN1qyBUg37p3Q8hRlDZ7Avbx9nH3M2571xHo9d93fefvIDcvbnMW/UUp7e1o2E5Pgw3oQcKjk5ORjUHHvssXU6l2nmg++7wIOoi+qhOpGm4XAIhWrbm6j0dRs7FKptIFSToMhms2Gz2Rr8nkQOdwpqjhA//fQTd999N2vXriUzM5M2bdowcOBAHnnkEdavX8/EiROrPb5z58588cUXnHLKKZxzzjm88847QCBUevbZZys9tlOnTuzatavC/UaMGMG//vWv4OPSL8x2u5127dpx4YUX8tBDD+FyuWpz6yIiIiIiIkeuoiJYuhRSUgK9Z3buDKyfNw8GDy63+w2Dbwj+3WVZFuffeiabizfx9Wf/JSvPxZXHTuNvGx4huaubfy59n70pabTrksSo60YQEeFszDuT3yQlJQGQk5NDSkoKcXFxJCQk1Khh0zSLIP9FKHgDsAIrY6bUf7EizUA4Q6FQwp66DC9X+rqNEQhB4Pms72HjKguPFAr9zrIsMjIy8Hq9uFyuGr+v1FcNJdLT04mOjta/TxUU1BwBiouLOfvss+nevTurV68mOTmZX375hffee4+srCwuvvhizjnnnOD+Y8aMoXfv3syZMye4rm3btgAsX76cG264geXLl7N3717atWvHY489xsMPPxzcNzk5mZUrVwbPWfqN65xzzmHlypXBxxWFLyXHFhcXs2XLFiZOnEhMTAz3339/je+9qKiIiIiIGh8nVbPb7Zx55pns2bOHffv2cfTRR4e7JBERERGR5mfGDFi4EEo1rgHQuTPcdluFh5Q0gHg8Hp7+9GkeT3mcnI45+C72YRZZRGXGcMGYn2m7MxnL/L0B5e+3P8/YW0YyZd74hrobqURGRgaGYWCaJt99F+gNExkZSa9evUhOTq72eDP7EchfCZhlN+Q+Bi3vaICKRaS+hCsUCjXsqctQcqWve+i6hlSX4eBqcqxhGE02dPB4PGzbto3CwsLgupq8r9RXDdu3b6dv377s37+fDz/8kE6dOjVqDYcbBTX16NVXX2X27Nns3LmT6Ohojj/+eN58800iIyO5/fbbWbFiBXa7nUmTJpVJFKtz+umn07t3bwCef/55nE4n1157LXPmzMFms7Ft2zZSUlJYs2YNnTp1AgK9XIYOHRo8R1RUVHA5IiKC6Oho3G53mevk5ubyyiuv8NVXX5GamsozzzzDXXfdRVxcHHFxcWX2bdWqVbnjIRDMVLS+smM7dOjAn/70J77++uuQnouSIcymTZvGAw88wO7duzFNk6ysLG677TbefPNNvF4vgwYNYtGiRfTr1y+k80pZkZGRPProowwcOJADBw4oqBERERERaWwzZsCjj1a8bdeuwPZ58yrc7PF4eHLNkzz444P4LB+RtkhinbEU2YrJT8jl2ws20Hv1YNrs/L2hxPSb/GP+WwAKaxqRx+Nh06ZN5dYXFhayadMmBg4cWGWDViCkWV7xxvzlmIChsEZECE8oVJfePzU5trRwhUJ1GSKuumNrEgrV9X2lPpTUYLPZmDhxIrfccgs5OTmNWsPhSEFNPfF4PFx66aXMmzeP0aNHk5OTw6effoplWSxYsIBnnnmGFStWcNxxx7FgwQJef/11zjzzzJDP/+yzzzJp0iQ2btzIV199xZQpU+jYsSOTJ0+mbdu2GIbBq6++ys0331zrF9z/+7//o0ePHnTv3p3LL7+cm2++mZkzZ9YoHV67di2JiYm0bt2aM888k7lz55KQkFDp/jt27OCjjz5iwoQJIV9j586dvPbaa6xevTp4rxdddBFRUVG89957xMXFsWzZMoYNG8aOHTuIj9f4yyIiIiIichgpKgr0pKnKwoUwdy4cMsKAZVls/XYrz+99PrjOa3lxWk4iHE6Kcorxu3yknLmNhBQ3Nqvs33uvLXqbCXMv0TBojcCyLLZt21blPtu2bcPtdlf4d3lguLOVFRxVSv5KzNhbMAyNRCEijad0KOR0Nuz7iWVZZXrt1KZHUE16DpUWjlCoul4+qampVZ6nqveVujJNE6/Xy3//+9+w1XA4U1BTTzweDz6fjzFjxgR7tfTp0weAxYsXM3PmTMaMGQPAk08+yfvvv1+j83fo0IFFixZhs9no3r07//3vf1m0aBGTJ0/mqKOO4q9//SszZsxg9uzZDBo0iDPOOIPLLruMY445JuRrLF++nMsvvxwIDGF28OBBPv74Y04//fSQjj/nnHMYM2YMRx99NCkpKdx1112ce+65fPHFF2XCo0svvRS73Y7P58Pr9TJy5EhmzpwZcp1FRUU899xzweHaPvvsMzZu3Mi+ffuCQ63Nnz+fN954g1dffZUpU6ofl9fr9eL1eoOPs7OzQ67nSOLxePB4PADBXk6lezslJycr8RYRERERaWhLl5Yf7uxQfn9gv5tvLrM6IyODrRlbSfWmEmWPosBfgN/y4zW94AMbNoxiO/nxuRw8KoNWv7Qpc7zpN/nn0vcZe/PIer4pOVR6enqZYWkqUlhYSEZGBm3atCm/Mf9Fyg13Vo4Z2C92Qm3LFBFp0krmpTEMI2yhUH33HCpZV3pEpvoKhap8XzlESfBSVFREUVFRmeVDH3u93uC8R5mZmWRmZgKQkpJS5jtAfHx8yDU0Jwpq6km/fv0YNmwYffr0YcSIEQwfPpwLL7wQwzDweDwMGTIkuK/D4WDQoEE1Gv7sxBNPLJMynnTSSSxYsAC/34/dbuf666/niiuuYO3ataxfv55//OMfPPjgg7z11lucffbZ1Z7/hx9+YOPGjbz++uvBGi+++GKWL18eclBzySWXBJf79OlD37596dKlC2vXrmXYsGHBbYsWLeKss87C7/ezc+dOpk+fzvjx43n55ZdDuk6nTp2CIQ3Ali1byM3NLddzp6CgoMyLQFUeeughZs+eHdK+R7Jly5aVex4mT54cXL733nu57777GrkqEREREZFmJsS/Yyraz+v1kuXLwsSk0FeIHz82bEQYEZj+wN+gNtOGabMoivGWOx5gb0parUuXqvn9ftLT00lNTWXv3r0hHVP6Q4VlT7YnxIuGuJ+IiFSpoUIhy7IoLi6msLCQwsJCCgoKKCwsJD8/n7y8PPLy8iguLq636x04cADLsioNYUqWS4KXmvrXv/7FSy+9VGbd448/Hly+9NJLy7QVS4CCmnpit9v54IMP+Pzzz/n3v//NkiVLuPvuu/nggw8arYYWLVowatQoRo0axdy5cxkxYgRz584NKahZvnw5Pp+Pdu3aBddZloXL5eLxxx8vN0dNKI455hjatGnDzp07y/znc7vddO3aFYDu3buTk5PDpZdeyty5c4PrqxITE1PmcW5uLsnJyaxdu7bcvq1atQqp1pkzZzJ9+vTg4+zsbDp06BDSsUeSa665hj/+8Y8UFBRwyimnAIEX0pNOOglAvWlERERERBpDly613s/lchFrxOIzffjxY2AQY4/BaTgptgcaeSzDwmbZiMhzVXjadl2Sal26lOfz+di/fz8ej4d9+/bVuOGrZOSI0kwzG7wfhXYCe8caXU9EROpP6RCmJIApvVzyPdTeMk6nk8jIyOCXw+HA4XBgGAYFBQXs2VN9OP/DDz/U6B4iIiJwuVxEREQEv0o/Lll2uVxkZ2eTmZnJ4MGDKSoq4o47AvOkTZ06le7duwOBHjUVvbc1dwpq6pHNZmPo0KEMHTqUWbNm0alTJ9asWUNycjIbNmzg1FNPBQK/pG3atIkBAwaEfO4NGzaUebx+/Xq6detW6Xw0NpuNHj168Pnnn1d7bp/Px3PPPceCBQsYPnx4mW0XXHABL730ElOnTg251hK//PILGRkZ1Tbul9xDQUFBja8BMGDAAFJTU3E4HHTu3LlW53C5XHqB4PehzfLy8oLr+vfvX6OfVRERERERqaPrroPbbqt6+DO7PbDfIRISEji+zfHE/BRDti+baCMapxH41K/D5aAwvwjT6ScmowVxv1Y8n+jg8/T7f10VFRWxb98+PB4P+/fvxzR/H6LM5XLhdrtxu91s2bKlyuHPIiMjy40eYea9AjlzgFA+XW1A9Lha3oWIiFSlJIQ5NHQ5NIgp/R5QFYfDQWRkJE6nE4fDEZx7BggOh1ZcXExRUREHDhyodY+XikKWypadTmeN5pJJSEigXbt2xMfHl3l/O/roo4Mf0K/ovU0U1NSbDRs2sGbNGoYPH05iYiIbNmxg//79HHfccdx00008/PDDdOvWjR49erBw4UKysrJqdP49e/Ywffp0rrnmGr7++muWLFnCggULANi8eTP33nsv48ePp2fPnkRERPDxxx+zYsWKYGpZlbfffpsDBw4wadKkcj1nxo4dy/Lly6sNanJzc5k9ezZjx47F7XaTkpLCjBkz6Nq1KyNGjCizb1ZWFqmpqZimyf/+9z/mzJnDsccey3HHHVej56TEWWedxUknncQFF1zAvHnzOPbYY9m7dy/vvPMOo0ePZtCgQbU6r4iIiIiISFhERMD06fDoo5XvM316YL9D2Gw2+vXpx437bmThTwsptooxLAM7dvz4saJNjCKDLh/1wmZV3PAype+tPPLvv9D31J71dUfNgtfrJTU1ldTUVNLT08sMdx4dHY3b7SY5OZlWrVoFG7169erFpk2bKj1nr169gvuaZiZkXgW+7b9tNcDRG3xbKy8qeiKGUf7nREREqmZZFkVFRRX2fim9XJMQpnTvlxKmaeLz+SguLsbn85Gbm1ujOm02W5lwxe/3c+DAgUr3HzBgQJkRleqbzWar0Xub/E5BTT1p2bIln3zyCYsXLyY7O5tOnTqxYMECzj33XM4++2w8Hg9XXnklhmFw1VVXMXr0aA4ePBjy+a+44goKCgoYPHgwdrudm266iSlTpgDQvn17OnfuzOzZs9m1axc2my34+JZbbqn23MuXL+ess86qcHizsWPHMm/ePLZu3Urfvn0rPYfdbmfr1q08++yzZGVl0a5dO4YPH879999frqfKxIkTgcB/XLfbzamnnsqDDz6Iw1G7H0ebzca7777L3XffzcSJE9m/f3/wvElJ6rJfV263O9wliIiIiIg0P6XmOS3Dbg+ENPPmlVmdmpvKsq+Wcfepd5OcnMx1w64j8tNIlu9aTqo3FS9eDAw6xnZgwHcncvDHYix+DxIMu8Hgc/uz8d1v8BX5uO2M+7jlqWs49yqNIV+V/Pz8YDhTMnFyiRYtWgTDmRYtWlTYKJWcnMzAgQPZtm1bmU8eR0ZG0qtXr+AIFWbes5DzCPDbp6eNjhC/HMPRCTP7EchfCZRuLDQCIU3L6j+8KSLS3JTMz1LZMGQlX6GGMIZhYLfbg6/zlmXh9/vLHO/z+ULqAXNo8FLdckU9XjweT7XvKw2p5L3tq6++Cq5r3bp1o9ZwOLJZNZnRXsLi9NNPp3///ixevDjcpTQb2dnZxMXFcfDgQVq2bBnuchpdXl4esbGxQKC31KHzAomIiIiISAM74QT46itwu+GOOyAlJTAnzXXXletJsytrFxe/ejE/H/yZqYOmMuu0WUCgoWjf/n2s/2U9B30HOSbpGCIzIkndm4rltzi4vZADe7Np1yWJUdeNICLCyQ9f7WT6afdSVFAEwEW3jWLKvCsa/fabstzcXFJTU/F4POU+gBkXF0dycjJutzv4N1UoLMsiIyMDr9eLy+UiISEBm82G6UuDrKvA97/f9jQgdhpG7LQyx5tmEeS/CP49gTlposepJ42INEslIUxFvV9KL4faJF46BKlNM3pJ8BJK6FKbocYqU9n7SmPKzc2lRYsWAOzatYuOHTs2y540obYzq0eNiIiIiIiISFNSWAhffx1YnjgRbr650l1/SP+BS167hLTcNDq36sxVx18V3Gaz2UhKTOJPiX8KrjM7mGws2kh6ejqJA+MYfeN5ZT6Y1X1QV57b+TjX9L+Ng/uz+cf8f7Lnu1+Z8+YdZYZqaU4syyI7OzsYzhw6LE18fHwwnImKiqrVNWw2G23atCmzzsx9EnIfA36bq8jeBVqvxHCUH/XAMCIgdkKtri0icriwLKvK8KXke31fszSbzVYuXKkqhHE4HGEJJyp6XwlHDSXatGnTLEOamlBQE2Z79uyhZ8/Kx/3dvn17pduORL169WL37t0Vblu2bBmXXXZZI1fUPBmGwWmnnRZcFhERERGRRrRgAZgm2Gxw112V7rY5dTPjXhtHVmEWx7U9jpfGvkRiTGKVpzYMg4EDB/LFF1+QnZ3Nxo0bOfnkk8sMWZ2Q3JoXdz/B9YPvZNe3P7Phna+Z0vdWln71CBGRzaOXhmVZHDhwIDisWX5+fnBbSeOX2+3G7XaXG+67rkzfr3BgIvh3/bbGDrG3YsReXa/XERFpSkzTDA5HVlBQQEFBAfn5+eTn51NQUIDX66W4uLjer2sYRo2GGgtX8HI4UvtizWjoszDz+Xzs2rWr0u2dO3eu9dwth6Pdu3dX+qKblJQU7C7X0Jr70GciIiIiIhJGnTvD7t3Qty9s2VLhLut/Wc8Vr19BblEuxycfz6oxq2gV2SrkSxQWFrJu3ToKCgpo1aoVJ510Ena7vcw+pmly35hH+eKtwBjzLdu0YNk382lzVHxt76xJM02TzMxMPB4PqampeL3e4DbDMEhMTMTtdpOUlITT6WyYGnIeg7wnCM434+gBrZZjONo2yPVERBqDaZrB4CU3N5e8vLxgGFNUVERxcTF+v79erlUSvITa60XBizS0UNuZFdSIVEBBjYiIiIiIhMUvv0CHDoHlZ56BK68st0teUR6Dnx7MgYIDDO04lJV/WklsROjzoZTIzc1l3bp1FBcXk5SUxMCBAyv8xOvTd77AK/PeBCAi0smCtbPpMbhbja/XFPn9ftLT0/F4PKSlpZX54KDD4SApKQm3203btm0b9EOUpm8XZE4E89ff1jihxUyMmMsb7JoiInVhWRY+n4/CwkJyc3PJzc0Nhi9er5eioiJ8Ph9+v79Wc7uUsNlsOBwOIiIiiIyMJDIyssqeL3a7XcGLNCkKakTqQEGNiIiIiIiExcSJgYAmIgIKCqCSoUI+3vUxz299nsfPe5xIR2StL5eZmcn69esxTZOOHTvSp0+fChu4/v3sf5g/6Qks08Jm2LjzuRs4c9wfan3dcPL5fOzbt4/U1FTS0tLKfIo7IiKCpKQkkpOTSUhIKNfLqCGY2Q9B/jPAb80zzr7Q+mkMo1WDX1tEpERJ8FJUVERRUVFwGLKSoccKCwuDvV98Ph+madb6Wna7HYfDgdPpJCIigqioKKKiooiOjlbwIkccBTUiddDcg5q8vDw6d+4MwK5du8pMLioiIiIiIg2oVSs4eBBGjIB//avMpmxvNi1d9f/3icfjYdOmTQB0796dbt0q7i3z7brvmHHWHIq9PgAu/8uFXDn74nqvpyEUFRWRlpZGamoq+/fvL9PAGBkZidvtJjk5mdatWzfaOPpm8Q44MAnMtN/WREDL+zCiL2yU64vIka0keCnp3VISvpReLj33i8/nq1PPF8MwsNvtOJ1OnE4nkZGRwfAlNjaWmJgYBS/NjNoXAxTUiNSBgpo8YmMDQyfk5uY22xdSEREREZFG9emncOqpgeWNG+GEE4Kbnv76aZZsXMLrF7/OMa2PqfdL//TTT2zbtg2Afv360aFk+LVDpO3Zz7UDZpCTmQvAHy48kVn/d2u911MfCgsLSU1NJTU1lYyMjDINkNHR0SQnJ+N2u2nVqlWjNhqapgk590HBK/zei2YQtP47hlHzIexEpHkIJXg5dLm+mn1LwpfSvV9iY2ODAUxERITCFylH7YsBobYzN59Z6kVERERERESasvvuC3yPjw+GNJZlsXj9Yh79/FEA3tnxDjcMuaHeL3300UdTWFhISkoKW7duxeVykZiYWG6/pI5teXHPE1w7YAa/7PDw6avruXbA7Ty2/kEiIpz1XldN5efnk5qaisfj4cCBA2W2tWjRIhjOtGjRIiyNimbRfyFrCpgZv62JhLgHMaJGNnotIhJelmVRXFwccuhSn8FLCZvNFpz7paT3S0xMTPBxZGQkTqdTIYxII1BQIyIiIiIiIhJuphnoUQNw0UVAoBHv/k/u58mvngRgxtAZTBs8rcFK6NGjB4WFhfz6669s2rSJk046iVatWpXbLzI6kuXbF3PXeQ+y6d9b2Ll5F+M7X8eTmx+ldWL5/RtaTk5OMJzJzs4us61Vq1bBcCacn+Q1TROyZ0Lh67+vjDgZWi3FMKLDVpeI1J/SwUvpcKUxg5fSDMMI9n4pCV1KvhTCiDQ9GvpMpAIa+kxdE0VEREREGtXf/w7XXBNY9njwJ7blzg/vZNV/VwEw54w5XD3g6gYvwzRNNm7cSHp6Oi6Xi6FDhxIdXXmQ8LebV/LGX98FwBUdwWPr5tKl39ENWqNlWRw8eDA4rFlubm6Z7QkJCbjdbtxuN1FRUQ1aSyhM71eQdS1YBwMrbFHQcgFG1FnhLUxEqlRZ8FLZcm2Dl5KgpCbHOhyOMoFLRcsOh0MhjISV2hcDNEeNSB0oqNELqYiIiIhIo+rVC7Zvh2OOoXjH99z43o28+cObGDaD+cPnc0nvSxqtlOLiYr744guys7OJiYlh6NChREREVLr/P5/8N0uufxrLsjDsBn/5v+mcMnpIvdZkWRYHDhzA4/GQmppKQUFBcJthGLRp0wa3201SUhIul6ter11bpumD7Nug8N3fV7rOgLglGEblz6eINIyS4KUkXKmq10tdghfDMLDb7cGQxDRN/H5/yOdyOp0V9n4pHcQ4neEfalKkOmpfDNAcNSIiIiIiIiKHg6ws+O67wPK111JsFvNLzi847U4eP/dxRnUf1ajlOJ1OBg8ezLp168jLy2Pjxo2cdNJJ2O32CvcfNXU47Y91c9e5D+Ir9jN77HwmPTiOS+4cXac6TNMkIyMDj8dDWloaXq83uM1ut5OYmIjb7SYxMbHJNVqa3s8h6wawcgIrbLHQagmGa2h4CxM5gliWFdLwYqUf14bD4cDhcGC32zEMA5vNhmVZmKaJz+ejuLg4MLzhb0zTLPO4tJIQpqKeMCXfHQ4114o0R+pRI1KB5t6jpqCggFNPPRWATz75pEkMFyAiIiIicsS69VZYuBDsdigoAKeTg4UH+XbftwztGL6G/ZycHD7//HOKi4tJSkpi0KBBVQ6j8+tOD9cPupO87HwAzhp/Knc8e0ONrun3+9m/fz+pqamkpaVRXFwc3OZwOEhKSiI5OZm2bdtWGhyFk2kWwcEbwfvR7ytd50DcQgxDja8iVSkdvIQSutQleHG5XERERAQDmJLwxbIsfD4fPp+PoqIiCgsLa9QTpqLeL6WXFcJIc6L2xQANfSZSB809qBERERERkUbkdpN1MI33z+3Gxat3hLuaMjIzM1m/fj2madKpUyd69+5dZViTl53P1P63k7prHwDHndiNhZ/MqbJxsri4mH379pGamsq+ffvw+/3BbREREbjdbpKTk0lISMAwjPq7uXpmFn4EB6eDFQiqsMVBq79huAaHtzCRMAkleDk0hKkNp9NJRERE8KskhLHb7cHwpXTvl8LCwuBXZT1fDhUREVHpMGQly00xPBaR8FNQI1IHCmpERERERKRRbNvGviG9uXQsfNc9nofPX8QV/a4Id1VleDweNm3aBED37t3p1q1blfubpsntZ85m6yfbAWjbIYFlm+fTonVscJ+ioiJSU1NJTU0lPT29TGNpVFQUbrcbt9tNfHx8k58M2zTzIWsaFH32+8rIC6Dlw006WBKpKdM0y8zxUl0AU7pHXE2UBC8lgcuhAUzJnFklvV+8Xi+FhYUUFBTUKoRxuVwV9n4pvawQRkRqS0GNSB0oqBERERERkcbw65/P5c8t/sVP8TYSu/Tl5QtfpkebHuEuq5yffvqJbdu2AdCvXz86dOhQ7TGLrlnGu099CEBUi0jmr72XiNYOPB4PmZmZZYYTiomJITk5GbfbTVxcXJMPZ0qYBe/CwTuBwsAKIx5a/R0jom9Y6xIJhWmalQ4p1tDBS2XLTqeT4uLiYOhyaPhS8jjU5sySEKaynjAul0shjIg0KAU1InXQ3IOa/Px8evbsCcD27duJjo4Oc0UiIiIiIkeeHw/8yJ9ndmVvrEUHezyvzNxE51adw11Wpb777jtSUlKw2WwMHjyYtm3bVnvMS4+sZsXMlwAw7DZG3X0mnQe1B6Bly5bBcCY2NvawCWcATDMPDkyG4q9+W2ODqD9Di9nqRSNhU1XwUtFyXYKXUEKXkq+S/xOmaVbY+6V0KOP1ekMOYUoCl8qCmMjISP1/FAkjtS8GKKgRqYPmHtTk5eURGxsYliA3N5eYmJgwVyQiIiIicmTZvn87l6w4j/T9u+maCa/c+AnJ/f8Q7rKqZFkWmzdv5tdff8Vut3PyyScTFxdXbp+cnJzgsGbZ2dn89OXP/PPB/2D5A80Pf757JJfNvOiwbbAxC1bDwVnAb/NpGInQ+mkMZ9PrCSWHt9LBS0m4UlWvl9oGL4cGK1WFME6ns8LwoySEqSyAKSwsrHEIU9EwZCXfXS6XQhiRJk7tiwGhtjNXPpufiIiIiIiIiNS7zIJMxv7fWA5m7aX3Pnjp0yQSVjTtkAbAZrPRr18/CgsLycjIYOPGjQwdOpSoqCgOHjyIx+MhNTWVvLy8MseccO7xDDxlAA+NWUJhnpf/e+Bt8tK93PzElDDeTc2ZZtZvvWi2/LbGBtFXQuydajCWkJQEL6HM8VJfwUsoPV+q681mmiaFhYXk5eVV2RMmFDabrcI5YBTCiEhzp6BGREREREREpBHFR8Vzw4BreX/dTTy/GlrePCHcJYXMMAwGDRrE559/Tk5ODp988gl2u71MI61hGLRt2xa3201SUlJw4u9Vu3tyTb/bSP81k3eWfcDP3//Ko2vuPSwaZM28FyHnAeC3hnOjHcSvwHAcE9a6JLxKepGEOtSYz+er1XUqGlKsqsc1GUbQ7/eX6QlTURBT0xCmop4wpeeEOZyGORQRaSwKakREREREREQagd/0YzcCk1ZftzaPya+A07LB3XeHubLQmKZJeno6qampFBYWAuDz+fD5fBiGQVJSEsnJySQmJuJwlG9uaBnfgud/+hu3/GEW32/4H1s/3s6EY2/gyW8eJbpF0xwGzfRnwIGrwPfdb2sMiJmM0eLWsNYlDcPv91fau6Uxg5eS5ZKhxmobbPj9/kqHIStZLioqCulchmFUOyeMQhgRkdpTUCMiIiIiIiLSwF7/7nWWf7OcF8e+SEtXS/j733GaQO9e0KJFuMurlN/vZ9++faSmppKWllamYdrhcOD3+7Esi7Zt2zJgwIBqG2kdDgdLvniQh8f/lTWrPsXz4z7GdbyWpZseod0x7oa+nRoxc1dA7qOAP7DC3glar8BwdAhrXRK6yoKXypZrE7zYbLaQhhqrj+Dl0HurqPdL6eWahjBVzQlT0546IiJSMwpqRERERERERBrQ81ue5841d2JZFs9teY5p7cfArl2BjbfcEtbaKlJcXExaWhqpqans27cP0zSD21wuF263G7fbTUJCAgcOHGDDhg2kpaXx7bff0rt375Aac+98/kY69mzPyrtfIu9gPpOOu5mH/nUP/c/o3ZC3FhLTlxroRePf+dsaA2Jvwoi9Nqx1ye/BS6hzvDRk8FKyXF/BS2k+n6/anjChzl9jGEaFvV9Kr2uIexARkZpRUCMi5dhsNnr27BlcFhERERGR2ln65VLmfjIXgAn9J3DdCdfB1ZMDGyMiYMKE8BVXitfrJS0tDY/HQ3p6OpZlBbdFRUWRnJyM2+2mdevWZf5GSEhIoH///nz99dfs3r2bqKgounbtGtI1x80cQ4fu7Zh78SJ8xX5mnDWHm56czPmTz673+wuVmbsUcv8K/BZO2btB6+UYjqbV2+dIUTI/SnVDjJUs+/3+Gl+jdPBSXejSUMFLaSUhzKEBTOkgJtQQxm63VzoMWcmyQhgRCRe1L9aMzSr925eIAJCdnU1cXBwHDx6kZcuW4S5HREREREQOM5ZlMW/dPB7b8BgANwy+gTtPuTPQUNG6NWRlwfDh8P77YauxoKCA1NRUPB4PmZmZZbbFxsYGw5mWLVtW28Dy008/sW3bNgD69+9P+/btQ67jf9/8xC2n3IO3IDBM05ibz+fahRNqdjN1ZPp+hgMTwb/ntzV2iL0dI/aqRq3jcFc6eKmqp0vJ47oEL9UNMdZYwUtpxcXF1faECbWXj91ur7YnjMPhUOOniEgTF2o7s4IakQooqBERERERkdoyLZNZ/5nFim9WAHDXH+5i2uBpgY3r1sEppwSWP/8cTjqpUWvLzc0lNTWV1NRUsrKyymyLi4sLhjOxsbE1Pvf27dv58ccfsdlsDB48mLZt24Z87IG0LK7pfxsH0g4CcMI5/Zn79kwMw6hxHTVl5iyAvKcI9qJx9Az0orEnNPi1mzqfz1ejOV4aIng5dDkc4YRlWfh8vmrnhAk1hHE4HGXCl4p6xTidzga+KxERaQwKakTqQEGNiIiIiIjU1r68fYx4YQRpuWk8OOxBJvSf8PvGs8+GDz+EVq3gwIEGr8WyLHJycvB4PKSmppKTk1Nme3x8fHDOmejo6Dpf65tvvmHv3r3Y7XZOPvlk4uLiQj6+qKiYG4bM5MctuwHo0L0dSzc9QmR0ZJ3qqozpS4HMSWDu/W2NE1rcgxFzaYNcL9wsy6rRHC9er7fM/EShMgyj2sCl9ONw9wqxLCvYE6aqICbUEMrpdFYavpR8KYQREWk+FNSI1EFzD2ry8/M54YQTAPjyyy/r/AebiIiIiEhz80P6D3yX/h0X9Ljg95WmCZGRUFwMV18NTz3VINe2LIusrKxgOJOfnx/cZrPZaNOmTTCccblc9Xptv9/Pxo0bycjIwOVyMXTo0Br/PTH7wvl8tnoDAC3iY3nym0dJ7NCm3mo0TRNyHoSC54HfmkSc/aH10xjG4fP3X0nwEsoQYw0dvJReDnfwUlpJCFNRAFN6XU1DmEMDmNJBjMOh6aBFREDtiyUU1BxGJkyYQFZWFm+88Ua4SzlinX766fTv35/FixeHtH9zD2ry8vKCQx3k5uYSExMT5opERERERJoWv+lnw68b2Je3j8SYRPom9uX7jO8Z1G5Q+Z2LimDpUnjrLfjPfwLr9u6F5ORqr2NZFhkZGXi9XlwuFwkJCRU2gpumSWZmZnBYs8LCwuA2wzBo27YtycnJJCYmEhERUev7DkVxcTGff/45OTk5xMTEcPLJJ5OTk1PtPZT2zKyXWTX3NQCcLiePrplFr5N7UFRUzD+Xvs/elDTadUli1HUjiIgo3zvBNIsg/8XAnDP2jhA9DsOIwCz+Hg5cDeY+ACwiOOi/FdM1KqS6GlJ1wUtFy3UJXkIdasxut4f0vIT6s1pfLMuiqKio0p4wJd9DfY4iIiKq7AkTFRWF3W5vsPsRETnSqH0xINR2ZsX8R4gtW7bwl7/8hfXr15OdnY3b7WbIkCEsWbKEpUuXMnv27CqPL8nrXnrpJS6//HKmTp3K3/72NyAQcnz88ceVHnvaaaexdu3aCve75pprePLJJ8sdM2LECD788EPWr18fTFalaUpNTaVLly7hLkNEREREpMl493/vcveau0k5kILf8mPYDAybQaQ9ktUXr2Zox6G/7zxjBixcCId+Yn/RIpg3r8rreDwetm3bViZ0iYyMpFevXiQnJ+P3+0lPTyc1NZW0tDSKioqC+zkcDhITE3G73SQmJjbqp/ydTieDBw9m3bp15OXl8eGHH1L6M6Kl76EyE+ZcQvvu7Zh35eMUe4u55dRZnDCiP1/9ewum//eG97/f/jxjbxnJlHnjg+vM7EcgfyXBOWcAch/GdHQD3w7AwrIgK78rG364CtOMBNaHVFdNlMxrUpM5XmobvFQ2rFhdgpeaqO5ntaZKQpiKer+UXq5JCHNo6HLoskIYEZGGo/bF6imoOcwVFRVx8OBBhg0bxsiRI3n//fdp1aoVu3bt4q233iIvL4/bbruNqVOnBo854YQTmDJlCpMnTy53vuXLlzNjxgyWLVvGggULiIyMZPXq1cFf+H/++WcGDx7Mhx9+SK9evQDKfBpr8uTJzJkzJ/i4oi5te/bs4fPPP2fatGmsWLGiTkFNUVFRg38arLnTC6mIiIiIyO/e/d+7XL76crx+L9GOaAybwYHCAxSbxeTacvly75e/BzUzZsCjj1Z8opL1lYQ1Ho+HTZs2lVtfWFjIpk2baN26NTk5OWUmL3c6ncEhzdq0aRPWhueoqCiOOeYYtm/fzqEDeZTcw8CBA6tsxD/rslM5qksSt545m+LCYja+9025fUy/yT/mvwXAlHnjfwtplldwNhN8PwBgWS6+SfkzqVnH16iu0sFLdUOM1WfwUt1yQwQvNVHdz+qhz6dlWXi93kqHIatpCONyuaqdE0YhjIhIeKl9sXoKahrIq6++yuzZs9m5cyfR0dEcf/zxvPnmm0RGRnL77bezYsUK7HY7kyZNKvdLa1VOP/10evfujcPh4IUXXqBPnz7cdNNNHDx4kKeffjr4Kamjjz6aM844I3hcSTczALvdTosWLXC73WXO/dNPP/H555/z2muv8Z///IfVq1czbtw44uPjg/uUfDomISGh3PEQCGYqWl/aypUrGTlyJNdeey0nnngiCxcuJCoqqtb3/5///Idvv/2W22+/nU8//ZSYmBiGDx/OokWLaNOm/sYxFhERERGR5s1v+rl7zd14/V5aRrTEwuJA4QH8lh+7zY7T7uS5Lc9xw+AbsPv8gZ40VVm4EObOhUM+fGZZFtu2bavy0AMHDgCBRurk5GTcbjfx8fEYhlGne6wvlmXx448/VrnPtm3bcLvdVYYMx53Ynae/XcSVXadVea7XFr3NFXPGEpG/straPt72APmFlT9PW7ZsISMjo1wQU1xcXKvgxW63Vxu6lH58OM1xEsrP6ubNm9m7d2+ZECbUdhCXy1Vh75fS65rKz7yIiEhdHD7v/ocRj8fDpZdeyrx58xg9ejQ5OTl8+umnWJbFggULeOaZZ1ixYgXHHXccCxYs4PXXX+fMM88M+fzPPvss1157LevWrQMCv6D7fD5ef/11Lrzwwlp/kmblypWcf/75xMXFcfnll7N8+XLGjRtXo3OsWrWKF154AbfbzahRo/jLX/5SpleNZVmsXLmSv/3tb/To0YOuXbvy6quvMn78+CrOWtah95+VlcWZZ57J1VdfzaJFiygoKOCOO+7gz3/+Mx999FFI5/R6vXi93uDj7OzskOs5kng8HjweDwUFBcF1mzdvDgZpycnJ9TYMgIiIiIjI4WbDrxtIOZBCtCMam82G1+fFZ/owbAbxUfGYpsnOzJ1s+HUDJ7+2sfxwZ4fy+wNz19x8c5nVGRkZZYaQqkzv3r3p1KlTk5m4vbRQ7qGwsJCMjIxqP2D3xVtfVns902/y9mMPM+bK6oOUxJafsqvwtEq3+3w+du3aVen2UIKXkuWSocaOVKH8O/v9fjweT7n1VQ1DFhUVhcvlUggjInIYUvti7SioaQAejwefz8eYMWPo1KkTAH369AFg8eLFzJw5kzFjxgDw5JNP8v7779fo/N26dWPeId3j77rrLsaNG8fUqVMZPHgwZ555JldccQVJSUkhndM0TZ555hmWLFkCwCWXXMKtt97KTz/9xNFHHx3SOcaNG0enTp1o164dW7du5Y477uCHH35g9erVwX0+/PBD8vPzGTFiBEAwEKpJUHPo/c+dO5fjjz+eBx98MLhuxYoVdOjQgR07dnDsscdWe86HHnqo2nl8moNly5aVex6mTfv9k2v33nsv9913XyNXJSIiIiLSNOzL2xfoPWMEGt4jHZFYlkWEIwK7zY7NsOH3+dmXtw9SUkI7aQX7lf4QWVWcTmeTDGkg9HsIZb+9KWkhncsT4n7RrvRq90lMTCQhIaHCXi9HcvBSU6H+Ox911FEkJSUFgxiFMCIiRy61L9aOgpoG0K9fP4YNG0afPn0YMWIEw4cP58ILL8QwDDweD0OGDAnu63A4GDRoUI2GPxs4cGC5dQ888ADTp0/no48+YsOGDTz55JM8+OCDfPLJJ8GQqCoffPABeXl5nHfeeQC0adOGs88+mxUrVnD//feHVNeUKVOCy3369CE5OZlhw4aRkpISHINwxYoVXHzxxcGu3Jdeeim33357mX2qc+j9b9myhf/85z9lhncrkZKSElJQM3PmTKZPnx58nJ2dTYcOHUKq50hyzTXX8Mc//hGAr7/+msmTJ/PUU08xYMAAAKXdIiIiItKsJcYkYrfZ8Zt+DHugkTnK+fswzn4zMARaYkwihDoOewX7uVyukA4Ndb9wqM97aNcltA8gJoe4X763+iGyjznmGA2lHYJQ/507dOig51NEpJlQ+2Lt6OMLDcBut/PBBx/w3nvv0bNnT5YsWUL37t2r7DpdEzExMRWuT0hI4KKLLmL+/Pl89913tGvXjvnz54d0zuXLl5OZmUlUVBQOhwOHw8G7777Ls88+W6sxeIFgILVz504AMjMzef3111m6dGnwGkcddRQ+n48VK1aEfN5D7z83N5dRo0axefPmMl//+9//OPXUU0M6p8vlomXLlmW+mqPk5GQGDBgQ/ALKPNYLqYiIiIg0Z0OOGkKX1l3I9+WX+7CdZVnk+/LpGt+VIUcNgeuug+p6Xtjtgf0OkZCQQGRkZJWHRkZGkpCQUON7aCz1eQ+jrhsRDMYqY9gNRt50J9U3cxikZg+rl7rkyPhZFRGR+qX2xdpRUNNAbDYbQ4cOZfbs2XzzzTdERESwZs0akpOT2bBhQ3A/n8/Hpk2b6v36ERERdOnShby8vGr3zcjI4M033+Tll18uE3R88803HDhwgH//+9+1qmHz5s3A7ynpqlWraN++PVu2bClznZJ5e/zVjd9ciQEDBrBt2zY6d+5M165dy3xVFmqJiIiIiIjUlN2w88CwB3DZXWQXZVPsL8a0TIr9xWQXZeOyu5h75tzA0GgREVCq136Fpk8P7HcIm81Gr169qjy0V69eTXbYM6jfe4iIcDL2lpFV7jP2lpFERkZD9MSqTxY9kV69+tVLXXJk/KyKiIg0BQpqGsCGDRt48MEH+eqrr9izZw+rV69m//79HHfccdx00008/PDDvPHGG3z//fdcd911ZGVl1el6b7/9Npdffjlvv/02O3bs4IcffmD+/Pm8++67/OlPf6r2+Oeff56EhAT+/Oc/07t37+BXv379OO+881i+fHm150hJSeH+++9n06ZN7Nq1i7feeosrrriCU089lb59+wKBXjsXXnhhmWv07t2bSZMmkZ6ezr/+9a9a3f/1119PZmYml156KV9++SUpKSm8//77TJw4sdbhjwQCtnvvvVcpt4iIiIhIKed1O48XxrzAsfHH4vV7ySnKwev30j2hOy+MeYHzup33+87z5sHtt5fvWWO3B9YfMvdoacnJyQwcOLBcb4XIyEgGDhx4WPyeXp/3MGXeeC667Y/letYYdoOLbvsjU+YF5j01Wt4B0ZMo39xhQPQkjJZ3HBHPbVOi51NERCqj9sXQaY6aBtCyZUs++eQTFi9eTHZ2Np06dWLBggWce+65nH322Xg8Hq688koMw+Cqq65i9OjRHDx4sNbX69mzJ9HR0dx66638/PPPuFwuunXrxtNPP8348eOrPX7FihWMHj26wk+4jB07lvHjx5Oenl7leLIRERF8+OGHLF68mLy8PDp06MDYsWO55557ANi0aRNbtmzhqaeeKndsXFwcw4YNY/ny5Zx//vk1uPOAdu3asW7dOu644w6GDx+O1+ulU6dOnHPOOZqcsA6Sk5M1sZeIiIiISAXO63YeI7qMYMOvG9iXt4/EmESGHDUk0JPmUPPmwdy5sHQppKQE5qS57roKe9IcKjk5GbfbTUZGBl6vF5fLRUJCwmHVO6E+72HKvPFMmHsJ/1z6PntT0mjXJYlR140gIsJZZj+j5R2YsbdA/ovg3wP2jhA9DsP4/Tk/Ep7bpkTPp4iIVETti6GzWTWZxV6kmcjOziYuLo6DBw822/lqRERERERERERERKT2Qm1nVncDERERERERERERERGRMFFQ04Ts2bOH2NjYSr/27NkT7hIbVHO/fxERERERERERERFpfjRHTRPSrl07Nm/eXOX2I1lzv38RERERERERERERaX4U1DQhDoeDrl27hruMsGnu9y8iIiIiIiIiIiIizY+GPhMREREREREREREREQkTBTUiIiIiIiIiIiIiIiJhoqBGREREREREREREREQkTBTUiIiIiIiIiIiIiIiIhIkj3AWINEWWZQGQnZ0d5kpERERERERERERE5HBU0r5c0t5cGQU1IhXIyckBoEOHDmGuREREREREREREREQOZzk5OcTFxVW63WZVF+WINEOmabJ3715atGiBzWYLdzkiYZWdnU2HDh34+eefadmyZbjLEZEw0uuBiJSm1wQRKU2vCSJSQq8HIr+zLIucnBzatWuHYVQ+E4161IhUwDAM2rdvH+4yRJqUli1b6hcsEQH0eiAiZek1QURK02uCiJTQ64FIQFU9aUpUHuGIiIiIiIiIiIiIiIhIg1JQIyIiIiIiIiIiIiIiEiYKakREpEoul4t7770Xl8sV7lJEJMz0eiAipek1QURK02uCiJTQ64FIzdksy7LCXYSIiIiIiIiIiIiIiEhzpB41IiIiIiIiIiIiIiIiYaKgRkREREREREREREREJEwU1IiIiIiIiIiIiIiIiISJghoREREREREREREREZEwUVAjIiI15vV66d+/Pzabjc2bN4e7HBEJg127djFp0iSOPvpooqKi6NKlC/feey9FRUXhLk1EGsnf/vY3OnfuTGRkJEOGDGHjxo3hLklEGtlDDz3ECSecQIsWLUhMTOSCCy7ghx9+CHdZItJEPPzww9hsNm6++eZwlyLS5CmoERGRGpsxYwbt2rULdxkiEkbff/89pmmybNkytm3bxqJFi3jyySe56667wl2aiDSCV155henTp3Pvvffy9ddf069fP0aMGMG+ffvCXZqINKKPP/6Y66+/nvXr1/PBBx9QXFzM8OHDycvLC3dpIhJmX375JcuWLaNv377hLkXksGCzLMsKdxEiInL4eO+995g+fTqvvfYavXr14ptvvqF///7hLktEmoBHH32UJ554gh9//DHcpYhIAxsyZAgnnHACjz/+OACmadKhQwduuOEG7rzzzjBXJyLhsn//fhITE/n444859dRTw12OiIRJbm4uAwYMYOnSpcydO5f+/fuzePHicJcl0qSpR42IiIQsLS2NyZMn8/zzzxMdHR3uckSkiTl48CDx8fHhLkNEGlhRURGbNm3irLPOCq4zDIOzzjqLL774IoyViUi4HTx4EEC/D4g0c9dffz3nn39+md8VRKRqjnAXICIihwfLspgwYQJTp05l0KBB7Nq1K9wliUgTsnPnTpYsWcL8+fPDXYqINLD09HT8fj9JSUll1iclJfH999+HqSoRCTfTNLn55psZOnQovXv3Dnc5IhImL7/8Ml9//TVffvlluEsROayoR42ISDN35513YrPZqvz6/vvvWbJkCTk5OcycOTPcJYtIAwr1NaG0X3/9lXPOOYeLLrqIyZMnh6lyERERCafrr7+eb7/9lpdffjncpYhImPz888/cdNNNrFq1isjIyHCXI3JY0Rw1IiLN3P79+8nIyKhyn2OOOYY///nP/POf/8RmswXX+/1+7HY7l112Gc8++2xDlyoijSDU14SIiAgA9u7dy+mnn86JJ57IM888g2Hoc0AiR7qioiKio6N59dVXueCCC4Lrr7zySrKysnjzzTfDV5yIhMW0adN48803+eSTTzj66KPDXY6IhMkbb7zB6NGjsdvtwXV+vx+bzYZhGHi93jLbROR3CmpERCQke/bsITs7O/h47969jBgxgldffZUhQ4bQvn37MFYnIuHw66+/csYZZzBw4EBeeOEF/dEl0owMGTKEwYMHs2TJEiAw5FHHjh2ZNm0ad955Z5irE5HGYlkWN9xwA6+//jpr166lW7du4S5JRMIoJyeH3bt3l1k3ceJEevTowR133KFhEUWqoDlqREQkJB07dizzODY2FoAuXboopBFphn799VdOP/10OnXqxPz589m/f39wm9vtDmNlItIYpk+fzpVXXsmgQYMYPHgwixcvJi8vj4kTJ4a7NBFpRNdffz0vvvgib775Ji1atCA1NRWAuLg4oqKiwlydiDS2Fi1alAtjYmJiSEhIUEgjUg0FNSIiIiJSYx988AE7d+5k586d5cJaddgWOfJdfPHF7N+/n1mzZpGamkr//v3517/+RVJSUrhLE5FG9MQTTwBw+umnl1m/cuVKJkyY0PgFiYiIHKY09JmIiIiIiIiIiIiIiEiYaLZXERERERERERERERGRMFFQIyIiIiIiIiIiIiIiEiYKakRERERERERERERERMJEQY2IiIiIiIiIiIiIiEiYKKgREREREREREREREREJEwU1IiIiIiIiIiIiIiIiYaKgRkREREREREREREREJEwU1IiIiIiIiMgRxWaz8cYbb4S7DBERERGRkCioERERERERaSATJkzAZrNhs9mIiIiga9euzJkzB5/PF+7Sak0hiIiIiIhI/XKEuwAREREREZEj2TnnnMPKlSvxer28++67XH/99TidTmbOnFnjc/n9fmw2G4Zx+H/mrri4GKfTGe4yRERERETC7vD/7V5ERERERKQJc7lcuN1uOnXqxLXXXstZZ53FW2+9BcDChQvp06cPMTExdOjQgeuuu47c3Nzgsc888wytWrXirbfeomfPnrhcLvbs2cOXX37J2WefTZs2bYiLi+O0007j66+/LnNdm83GsmXLGDlyJNHR0Rx33HF88cUX7Ny5k9NPP52YmBhOPvlkUlJSyhz35ptvMmDAACIjIznmmGOYPXt2sAdQ586dARg9ejQ2my34uLrjSup54okn+OMf/0hMTAwPPPBAuefqrrvuYsiQIeXW9+vXjzlz5gCEdO+lrV27FpvNRlZWVnDd5s2bsdls7Nq1K7jus88+4w9/+ANRUVF06NCBG2+8kby8vErPKyIiIiJSXxTUiIiIiIiINKKoqCiKiooAMAyDv/71r2zbto1nn32Wjz76iBkzZpTZPz8/n0ceeYSnn36abdu2kZiYSE5ODldeeSWfffYZ69evp1u3bpx33nnk5OSUOfb+++/niiuuYPPmzfTo0YNx48ZxzTXXMHPmTL766issy2LatGnB/T/99FOuuOIKbrrpJrZv386yZct45plngqHKl19+CcDKlSvxeDzBx9UdV+K+++5j9OjR/Pe//+Wqq64q99xcdtllbNy4sUx4tG3bNrZu3cq4ceMAQr73mkhJSeGcc85h7NixbN26lVdeeYXPPvuszHMjIiIiItJQbJZlWeEuQkRERERE5Eg0YcIEsrKyeOONN7AsizVr1jBy5EhuuOEGHn300XL7v/rqq0ydOpX09HQg0KNm4sSJbN68mX79+lV6HdM0adWqFS+++CIjR44EAj1Y7rnnHu6//34A1q9fz0knncTy5cuDIcnLL7/MxIkTKSgoAOCss85i2LBhZYZle+GFF5gxYwZ79+4Nnvf111/nggsuCO4T6nE333wzixYtqvI569+/P2PHjuUvf/kLEOhl89FHH7F+/foa3XtJjWvXruWMM87gwIEDtGrVCgj0qDn++OP56aef6Ny5M1dffTV2u51ly5YFz/vZZ59x2mmnkZeXR2RkZJU1i4iIiIjUheaoERERERERaUBvv/02sbGxFBcXY5om48aN47777gPgww8/5KGHHuL7778nOzsbn89HYWEh+fn5REdHAxAREUHfvn3LnDMtLY177rmHtWvXsm/fPvx+P/n5+ezZs6fMfqWPS0pKAqBPnz5l1hUWFpKdnU3Lli3ZsmUL69atK9MTxu/3l6vpUKEeN2jQoGqfr8suu4wVK1bwl7/8BcuyeOmll5g+fXqN770mtmzZwtatW1m1alVwnWVZmKbJTz/9xHHHHVfrc4uIiIiIVEdBjYiIiIiISAM644wzeOKJJ4iIiKBdu3Y4HIE/w3bt2sXIkSO59tpreeCBB4iPj+ezzz5j0qRJFBUVBcONqKgobDZbmXNeeeWVZGRk8Nhjj9GpUydcLhcnnXRScEi1Ek6nM7hcco6K1pmmCUBubi6zZ89mzJgx5e6jql4loR4XExNT6TlKXHrppdxxxx18/fXXFBQU8PPPP3PxxRcHt4d67yUMIzDid+nBJIqLi8vVf80113DjjTeWO75jx47V1iwiIiIiUhcKakRERERERBpQTEwMXbt2Lbd+06ZNmKbJggULgmHC//3f/4V0znXr1rF06VLOO+88AH7++efgcGl1MWDAAH744YcK6y3hdDrx+/01Pi5U7du357TTTmPVqlUUFBRw9tlnk5iYGNxe03tv27YtAB6Ph9atWwOBoc8OrX/79u31Ur+IiIiISE0pqBEREREREQmDrl27UlxczJIlSxg1ahTr1q3jySefDOnYbt268fzzzzNo0CCys7O5/fbbiYqKqnNNs2bNYuTIkXTs2JELL7wQwzDYsmUL3377LXPnzgWgc+fOrFmzhqFDh+JyuWjdunVIx9XEZZddxr333ktRUVG5OW1qeu9du3alQ4cO3HfffTzwwAPs2LGDBQsWlNnnjjvu4MQTT2TatGlcffXVxMTEsH37dj744AMef/zxGtcvIiIiIlITRrgLEBERERERaY769evHwoULeeSRR+jduzerVq3ioYceCunY5cuXc+DAAQYMGMD48eO58cYby/Q6qa0RI0bw9ttv8+9//5sTTjiBE088kUWLFtGpU6fgPgsWLOCDDz6gQ4cOHH/88SEfVxMXXnghGRkZ5Ofnc8EFF5TZVtN7dzqdvPTSS3z//ff07duXRx55pFx41LdvXz7++GN27NjBH/7wB44//nhmzZpFu3btalW/iIiIiEhN2KzSA/WKiIiIiIiIiIiIiIhIo1GPGhERERERERERERERkTBRUCMiIiIiIiIiIiIiIhImCmpERERERERERERERETCREGNiIiIiIiIiIiIiIhImCioERERERERERERERERCRMFNSIiIiIiIiIiIiIiImGioEZERERERERERERERCRMFNSIiIiIiIiIiIiIiIiEiYIaERERERERERERERGRMFFQIyIiIiIiIiIiIiIiEiYKakRERERERERERERERMJEQY2IiIiIiIiIiIiIiEiY/D/i3+uA5VBbKgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -515,11 +552,8 @@ }, { "cell_type": "code", - "execution_count": 15, + "execution_count": 16, "metadata": { - "jupyter": { - "outputs_hidden": false - }, "pycharm": { "name": "#%%\n" } @@ -528,18 +562,18 @@ { "data": { "text/plain": [ - "{'plot1': ,\n", - " 'plot2': ,\n", - " 'plot3': }" + "{'plot1': ,\n", + " 'plot2': ,\n", + " 'plot3': }" ] }, - "execution_count": 15, + "execution_count": 16, "metadata": {}, "output_type": "execute_result" }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABZQAAAQsCAYAAAAGvRmdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOzdd3RUVdfH8e+ZSS9AIKGTRu8t9N479gbWR8UGvvaGKAqoPHaxd1AsjwWU3pEOofciCb0lIUBC+sx9/0iIgKBAJpmU32ctFpk7c8/dExH27Jy7t7EsCxERERERERERERGRf2NzdwAiIiIiIiIiIiIiUjSooCwiIiIiIiIiIiIil0QFZRERERERERERERG5JCooi4iIiIiIiIiIiMglUUFZRERERERERERERC6JCsoiIiIiIiIiIiIicklUUBYREZczxnxtjBnt7jhERERERAoT5ckiUhyooCwiko+MMc8ZY2KNMcnGmAPGmB9zjm/JOZZsjHEYY9LOevxczmsijDFOY8xHZ62XfNYvpzEm9azHg40xd+asd/brOp8XkzHGxBhjthbk90JERERE5IzClicbYyxjzOmc4/HGmO+NMWUK+NsiIlIkqKAsIpJPjDF3ALcB3S3LCgCigHkAlmXVtywrIOf4YmDomceWZb2Ss8TtQCJwkzHGO+e8gLPO2wcMOOvYxJzzlp/9OsuyFp4XWkegPBBpjGlxBe/LGGP074eIiIiIXJFCnCc3zjk/EggCRl7m+1KeLCIlgv6iExHJI2PMHmPMs8aYrcaYRGPMV8YYH6AFMMuyrN0AlmUdsSzr00tc05CdKD8PZAIDXBjyHcBvwPScry8lnoXGmDHGmKVACtnF6DrGmDnGmOPGmB3GmBtdGKOIiIiIFHFFME8mJ55TwO9AvUuIR3myiJQ4KiiLiLjGYKAXUB2oRXaCuwK43RjzpDEmyhhjv4z12gNVgR+A/3GJhd8cTXNu09tpjBlhjPE484Qxxg+4HpiY8+tmY4zXJa57GzAECATigDnAd2Tvdr4Z+NAY869Jt4iIiIiUKEUiTz6bMSYIuDonzkuhPFlEShQVlEVEXON9y7L2W5Z1HBgD3GJZ1rfAMLIT6D+AY8aYpy9xvTuAGZZlJZKdjPY2xpS/hPMWAQ3ITl6vA24Bnjzr+WuBdGA2MA3wBPpdYkxfW5a1xbKsLKA3sMeyrK8sy8qyLGsd8AtwwyWuJSIiIiIlQ1HJkwHWGmNOAPFAKPDJJcakPFlEShQVlEVEXGP/WV/vBSoDWJY10bKs7kAZ4H5glDGm1z8tZIzxJTvhnJizxnKy+8AN+rcgLMuKsSwr1rIsp2VZm4CXyd6RfMYdwP9ykts0spPbS93VcfZ7DANaGWNOnPlF9u6Tipe4loiIiIiUDEUlTwZoZllWGcAH+AhYnNOi498oTxaREkUFZRER16h21tehwKGzn7QsK9OyrJ+AjWTvjPgn1wClyL417ogx5ghQhcu7nS/30oABMMZUBboCt5617vVAX2NM8CWudcZ+4A/Lssqc9SvAsqwHriBGERERESm+Cn2e/LcnLCsT+ByIuISYzqx1hvJkESn2VFAWEXGNh4wxVY0xZYHhwI/GmDuNMf2MMYHGGJsxpg9QH1j5L2vdAXwJNASa5PxqBzQ2xjT8pxONMX2MMRVyvq4DjCB7AB9k93bbCdQ+a91awAGyb/m7HFOBWsaY24wxnjm/Whhj6l7mOiIiIiJSvBWFPPn819qBu4BUIObS3mYu5ckiUuypoCwi4hrfkd2XOAbYDYwGTgHPkX0b3gngv8ADlmUtudgixpgqQDfgnZxp12d+rQFm8u+7L7oBG40xp4HpwK/AKznP3QF8eN66R4CPL2Hdc1iWlQT0JHvIyCHgCDAW8L6cdURERESk2CsKefIZG4wxyUBiznrX5PR+vmTKk0WkJDCWZf37q0RE5KKMMXuAeyzLmuvuWERERERECgvlySIixZN2KIuIiIiIiIiIiIjIJfFwdwAiIlI45NzedyF9LMtaXKDBiIiIiIgUEsqTRUTOpZYXIiIiIiIiIiIiInJJ1PJCRERERERERERERC6JCsoiIiIiIiIiIiIickmKbA/l4OBgKzw83N1hiIiIiEgRsGbNmnjLskLcHUdBUJ4sIiIiIpfqSvLkIltQDg8PZ/Xq1e4OQ0RERESKAGPMXnfHUFCUJ4uIiIjIpbqSPFktL0RERERERERERETkkqigLCIiIiIiIiIiIiKXRAVlEREREREREREREbkkKiiLiIiIiIiIiIiIyCUpskP5REREpHBxOp3Ex8dz4sQJHA6Hu8OREsjHx4eqVavi6enp7lBEREREcmVmZnLgwAHS0tLcHYqUUK7Ok1VQFhEREZc4cOAAxhjCw8Px9PTEGOPukKQEsSyLhIQEDhw4QEREhLvDEREREcl14MABAgMDCQ8PV44sBS4/8mS1vBARERGXOH36NFWqVMHLy0uJshQ4YwzlypXTzh8REREpdNLS0ihXrpxyZHGL/MiTVVAWERERl7HZlFqI++hDmoiIiBRWylPEnVz950+f+kRERERERERERETkkqigLCIiIlKMvfLKK9xzzz35snbnzp35/PPPr+jcffv2ERAQoAGOIiIiIlLglCPnjQrKIiIiImQnlREREQQEBFC1alVuuukmAOrXr09AQAABAQHY7XZ8fHxyH7/yyisAxMbGYrPZeOCBB3LXO/OagIAAbDYbvr6+uY8nTpzI119/jd1uP+d1CxcuPCcmy7KIjIykXr16V/y+nnvuuStOaF0pPDycuXPn5j4ODQ0lOTkZu93uxqhERERE5J8UthzZGIO/vz8BAQEEBwdzyy23cOLEict+X8qR80YFZREREXG7idGxhI+YhG3oRMJHTGJidGyBXn/8+PF88803zJ07l+TkZFavXk23bt0A2LJlC8nJySQnJ9OhQwfef//93MfPPfccABMmTCAoKIgff/yR9PR0gNzXJCcnExoaypQpU3IfDx48GIA2bdqc87rOnTufE9eiRYs4duwYMTExREdHF9w3REREREQKBXfmyYU1R96wYQPJycnExMSQmJjIyJEjC+x7ItlUUBYRERG3mhgdy5DvVrI3MQUL2JuYwpDvVro8WQ4PD+fVV1+lXr16BAUFcdddd+VOOo6OjqZXr15Ur14dgIoVKzJkyJBLWteyLCZMmMDo0aPx9PRkypQpLot5/PjxXHXVVfTt25fx48f/42vHjh1LlSpVCAwMpHbt2sybNw+AkSNHcuuttwKwZ88ejDF89dVXVKtWjaCgID7++GOio6Np1KgRZcqUYejQoblrnn3u2ednZWX97fq7d++ma9eulCtXjuDgYAYPHpy7W+S2225j3759DBgwgICAAP773//+ba1Dhw4xcOBAypYtS40aNfjss8/OiePGG2/k9ttvJzAwkPr167N69eor+6aKiIiIFBEFkScXxRz5jFKlSjFw4EC2bt160dcoR84fHgVyFRERESlxHvl5NesPJP7r61bsiSc9y3nOsZRMB3dPXMFnS//8x3ObVA3ineujLjmmiRMnMmvWLPz9/RkwYACjR49m9OjRtG7dmocffpgqVarQpUsXmjZtesm3mS1ZsoQDBw5w8803s3XrVsaPH8/1119/SeeuW7eO4OBgypYty2233cazzz6Lh0d2epaSksLPP//MDz/8QGpqKvfddx9vvfUWXl5ef1tnx44dvP/++0RHR1O5cmX27Nnzj33XVq5cya5du1i0aBEDBw6kd+/ezJ07l8zMTJo2bcoNN9xAp06dLuk9nGFZFs8++ywdO3bk1KlTXHfddYwcOZJ33nmHb775hsWLF/P555/TvXt3IDvxPtvNN99MgwYNOHToENu3b6dHjx5Ur16drl27AvD777/z66+/8tVXX/H8888zdOhQVqxYcVkxioiIiBQGhS1PLko58tkSExOZPHkyrVu3vuA6ypHzj3Yoi4iIiFudnyT/2/G8GDp0KNWqVaNs2bIMHz6c77//HoBbb72VcePGMWvWLDp16kT58uUZO3bsJa05fvx4+vTpQ1BQEIMGDWLmzJkcO3bsX8/r2LEjmzdv5tixY/zyyy98//33vP7667nP//rrr3h7e9OzZ0/69etHZmYm06ZNu+Badrud9PR0tm7dSmZmJuHh4bk7SS5kxIgR+Pj40LNnT/z9/bnlllsoX748VapUoUOHDqxbt+6S3vvZatSoQY8ePfD29iYkJITHHnuMP/7445LO3b9/P0uXLmXs2LH4+PjQpEkT7rnnHiZMmJD7mvbt29O3b1/sdju33XYbGzZsuOwYRURERIqSgsqTi1KODNCsWTPKlClDcHAw+/bt47777rvgWsqR8492KIuIiEi+uNQdEeEjJrE3MeVvx8OC/Fj4SA+XxlStWrW/1g8L49ChQ7mPBw8ezODBg8nMzGTy5MkMHjyYJk2a0KtXr4uul5qayk8//ZQ70KNNmzaEhoby3Xff8cgjj/xjLJGRkblfN2zYkBdeeIHXX3+dZ599FshOwm+88UY8PDzw8PDguuuuY/z48VxzzTV/W6tGjRq88847jBw5ki1bttCrVy/eeustKleufMFrV6hQIfdrX1/fvz1OTk7+x9gv5OjRo/zf//0fixcvJikpCafTSVBQ0CWde+jQIcqWLUtgYGDusbCwsHNu2atYsWLu135+fqSlpZGVlXXB3SoiIiIihVlhy5OLUo4MsHbtWmrUqEFmZiYffvghHTp0YOvWrfj4+JyzlnLk/KMdyiIiIuJWYwY2wc/z3Fvn/DztjBnYxOXX2r9/f+7X+/btu2Ay6enpyQ033ECjRo3YvHnzP643adIkTp06xYMPPkjFihWpWLEiBw8e/Nd+xxdijMGyLAAOHDjA/Pnz+fbbb3PX/fnnn5k+fTrx8fEXPH/QoEEsWbKEvXv3Yozh6aefvuwYzufv709Kyl8fYo4cOXLR1z733HMYY9i0aROnTp3i22+/zX0/Z97fxVSuXJnjx4+TlJSUe2zfvn1UqVIlj+9AREREpOgqqDy5qOTIF4rpnnvuITY29qIxKUfOHyooF3HLY+J4ddZmlsfEuTsUERGRKzK4RQSfDmpFWJAfhuwdF58OasXgFhEuv9YHH3zAgQMHOH78OGPGjOGmm24C4Ouvv2batGm5uwZmzJjBli1baNWq1T+uN378eP7zn/+wadMm1q9fz/r161m6dCkbNmxg06ZN/3jujBkzOHr0KADbt29n1KhRXHXVVQB888031KpVix07duSuu3PnTqpWrZp7C+LZduzYwfz580lPT8fHxwdfX19stryneU2aNGHRokXs27ePkydP8uqrr170tUlJSQQEBFC6dGkOHjz4t1sTK1SoQExMzAXPrVatGm3btuXZZ58lLS2NjRs38sUXX5wz7EREea+IiJQ0BZUnF5Uc+XwOh4OvvvoKX1/fc3Y2n6EcOf+ooFzEnE7PYtGfR/lq+W7umLCMDm/P4bkpG+g6bp6SaxERKbIGt4hgz6hrcL4/mD2jrsmXYjJk71Do2bMnkZGRVK9eneeffx7InhD9yiuvEBoaSpkyZXjqqaf46KOPaN++/UXXOnjwIPPmzeORRx7J3XlRsWJFmjdvTu/evf91B8a8efNo1KgR/v7+9O3bl2uvvZbnnnsOyE7Cz97RcebX/ffff8F109PTeeaZZwgODqZixYocO3bsHxPbS9WjRw9uuukmGjVqRPPmzenfv/9FX/viiy+ydu1aSpcuTb9+/bj22mvPef7ZZ59l9OjRlClThjfeeONv53///ffs2bOHypUrc8011/DSSy/lDicRmbfjMB3ensPzUzbQTXmviIiUIAWRJxeVHPmMxo0bExAQQFBQEOPHj2fSpEmULVv2b2spR84/5mLbxgu7qKgo6+yeIcXF0t3H+G3jAdpGhnB142ocP53O3RNXcFfr6gxsVJXVexNo8frMC54bXtaf2JevLtiARUREcmzbto26deu6O4yLCg8PP2eCshRPF/tzaIxZY1nWpTUsLOKKY55c6blfOHIqLfdx5dI+HBxznRsjEhERuXSFOU9WjlxyuDJP1g7lQmR5TByd3p3L6/O2ccMXi1keE0egjyd/xiVxKi0TgHqVSjPzwS78+eJAFj3SA19PO7acdisdqoe4MXoRERERkfzxSJc6AJzpMnj4ZBoP/biKEykZ7gtKREREpIRSQbkQGfT1UhzO7B3jWU6LwV8vxdNuY9Pw/tzaMvuWBj8vD3rVq0z1kEA61CjPvGHdGN2/MQMbVuGb6D1M23zQnW9BRERERMTlKgRmT21/vFtdZj7UhaGdajNpwwH+YY6NiIiIiOQTD3cHIH9557rmXP3ZImyAt6ediXe2+9dz2kSG0CYyhNSMLNq8OZu3F2ynb/3K/zglUkREpCTas2ePu0MQkSuUmLMT+ble9Qny86ZX3cq8MrAxAd6eZDmc3D5hGcM61aZNpO7YExERuRzKkeVKqKBciJzpZj2kfU1ubxlxWQmxr5cHU+/vTHCAd4koJi+PiWPhrqN0rllBHxxEREREirm2kSGM6t+IUj6euccCvLO/jk1IZklMHNc3DXVXeCIiIiIligrKhcjqfQl42AxvXdsMX6/L/09TNcgPgFOpmUzZfCBfJn8WBstj4ug2bh4ZWQ68POzMG9ZNRWURERGRYqxVeDCtwoMv+FzN8qXYMWIAPp52AN6ct430LAdtI0NYHhOnDQgiIiIiLqaCciESvfc4DSqXuaJi8tneXrCN0TM30yYimMjgQBdFV3jc/NUSUjMdAKRmOhj89VJiXr7avUGJiIiISL45kJiC3WaoVNr3gs+fyZ8ty2L9geN8G70HAxgD3tqAICIiIuJSGspXSFiWxep9CUSFls3zWs/0qM/Sx3oWm2KyZVks/vMY4xbuAOCHu9rjYTPYDfh62nm0a11N+BYREZEiyxgTboyZboxJNMYcMca8b4zxyHmuiTFmjTEmJef3Jm4O1y3u+2El/T9e+K+vM8bwzR3tqBjogwU4rewNCDd/uSTfYxQREREpKVRQLiT2JJzmeEoGUaHl8ryWt6edljm3BC7YeYT0nN28RU16poMJK2NoPnYGHd+Zw5hZm7OHD0aGsOiRHozq35hJ93Zk+NT1dHh7NgcSU9wdsoiIXKGR0zZihk7M/TVy2kZ3hyRSkD4EjgGVgCZAJ+BBY4wX8BvwLRAEjAd+yzleojzRrS4v92t0ya//9d6O+HraOTNZJDE1gwkrY7As6x/PExERKWyUJ0thpJYXhch97WrQoXp5l6239fBJuo2bx9COtXnvhiiXrZvfjpxK5ePFu/h4yS6OJqVRr2JpPrm5Jbe2jMi9nbFNZEjubYu/3tORaz9fRJs3ZzHjwS40qFzGjdGLiMiVGNmvEQt3HQVg4SM93ByNSIGLAN63LCsNOGKMmQnUBzqTna+/Y2VXQt8zxjwBdAVmuitYd+hSq+Jlvb5NZAjzhnVj4a6jhJUN4IPFO7jjm+VMjN7DJ7e0JLxcQD5FKiIi4lrKk6Uw0g7lQiIiOICPb2lFvUqlXbZmvUql+b/OdRj3xw5+WrvXZevml7X7j3PHhGWEvTCZl2ZsIiq0LLMf6srm4f0Y0r4mfhfpLd29TiUWPdIDh9Oi/duzWbjzaAFHLiIiRd0rr7xCREQEAQEBVK1alZtuugmA+vXrExAQQEBAAHa7HR8fn9zHr7zyCgCxsbHYbDYeeOCB3PXOvCYgIACbzYavr2/u44kTJ/L1119jt9vPed3ChQvPicmyLCIjI6lXr16BfR/Ebd4BbjbG+BljqgB9yC4Y1wc2Wuduq92Yc/wcxpghxpjVxpjVcXFxBRFzgfpj11H2JCRf1jltIkN4tlcDBrUIZ/EjPXn/hiiWxcbx6C9r8ilKERGR4qWw5cjGGPz9/QkICCA4OJhbbrmFEydOFOS3RHKooFxI7D2ejMPpdPm6Y69qQsuwctz93Qr+jEty+fquEpeURqvXZ/LL+v0MaVuDHSMGMPWBLvSoWwljzL+e36RqWVY80YvKpX3p9eF8fli9J/+DFhGRYmH8+PF88803zJ07l+TkZFavXk23bt0A2LJlC8nJySQnJ9OhQwfef//93MfPPfccABMmTCAoKIgff/yR9PR0gNzXJCcnExoaypQpU3IfDx48GIA2bdqc87rOnTufE9eiRYs4duwYMTExREdHF9w3RNxhEdlF4lPAAWA1MBkIAE6e99qTwN8GZViW9allWVGWZUWFhBSv4XOWZdHzg/l8vGTXFa9hsxke6lSbrc/3z71zb9/x02w8mOiqMEVERIqVwpojb9iwgeTkZGJiYkhMTGTkyJEF9j2Rv6igXAg4nRYNX5nGo7+sdfnaXh52/nd3ezxsNm74YjFphaif8hfL/uSub5YDEBLow6R7O3Jg9DWMu7EFtSqUuuz1Qsv6s/SxnrQKK8ctXy/lzXnb1CdPRKQIOZmayb7jp1kekz+7K8PDw3n11VepV68eQUFB3HXXXaSlpREdHU2vXr2oXr06ABUrVmTIkCGXtKZlWUyYMIHRo0fj6enJlClTXBbv+PHjueqqq+jbty/jx4932bpSuBhjbGTvRv4V8AeCye6XPBZIBs5PikoBhXeXQD5IyXCQkeUkyC/vraOrBflTLcgfgOemrKfTO3NJTs/M87oiIiL5KT/z5KKWI59RqlQpBg4cyNatW12+tvw79VAuBLKcTt6/oQW1yl9+EfVShJUNYMJtbRjwyR888vNqPr6lVb5c51LsOHqKiHL+eHnYOZaUxp7jp0nNyMLXy4P+Davmef0gP29mD+3G7ROW8cSktRxLSmPs1U1dELmIiFyJzu/M+dfX9G9QhXaRIWw8lIjTgs7vzmXh/3WnZvlArv988T+ee7l95CZOnMisWbPw9/dnwIABjB49mtatW/Pwww9TpUoVunTpQtOmTbHb7Ze03pIlSzhw4AA333wzW7duZfz48Vx//fWXdO66desIDg6mbNmy3HbbbTz77LN4eGSnZikpKfz888/88MMPpKamct999/HWW2/h5VXiZrGVBGWBULJ7KKcD6caYr4DRwGPA48YYc1bbi0bAB+4J1T0SUzIACPJ17Z//d6+L4vaWxwnw9sSyLL5ZFcvBEyl0rlkhd1aHiIhIfilMeXJRyZHPlpiYyOTJk2nduvUlv09xHRWUCwEvDzu3t4rM12v0b1iVJ7vX5fW526hU2hcvu63AkmXLspi97TDvLNzOzK2HmXhHWwa1iODpHvV5tlcDl1/Px9POD3e1p1rQWlpHBLt8fRERcb2Fu47izCmXZTmdLNx1lJrl/3ZXf54NHTqUatWqATB8+HCGDRvG7t27Mcbw1VdfMXLkSHx8fHjqqad4+umn/3W98ePH06dPH4KCghg0aBAdO3bk2LFjlC//z0N2O3bsyObNmwkLC2PLli3cdNNNeHh48OyzzwLw66+/4u3tTc+ePcnKyiIzM5Np06ZxzTXX5P2bIIWKZVnxxphY4AFjzBtkt7m4g+xeyQsBB/CwMeZj4N6c0+a7I1Z3SUzJvk3WFTuUz1YuwJuedSsBMGbWZkZM3YghO5ecN6ybisoiIlIoFESeXFRyZIBmzZphs9lISkqiZs2afPXVV3l783JFVFAuBFbExhPg7UGDymXy9TpjBjRh5tbDjJy+CbvJLmR/c3tbygf60L56CMYY4pPTyMhy4uNpx9fTjreHHZvt33sYn295TByztx/mdHoWUzYfZPvRU1Qs5cNL/RrRvU524n4l614qm83w5rXNcx9P3XSAtpEhlPX3zrdriojI313qzojlMXHYDDgt8Paw07lmBYIDfFw+yfpMogwQFhbGoUOHABg8eDCDBw8mMzOTyZMnM3jwYJo0aUKvXr0uulZqaio//fQTn3/+OZDd7y00NJTvvvuORx555B/jiIz86wfJDRs25IUXXuD111/PTZbHjx/PjTfeiIeHBx4eHlx33XWMHz9eBeXi61qyB/M9TXYBeT7wqGVZGcaYq4HPgdeAbcDVlmVluClOt0hMzdmh7OKC8tk+X7obAAtIzXRw3eeLOPTKdfl2PRERkcKUJxeVHBlg7dq11KhRg8zMTD788EM6dOjA1q1b8fHxuZK3LldIBeVC4PFJa7AZw+JHe+brdTztNk7k3DLosLKT5bsnruBUeiaO9wYB8Mxv6/li+e5zzvP2sOUWmH087fh5erB5eD+MMbw9fxvrDiQy4fa2AIxbuINFfx5j0sb9OHJ+hFanQiDf3N6WG5uF4uVxabdHuFJcUho3f7WU21tF8OFNLQv8+iIi8u/aRIbQqHIQJ1MzmHhnu3zbGbh///7cr/ft20flypXPed7T05MbbriBsWPHsnnz5n9MlidNmsSpU6d48MEHGTZsGAAnTpxg/Pjx/5osn88Yk9v3/8CBA8yfP59Vq1bxyy+/ANktMNLS0oiPjyc4WHffFDeWZa0HOl/kuXVA8ws9V1LktrzIx4Ly93e1o9u4eaRnObAsOJqUxshpG3m+dwM87Bo7IyIi7lMQeXJRyJHP5+npyT333MMjjzzC5s2biYqKuqy1JW9UUHazLIeTdfsTua99zQK53o//aU+3cfPIcDjxstv4YnBrgvy8MCZ7t/AdrSJpGVaO1EwHaVkOUjNyfs90kJbzK8tp5b4+OT0rt0gNsHj3MX7dsC/3dgyAtEwnt7aMKJD3dyEhgT7MHdaN+pVKA9ktOM7ELyIihUdpX09K+3rm623mH3zwAf3798fPz48xY8Zw00038fXXXxMSEkLHjh3x9/dn1qxZbNmyhVat/nnmwPjx4/nPf/7DmDFjco8dPHiQFi1asGnTJho2bHjRc2fMmEGzZs2oUKEC27dvZ9SoUdxwww0AfPPNN9SqVYsFCxacc07btm35/vvvcxNzkZKiIArKbSJDmDesGwt3HSUqtBwTVsXw0oxNzNx2iG/vaEeNENe34BEREblU+Z0nF4Uc+XwOh4OvvvoKX1/fc3Y2S8FQQdnNth45SWqmgxahZQvkemcnyxfqodyhRnk61PjnnjZnG9Hn3L8I/nd3B5bHxJ1TtP7uznYuiT0vzvRSPp2exVWf/sHT3evRI6dnnoiIlByDBg2iZ8+eHDp0iKuuuornn3+emTNn8sorr3DrrbficDgICwvjo48+on379hdd5+DBg8ybN49169ZRsWLF3OMVK1akd+/ejB8/njfeeOOi58+bN48777yT5ORkKlSowK233spzzz0HZCfhDz300DnrAtx///2MHz9eBWUpcQqioAzZefKZ3LhH3Ur0q1+FB36Mpsmr03nn+ubc3aa6NiWIiEixVBRy5DMaN26MMQabzUbt2rWZNGkSZcsWTE1N/mIutnW8sIuKirJWr17t7jDy7Mvlu7l74gp2jBhArQql8v16E6NjGf77evYlphAa5MeYgU0Y3ML1u4eXx8RdtGjtTkdOpdLrg/lsPXySLwa3zvdhiCIiJcm2bduoW7fuFZ9/ZtK1q/smnxEeHs7nn39O9+7d82V9KRwu9ufQGLPGsqwScS9kccmTz3hh6gZGz9pM1ruD8nUGx4XsTzzNHd8sJz45ndVP9XZL+zYRESn6CnOerBy55HBlnqwdym4WvTeBUj6eV3Qb3eUWhydGxzLku5WkZDoA2JuYwpDvVgK4vKh89g6PwqRiKV8WPdKD6z5fzB3fLOfAiRSe7Vlfu01ERNxs5LSN/PHnMQDM0Im82KchI/s1cnNUIlIY3NQ8jAaVyxR4MRmgWpA/c4d2Iy45DS8POydTM1i1J0F3uomISIFRniyFkQrKbrZ6XwJRoWUvO0G+UHH43u9WcuhkCq3DQ4hLTiMuOf2v35PSmLRhP2lZznPWScl08H8/ryayXAC1ypeiXIC3y95bYVXa14vpD3TmPxNXMHzKBvYnpjDuhigNXBERcaOR/RopMRaRC6pfqQz1K5Vx2/VtNkOFUr4A/HfOVv47dyt/jhxIWNkAt8UkIiIlh/JkKYxUUHaj9EwHGw6e4NEudS773OG/r88tJp+Rmungqcnr//baQB8PQgJ8/lZMPiPhdAZt35oNQDl/b2qVD6RW+VLUPvN7hVLUCAnEx7P43OLn5WFnwm1tqVbGj9fmbOXgiRR++E97/Lz0v4SISHG1Z88ed4cgIldgRWw8Xh42mlVzf3/EEX0a0qFG+dxi8qETKVQu4+fmqERERK6ccmS5EqqeudGmQyfIdDhpEVbuss5LSstkb2LKRZ+f/VBXggO8CQnwITjAO7cQHD5i0gXPq1zal09ubsnOY0nsPHaKHceSmLP9MONXxuS+xhgIDfKndvlS1CofSO0KpaiV83VokP85O6wLqk9zXtlshlevakrVMn4M+3k1Xd+by5T7OhMS6OPu0EREREQkx2O/rsHPy4O5w7q5OxR8PO30rlcZgDnbDtP/k4W83K8RT3Sri92mu91ERESkZFBB2Y1W70sAICr00nZbpGZk8dHiXbw6Z8tFXxMW5HfRnm5jBjY5p00GgJ+nnf9e3ZT+Dav+7fVJaZnsikti59FT7Dh2KrfgPH5VHElpWbmv8/awUTMkezdzlsPJzG2HyXBk74bOzz7NrvJQp9pUKePHLV8vZfSszbx7fYmY1yMiki+cTic2FVXETYrqsGn5Z58NaoXTWfj+2zYPLcvAhlV55rf1TNt8kAm3tyW8nNpgiIjIhVmWpflN4jauzpNNUU28i8P06rRMB5sOnSAqtOw//qWSkeXg82W7GT1zM4dPpdKjTkXaR4Ywds7WvxWHPx3U6l8H8+V197BlWRxNSmPH0b+KzDuOnmJnXBI7jp664DmVS/tycMy1l3WdgrZ2/3HqViiFr5eH/qIXEbkC+/btwxhDhQoV8PT01N+jUqAsyyIhIYGkpCQiIv6e21zJ9OqiqjjkyUWFZVl8syqWoT9FYzB8cGMLBrcI199/IiJyjtjYWAIDAylXrpz+jZAClx95sgrKhcj5xd5R/RuT5bR4acYm9h4/TfvqIYzu35hONStc8PWFobWEbehELvYnqmZIIL3rVaZ3vUp0rlmh0PYrPpmaQe8PFnB902pkZDnpXLMCbSJD3B2WiEih53Q6iY+P5+TJk2RlZf37CSIu5uPjQ9WqVfH09PzbcyooF02WZfH5st20Ci9HoypB7g7nomLjk7ltwjKWxsRxU7MwPrq5BUF+xX/YtYiIXJrMzEwOHDhAWlqau0OREsrVebIKym6SkpHFC1M3cnurCBpVCWJidOzf2lEYwCK7Jcbo/o3pWbdSof9J1sX6NAf5edEmIpgFO4+SmunA28NGpxoV6F2vEn3qVaZ2hVKF5r0dPZVK93Hz2BWXRJbDiZeHnXnDuqmoLCIiUoSpoFw0pWRk4f/Yj7w6sAnP9Kzv7nD+kcPpZOycrbw4bSMVS/ky/rY2dK1d0d1hiYiIiPyjK8mT1eTQTf6MS+L9RTvYk3AagOG/rz+nmAzZxeSQAG9WPdmbXvUqF5qC6z8ZM7AJfjlDAM/w87Qz7oYopj3QhYSx1zProa482KEW+0+c5rFf11J39FQiXvyN+79fyeQN+0lKy3RT9NkqlPIlOT2L9CwnDgtSMx3c+OUSt8YkIiIiUhIlpmQA2ZsTCju7zcZzvRqw4ole+Ht7cNe3y0k/L78XERERKQ4KZ8+BEqBRlSCS3rwptyn2vgvs6gWIT04vEoXkM8603LhYKw5fLw961q1Ez7qVeIvm7ElIZta2w8zceoiJq/fwydI/8bAZ2lcvT596lehdrzINK5cp8O/Bd3e2o9u4eWRkOXBYEJecxhtzt/JIlzp42PVzGBEREZGCUJQKymc0Dy3H2qf7EJuQjLennYwsBzHxydSpWNrdoYmIiIi4hArKbuR5VmEyNMjvgq0iQoP8CjIklxjcIuKSezmHlwvgvvY1ua99TTKyHCyLiWfmtkPM2HqIp39bz9O/radyad/s3st1K9G9TkWmbzmU772j20SGMG9YNxbuOkqdCqX5asVunpy8jomr9/DpLa1oEVbOpdcTERERkb/LLSj7Fp2CMoCflwf1K5UBYOycrYyZtZlXBzbh3QXbC9X8ExEREZEroYKymwz6aglda1fknrY1ABjVvzF3fLP8nIF2fp52xgxs4pb43MHLw07nWhXoXKsCr13VlEMnUpi17TAzth7i1/X7+XL5bgBsBpw536i9iSkM+W4lQL4Ulc/0Tb66cVUmbdjPsJ9W0+qNmQztWJvR/RtTyvfvzcxFRERExDUKaodyfg67vq99TXbHJ/H8lA25Le7yM4cVERERyW8qKLvBqdRMfli7l7pn3fZmjMntmRyfnK5dC0DlMn7c1aY6d7WpTpbDyaq9CfT9cAEnz+uxnJLp4KnJ6/L1e2WM4domoXSrXZHnp2zg/UU7+HXDPt6/oQVXN66Wb9cVERERKckKoqB8/nDsfyr2Op0WyelZJKVnZv+elnne19m/n3lNUlr2779tPEDqef2UUzIdDP99fYnO90VERKRoUkHZDdbuP45lQVRoWSA7MX119hbqVyrNxmf7YbMVnZ7JBcXDbqNtZAinLjKw79DJVFq/MZNbW0RwU7MwQgJ98iWO0r5ejLuxBbe2jGDI9yu55rNFvHd9FMM6186X64mIiIiUZImp+V9QvtBw7JRMB3dPXMGb87adUyQ+nZF1yev6e3kQ6ONBoLfn34rJZ+xNTOH1uVu5rkk1IoMD8/Q+RERERAqKCspusHpfAgBRodl9eH/bdICtR04y8Y62Kib/i4v1mi7j60lappNhP63mkV/W0LtuJW5tEcHARlXx83L9H/NW4cGsfqoP7/+xg0FR4QAcOZVKSIA3dpuG9omIiIi4wpkdyqXzsc3YxYZjp2c5qVLGj0BvDwK8PXOLw4E+ngR4exDo7UGgjyeB3jmPfTxzj/l7eZyT14ePmHTBHNZm4KnJ63hq8jqaVg3i+qahXNcklNoVSuXb+xURERHJKxWU3WD1vuOElfUnJNAHy7J4ZdZmqgcHcGOzMHeHVuiNGdjknFsSIbvX9Ps3tmBwiwg2HUxk4uo9TIzew7QtSwnw9uDaxtW4tUUEXWtXcGmx19Nu49GudQFwOJ0M+HghFUv5MuX+zi67hoiIiEhJlpiSQWlfz3z7gf32IyfxtNvIcDj/9lxYkJ/L8roL5bB2Y3BYFn3rV6ZD9fL8vukAw6dsYPiUDTSoVJrrmoRyfdNQ6lcqjTHadCIiIiKFhwrKbhC9L4EWYdm7k+dsP8Lqfcf59JZWeNi1s/XfnOkxd7GhKQ2rBPFalSBeGdCERX8e49voWH5ev48Jq2KpVMqXW6LCuLVFBE2qBrk0MbcZwxPd6uLjaQcgy+EkPcuJv7f+FxMRERG5Uk/3qMcdrVzfY9jptBj3xw6e+X09nnYDnFtUdvVw7AvlsKMHNObIqTSe+m0d8cnp/HZfJ7IcFpM27Ofn9ft4eeYmXpqxiVrlA7m+SSjXNQ2lqYtzWBEREZErYSzLcncMVyQqKspavXq1u8O4bMdPp1Pu6Z957aomPN2jPp3emcPu+CR2v3gV3jnFSHGttEwH0zYf5NvoWKZtOUSmw0m9iqW5tUU4g1qEE1Y2wOXXfGPuVsb9sYMPb2pJvwZVXL6+iIiIXB5jzBrLsqLcHUdBKKp5ckHZk5DMXd+uYOGuo/RvUIXPBrVi3o4jF92wkN8mb9jP4PFLKefvzdT7O9OoShCQ3U5t8ob9/LJ+Pwt2HcXhtIgoF8B1TapxfdNQWoaVU3FZRERE8uxK8mQVlAvY7G2H6fXBfOYN64aXh40Ob8/hneua839d6rg7tBLh+Ol0flq3j2+jY1myOw6ADtVDuLVFBDc0CyXIzxvInvadlw8VS3cfY8j3q9h65CQ3NA3l3eujqFTaN1/ek4iIiPw7FZSLph/X7CHIz5uedSvleS3Lsvhy+W4e/XUNAO9cF8VdrSMLRVF23f7jDPzkD966thk3XKANXnxyGr9vOsjP6/Yxd8cRMh1Oqpbx47om1biuSShtI4Ox22x5zmFFRESk5FFBuQh4ZdZmhk/ZQOJ/b2DQ10uJ3pfAnpeuVmsEN4iNT+a71Xv4NjqW7UdP4eVho1/9KoQG+fHZ0j//1qf500GtLishz8hy8PrcbYyauQlvDzuvXdWE+9rV1OBFERERN1BBuWiqN3oK9SuV4ae7O+RpncMnUxny/Uqmbj5I55oV+OrW1oSXc/1danmRkpGVO0x66+GT1K1Y6oLF7hMpGUzZfIBf1u9n5tZDpGc5qVjKh/qVSrNkdxzpWee27rjcHFZERERKFhWUi4AP/tjBzG2HealfI5qPncGYAY15rlcDd4dVolmWxboDiXy7KpbvVu/haFLaBV8XFuTHnlHXXPb6u46d4v4fVjF/51Fahwfz6S0taZhzK6OIiIgUDBWUi6YTKRlkOZ0EB/hc1nln79Qt5+9NakYWDmDsVU0Y2rF2of4B/8aDiUT9dyZvX9uMhzrV/sfXJqVlMn3LQX5ev59f1u3jQp/srjSHFRERkZJBBeUi5IYvFjN722H2jbqa0r5e7g5HcmQ5nHj93/cXTMYN4Hx/8BWta1kW30bH8tivazmRksET3erycv/GeGoQo4iISIFQQbnkmBgdy5DvVp5zt5nNwGtXNeHJ7vXdGNmlcTot3l6wnbvbVKeM36V/TrANnejyHFZERESKvyvJk1XNKkAOpxPLsth25CS/rN/H0I61VEwuZDzsNkKD/C76/CM/r2bn0VOXva4xhttaRrLt+f7c1jKCVXsT8LAZlsfE8eqszSyPictL2CIiIiLFTlqmg2d+W8eK2PjLOm/47+vPKSYDOC344I+drgwv39hshse71aWMnxdpmQ7u/GY5MfFJ/3reP+Wwz09ZT2JKuivDFBERkRJMBeUCNGPLIco+9TPP/LYeHw87j2gQX6E0ZmAT/Dzt5xzz9rDROiKYDxfvovaoKfR6fz5TNh3A4XReZJULCw7w4ctb2zDjwS6siI2n63vzeG7KBrq+N1dFZREREZGzJJxOZ+ycrWw4mHhZ5+1LTLms44XZrmOnmLLpAK3emMWS3cf+8bUXymF9PO20DCvLmFlbiHjxN0bN2MSp1Mz8DFlERERKABWUC1Cl0r70qVeJqZsPMKRdDUICL68XnBSMwS0i+HRQK8KC/DBk9537YnBrlj3ei/2jrmZU/0ZsOXKCgZ/8QY2Xfuf1uVtJSL68HR9eHnYGf72UtKzs3TNpWU4Gf72UdfuPs+kyPzSJiIiIFEeJKRkABF1G2weAKmUuvFP3n3bwFlYNqwSx4oleBPl60W3cPL5ZFXPR114oh/18UCtWPNmH9c/0pXPNCrwwbSMRL05m7JwtnE7PKrg3IiIiIsWKeigXsAd/XMXny3YTM/IqqhbBpFayZTqc/LbxAB8s2snCXUfx8bRzS/MwhnaqTbNqZS9pjeUxcXQbN48MhxMvu415w7oxZtZmpm05RNOqQdzZOpJbmofrBw8iIiIuoB7KRc/iP4/R8Z05zH6oKz3qVrrk83qOm8ecHUfOOebnaefTQa0Y3CLC1WEWiOOn07n+i8Us2HmU4b3q83K/xlc0WHD13gRemLaRGVsPUT7Qh2d71uf+9jXxOW9ns4iIiJQcGspXiFmWxeLdcfQYN5c7WlXn00Gt3B2SuMjmQyf4YNFOvlkVy+mMLNpEBPNQx1pc3yQU739JzpfHxLFw11E616xAm8gQ4pPT+H71XsavjGHN/uN42Az9GlThzlaR9K1fGS8PJfsiIiJXQgXlouf3jQe46tM/iH6yN1Fh5S7pnM2HTtDktel0qVmeXceS2JeYQmiQH2MGNimyxeQzMrIcPPhjNF8s382NzUL5+tY2+Hp5XNFay2LiGDF1A/N3HqVyaV+e792Au9tUV64pIiJSAqmgXIjtO36asBcmY4CdLw6kRkigu0MSFzuZmsH4lTG8/8dOdsUlUT7QhyHtanBfu5pXtBt986ETjF8Zw7fRsRw5lUZwgDe3NA/nvvY1qF+pjOvfgIiISDGmgnLRM35FDHd+u5w/XxxI9UvInS3Losf781m7/zi7XhhIuQDvAoiyYFmWxZvztvHUb+toEVqO3+7rRMVSvle83sKdRxkxbQNLdscRVtafEb0bcHurSDzt6owoIiJSUlxJnqxMoYAs2HUUgB51KqmYXEyV9vXi4c512D5iALMe6kqrsHKMmbWZ8Bcnc/3ni1i48yiX8wOcBpXL8Po1zdg/6hqmPdCZrrUq8MnSXfyxK3sgS3J6JkdOpebX2xERERFxq8TUy+uh/PumA8zbcYSX+jYqlsVkAGMMT3Svx6/3dGTz4ROMnLYxT+t1rlWBRY/0YOaDXSgf6MM9362k7qgpfLMq5rKHT4uIiEjJcWX3SMll+2zpnwC8MrCxmyOR/GazGXrWrUTPupWIjU/m4yW7+HzZn/yyfj/1K5VmaMda3Noygt82HmD47+v/9VZMD7uNvvWr0Ld+FRJT0nN3jEyM3sND/4tm+4gB+iGFiIiIFDtnhvKV9vX819emZzp47Ne11K9Umgc61Mzv0Nzu6sbVWPF4LyKCA4Ds+R5XuqvYGEOvepXpWbcSUzcf5IVpG7l9wnJenb2FkX0bcX2T0Cvq1ywiIiLFl3YoF4CktExW7omntI8nzUMvrf+bFA8RwQGMvbopB0Zfw1e3tsbbw84DP0YT8vTP3PnNcvYmpmABexNTGPLdSiZGx/7jekF+3gR4Z3+o6l67ImOvakr1nA8ST/y6lgd+WMXKPfGXtRNaREREpDBKTMmgtK8ndtu/f2R5Z+F2YuKTeee65niUkHYNDasEEeDtSXJ6Jm3emMWHi3bmaT1jDAMaVmXNU334+e4OGAw3fbmEpmOnM3nDfuWXIiIikks7lAvAR4t3kuW06FKrgrtDETfx9fLgztbVuaNVJCv3JNBt3Fyyss69jTAl08Hw39df8sCY6iGBPN6tbu7j0xlZjF8Zw8dLdlG7QinubBXJrS0irqh/s4iIiIi7JaakU9bv31tXHD6ZyuiZm7mqUVW616lUAJEVLgZDZHAAEeX8XbKezWa4rmkoVzeuyo9r9jJy+iau+WwRzauVZVT/Rhw/nc7wKRuK1cBDERERuTwaypePJkbH8uzv69mfmALA3W2q8/ng1m6OSgoD29CJXOj/PAM43x98xeueSs3kp3V7+XplDEt2x2FM9k7mO1tFcnXjavhd4SRwERGRok5D+Yqe9EwHyelZ/9oP+a5vlvPdmj1sGd5fbcCAV2dtJjXTQZ96lWkTGZLn9bIcTr6NjuWlGZvYk3AamwHnWYmsn6edTwe1UlFZRESkiNJQvkJkYnQsQ75bmVtMPnPs31oaSMkQepFdwxZwzad/sOFA4hWtW8rXk7vb1mDxoz3588WBjOjdkJ3Hkhg8fhkVn/uFSRv25yFqERERkYLj7Wn/12Jy9N4Evl4Zw6Nd6qiYDEzZdIDnpmxg1MzNdHp3Lov/PJbnNT3sNu5sXZ0dIwZQ1s/rnGIy/HWXnYiIiJQcKijnk+G/rycl03HOsbQsp5ItAWDMwCb4edrPOebraee6JtVYsOsoTV6bzg1fLGbL4RNXfI3qIYG81K8RMSOvYsHD3bm2cSj1K5YGYOHOo4yasYnk9My8vA0RERGRfDNm5mb+t3bvRZ+3LIuHf1pNxVI+DO/VoAAjK7z+76e/dqZnOpx0fW8uv6zb55L+x14e9txBiefbd9YmGhERESn+VFDOJxdLqpRsCcDgFhF8OqgVYUF+GCAsyI/PBrXi53s6suelq3mhT0NmbTtEw1emcctXS9h+5OQVX8tmM3SuVYGvb2tDrQqlAFi0+xgfLNqJt0d2UXv9geMqLouIiEih8m10LPN3HLno89+t3sOKPfG8OrAJgT6eBRhZ4TXxznb4etqx2wxedhtVy/hx/ReLaf3GLBbsvPj38lJd7C47D7uNNfsS8ry+iIiIFA3qoZxPwkdMYu8FisdhQX7sGXWNGyKSoub46XTenLeNdxfuIDXTwaCoMF7o05Ca5Uu5ZP2ktEwCfTxxOi0iR/5GfHI61zcN5Y5WEXSqUQGbzbjkOiIiIoWBeigXTZZlYczfc5Lk9ExqvzyFyqV9WflEb+UtZ1keE8fCXUfpXLMCLcPLMWFlLC9O38j+xBR61a3EqwOb0LRa2Sta+0xbv7PvxPSy2/D1tJOUnsXDnWszqn8jArxV4BcRESkq1EO5EBkzsAme9nMTWz9PO2MGNnFPQFLklPX3ZszAJsS+dBVPdKvLrxv2U3f0VO76Zjkx8Ul5Xv/MTh5jYOIdbbklKoxJG/bT9b15RI78jRembuDPuLxfR0RERORKXaiYDDB2zlYOnUzlveujVEw+T5vIEJ7t1YA2kSHYbTbualOdnS8M5I1rmhG9N4EPFu284rUvdJfdl7e2Zu+oq7mvfQ3eWbCd+qOnMnXTAde9IRERESl0tEM5H/X+YB6ztmXfWhZaxpdXrmqq6cdyxY6eSuW/c7fy4eJdZDmc3Nk6kud7NyCsbIDLrpGSkcXkDfsZvzKWOTsOY1nQLjKEO1tHcmPTMEr5areJiIgUTdqhXLTEJ6fx4I/RDO1Ui441KpzzXGx8MnVHT+H6pqF8e0c7N0VYNJ1MzSDT4SQ4wIdVe+KZsCqWUf0bEeT3z8MPL9WymDiGfL+SLYdPcn3TUN67PopKpX1dsraIiIjkD+1QLmQ87XaC/b0J8PYg5uWrVUyWPKlQypc3r21OzMireLBjLSasiqXmS1N44IdV7E887ZJr+Hl5MKhFBLOGdmXfy9fw6sAmJJxO597vVrJ2/3Egu1WGw+l0yfVERERELuRoUho/rdvHkVNpf3vuyclrsdsMrw1s6obIirbSvl4EB/gAsGpvApM27MfDlv2R0BUbjdpGhrD26T6MGdCYKZsOUGfUFD5evBOns2huYhIREZELU0E5H8UmJFO7QiD3tKnBqj0aUiGuUam0L+9eH8XuF6/i3rbV+WL5bmq89DvD/hfNoROuG/pYNciPZ3rWZ+vz/Yl+sjcda5QHYMTUDdR6eQqZjr+Kystj4nh11maWx8S57PoiIiJSciWmZAAQ5Ot1zvEFO4/wy/r9PNuzPlUvMiBOLs3QTrXZ9eJAAn08yXI46fTOHN5ZsJ30s/ojXwkvDzvP9WrApuf6ERValgd+jKbDO7PZfOiEawIXERERt1NBOZ9YlsWfcUms3JPAuD+2023cPBXbxKWqBvnxwU0t+fPFgdzZKpKPl+wicuRvPPrLGo6cSnXZdYwxRIWVy+1P2KNOJYa0q4GnPfuvj6s/WUind+cwYuoG/TkXERERl8gtKPtlF5QnRscSNmISXd+bh91mqFJaxWRX8PPyAOB4SgZeHnYe/WUNtUdNYcLKmDzfkVazfCnmDuvG+NvasONoEk1fm87w39eTmpHlitBFRETEjVRQzifHktJIz3KS5bRwWJCa6WDw10vdHZYUQ6Fl/fnkllbsfGEgg1tEMO6PHUS++BtPTlpLXNLfbxPNq34NqvB0j/pA9oT16VsPken468/5jV8ucfk1RUREpGQ5u6A8MTqWId+tZF9i9p1YDqfF0P9FMzE61p0hFivlA32YO6wbsx/qSjl/b+74ZjlNXp3O1E0H8tQKwxjD7a0i2T6iP4Oiwnll9hYavTqdeTuOuDB6ERERKWgqKOeT2IS/etraDPh62pl4p4aGSP6JCA7gi8Gt2T5iADc0DeWt+duJePE3nv1tHQnJ6flyzQBvTxb+X3e8PWycma9+6GQKg75awpp9avMiIiIiV+bsgvLw39eTcl4bhpRMB8N/X++GyIq3HnUrEf1kb364qx2pmQ4GfPIHHd+Zw7I83oEWHODD+NvbMndYNwC6j5vHHROWEZ/s+s0PIiIikv8KrKBsjAk3xkw3xiQaY44YY943xnjkPNfEGLPGGJOS83uTgoorv8QmJOd+PaxTbeYN60abyBA3RiQlRY2QQMbf3patz/fnqkZVGTt3K+EvTmbE1A0kpri+sNw2sjwLHu7OmAGN+eWeDjzSpQ5Ttxwk6r8z6fLuXKZuOqBBLCIiInJZzhSUS/t65u5MPt/Fjkve2GyGm5qHs23EAD68qQW7jiXR7q3ZDP1fdJ7X7la7Ihuf7cvwXvX5bvUe6oyayoSVMS4ZCCgiIiIFpyB3KH8IHAMqAU2ATsCDxhgv4DfgWyAIGA/8lnO8yIqJ/6ug/HzvBiomS4GrXaEUE+9sx+bn+tO3fmVGz9xM+Au/8dL0jZxMzXDptdpEhvBsrwZc2ySUN69tzv5R1/D61U35My6J2yYsJyVTvfJERETk0h1PyaC0ryd2m43Qiwzfu9hxcQ1Pu40HOtTiz5EDGd2/MZ1yBjSnZmQxecP+Kx7I7OvlwegBTVj3TF9qVwjkjm+W0+P9+ew6dsrVb0FERETySUEWlCOA/1mWlWZZ1hFgJlAf6Ax4AO9YlpVuWdZ7gAG6FmBsLhebkIy/lx0Pm6Gsn7e7w5ESrF6l0vz4nw5sfLYv3WtXZOT0TYS/8BtjZm4mKS0zX65Z2teLJ7rXI+alq1j4f90J8PbE6bTo/M4cvly+O1+uKSIiIsVHYkp67kC+MQObYDPnPu/naWfMwCYFH1gJFODtyfDeDbihWRgAT05exzWfLcrzQOYGlcuw+JGefHRTC6L3JtDwlWm8MmszGVkOJkbHEj5iErahEwkfMUn9skVERAqZgiwovwPcbIzxM8ZUAfrwV1F5o3XufU4bc44XWbEJyfh5eVCxlC+28zNgETdoWCWIX+7tyNqn+9CxRnmen7qB8BcmM3bOFpLT86ew7Gm30bhqEAAnUjMI9PHExyP7r52TqRnsOKqdKCIiIvJ3NmOoXNoXgFuah+PtYSPA2wMDhAX58emgVgxuEeHeIEuo3zYeAMgdyNz3owV8smTXFW1UsNkM93eoxbbn+zOgYVWGT9lA5Iu/cffEFexNTMEC9iamMOS7lSoqi4iIFCKmoPpVGWPqkt3WojFgJ7u1xV3A80B9y7JuPuu1E4FdlmWNPG+NIcAQgNDQ0OZ79+4tkNivRMSLk0nPdFKljC/RT/Vxdzgif7N6bwIvTt/I9C2HCAnw5uke9XmgQ038vDwK5Ppj52zhmd/WM6BBFR7vVpeONcpjjH74IiIi+cMYs8ayrCh3x1EQoqKirNWrV7s7DJfZcfQUdUZN4cvBrbmrTXV3h1PiLY+Jo9u4eWQ4nHjZbYSX82fbkVMEeHswKCqcIe1q0Dy03BWtPXXTAa7+bBGOC8zfCAvyY8+oa/IavoiIiJznSvLkAqkcGWNsZO9G/hRoCwQAXwJjgcNAqfNOKQUknb+OZVmf5qxBVFRUoZ3ckOVwsj8xhZAAbyqW8nV3OCIXFBVWjmkPdGFFbDwvTtvIE5PW8vrcrTzTsz73tauBbz4Xlu9qXZ2UDAcfLt5J53fn0rxaWR7vVpfrm4biaS/ImydERESkMFu1Nx6AluFXVqQU12oTGcK8Yd1YuOsonWtWoHVEMCv3JPDp0l18syqWT5f+SfNqZRnSrga3RIUT6ON5yWv3b1j1osOcNYRRRESk8Cioqk1ZIBR4P6dPcgLwFdAX2AI0MuduTWyUc7xI2p+YgsNpkZrpoGIpH3eHI/KPWkcEM2toVxY/2oP6lUrz6C9rqD7yd97/YwfpmY58u275QB9e6teIfS9fzcc3tyQpPZNBXy+lxsjfeGveNk6l5k8bDhERESn8bhu/lC+W/QnAqj0JBHh7UKfC+XtQxF3ODGRuExmCMYbWEcF8eWsbDo25lvdviCLD4eS+H1ZRefiv3Pf9SvYdP33Ja19s2GI1DWEUEREpNAqkoGxZVjwQCzxgjPEwxpQB7iC7V/JCwAE8bIzxNsYMzTltfkHElh9iE5IBSE7P0g5lKTLaVy/PvIe7s+Dh7tQsH8iwn1ZT46Xf+XjxTjKy8q+w7OvlwX3ta7Lt+QH8fl8nIsoF8PiktVQbMUkD/EREREqo3fHJxJ9OB2DV3gSiQstht+kOpsKujJ8XD3WqzYZn+7L88V5c3ySU71bvyX0+Nj75X3stjxnYBD9P+9+OVyzlw8nUDFeHLCIiIlegILOya4HeQBzwJ5AJPGpZVgZwNXA7cAL4D3B1zvEiKSanoLxleD+e6VGkZwtKCdS5VgUW/l935g7rRmhZPx74MZpaL0/h82V/kulw5tt1bTbDgIZVWfhID6Kf7E3f+pUJK+sPwKETKazdfzzfri0iIiKFy7LHe/F0j/qkZzpYfzCRlmFqd1GUnNm1/NVtbTj66nWE5uR0D/5vFS1fn8k/zfEZ3CKCTwe1IizID0P2juWbmoWyZn8izcbOYPXehAJ6FyIiInIxBTN9C7Asaz3Q+SLPrQOaF1Qs+S02PhkPm6F6cCAe6gUrRZAxhm61K9K1VgVmbzvMC9M2cu93K3l19hZG9G7ArS0i8vXPdlRYOb6/q33u43cWbuft+ds5OOZaygeqjYyIiEhJseFgIhlZThWUi7CzBz6/2KcRR06lYowh0+Hk6k//4OpG1bglKowA7796LQ9uEcHgFhHnrLMsJo6bv1pC27dm8/rVTXm4c20NdBYREXETVTvzQWxCMhVK+fDYr2s5oOERUoQZY+hVrzIrnujF1Ps7U8bXi7u+XUHd0VP5dlUsDqeTidGxhI+YhG3oRMJHTGJidKzL4xjeqwGT7u2YW0x+4IdVfLpkF6kZWS6/loiIiLjXrmOniBo7g4U7j7IqZzdqq/BgN0clrtA6IpirG1cD4EBiCvuOn2bI9yup9Nyv3P/9Stb9wx1pbSNDWP9MX/rUq8wjv6zh2s8WkZiSXlChi4iIyFnMP91uVJhFRUVZq1evdncYF9T6jZmkZDjYn5hC9FO9qRES6O6QRFzCsix+33SAF6dtYsPBRCqV8iHhdAYZZ7XC8PO08+mgVn/bVeIqp9Oz6PjOHNbuP05IgDcPdazFgx1qEaKdyyIi8g+MMWssy4pydxwFoTDnyZdiye5jdHh7DrMe6sq30bHM3X6Eg2Ou0W7UYsiyLFbExvPJ0j/5ce1e0jIdRIWW5b72NYko58+qPQl0rlmBNpEh55zzzoLtPP3beiqX9uWHu9rTOkI/cBAREblSV5Ina4dyPohNOE3r8GASX79BxWQpVowxXNWoGmuf7sPPd3cgPjn9nGIyQEqmg+G/r8+3GPy9PVj9VG8WPNydVuHBjJy+idAXJnPf9yvZcfRUvl1XRERECkZiSvYolSA/L1btTaBleDkVk4spYwxtIkP4+rY2HBpzDe9dH0VapoN7v1tJ93HzGT5lA93GzWN5TNw55zzatS5LHu2BMdDh7dm8MXcrTmfR3CglIiJSFKmg7GKn07M4lpRGRDl/d4cikm9sNsN1TUPJukjivi+fW70YY+hcqwJT7u/M1uf7c1uLCMavjKHOqCkM/Hghf+w6+o/DXkRERKTwOlNQthvDjqOn1D+5hAjy82ZY59psfK4flUpl33lmAamZDgZ/vfRvr28ZHsy6p/sysGFVnpy8joGfLCQhWS0wRERECoIKyi4Wm5AMwLoDiTz6yxo3RyOSv0KD/C54vIyfF1nn7VzOL3UrlubTQa3YN+oaXujTkOV74hnwyUKS09VfWUREpCg6U1Deczw7r1ZBuWQxxvDLPR3x9bRjN+DraeejW1ry3zlbyMhynPPaMn5e/HxPB8bdEMWcHUdo8tp0luw+5qbIRURESg4VlF3sTEF5d3wS0TlDRESKqzEDm+DnaT/nmM1kfxBs9casAv1/oHygDy/1a8S+l69m1oNdCfTxxLIsBny8kO/yYVCgiIiI5I8zBeUth08CEBWqgnJJ0yYyhHnDujGqf2PmDevGvuMpPDdlA9uO/L29mTGGoZ1qs/zxXnh72Oj87lxenbVZLTBERETykQrKLnamoJyUlkXFUhoSJsXb4BYRfDqoFWFBfhggLMiPCbe14X//ac/hk6m0emMmD/24ihM5HwwLgq+XR+7glsSUDJLSMnP7PCenZ7I/8XSBxSIiIiKXLzE1g9K+nqzed5zaFUpRxs/L3SGJG7SJDOHZXg1oExnCve1qsPm5fjSuGgTAz+v2kZpx7t1ozaqVZe3Tfbm+SSjPTdlAnw8XcCwpzR2hi4iIFHse7g6guImJT8bfy4O45DQqlvJ1dzgi+W5wiwgGt4j42/FedSszYtoG3v9jJ7+s38/b1zXn5uZhBTpUp6y/Nwsf6ZHbT/mzpX/y1OR13NgsjMe71aVZtbIFFouIiIhcmsSUDIJ8vVi5J55edSu5OxwpJOpULA3A1sMnueGLxdQqH8gXg1vTvnr53NeU8vXk+7va0bVWBR7+eTVNXp3Od3e2o3OtCu4KW0REpFjSDmUXi004TVhZP06kZlJJBWUpwUr5evLu9VFEP9WbakF+DPp6KT3fn8+uY3+/VTG/nSliX9ukGg93rs2UzQdoPnYGXd6dy9RNB3RLpIiISCFy/HQ6Ad4eHE1KU/9k+Zt6lUoz+6GupGc56fjOHIb9L5rk9Mzc540xDGlfk1VP9ibQx4Nu4+bx8oxNOJwFM99DRESkJFBB2cViE5KpXDp7UJlaXohk33644olefHBjC1btTaDBK9MYOW0jaZmOfz/ZxcLKBvDmtc3ZP+oaXr+6KX/GJTHgkz+oP2Yqz/y2jlEzNrE8Jq7A4xIREZG/hJb1p3xgdh7dMjzYzdFIYdSjbiU2D+/H0I61+WDxThq+Mo052w6f85pGVYJY83QfBkWF8eK0jfR8fz5HTqW6KWIREZHiRQVlF7Isi5j4ZMr5Z/d5U8sLkWx2m40HO9ZixwsDuL5JKC/N2HTBxL+glPb14onu9Yh56Som3tEWp9Ni7JytvDBtI13fm6uisoiIiBt9eFNLokLL4eVho1HlMu4ORwqpAG9P3rshisWP9MDbw07PD+Zz98QV58zuCPD2ZMLtbflycGuWx8bT5NXpzN3unvxTRESkOFFB2YXik9M5nZFFoLcnoB3KIuerWMqXiXe2Y87Qrhig5wfzGfTVErftFvG02xjUIiJ3aB9AWpaTwV8vdUs8IiIikm3V3gSaVAnC29Pu7lCkkGtXvTzrn+nLMz3qMX5lDPVGT2Xt/uO5zxtjuKtNdaKf6k05f296fjCfEVM3kOVQCwwREZErpYKyC8UmJAPg5ZH9bdUOZZEL616nEhuf68fIvg35ZcN+ar88hQ/+2OG23nbf3dkOX087dpvB19POxDvbcTI1499PFBEREZdr9tp0lsXGqX+yXDIfTzuvXtWUlU/0olm1IGoEBwLkDmYGqF+pDKue7M2drSIZPXMz3cbN4+CJFHeFLCIiUqSpoOxCMfHZBeVy/t5ULu2b2/tNRP7Ox9POi30bsenZfrQMK8fQn1bT+o1ZrNmXUOCxtIkMYd6wbozq14h5w7px+FQq1Uf+zqaDiQUei4iISEnmcDoJ9vcmI8tJy3AVlOXyNA8tx9QHulDK15OMLAdd35vH5A37c5/39/bgy1vbMOH2NqzZd5wmr01n5tZDboxYRESkaFJB2YXO7FB+qkc9Do65Fk+7vr0i/6ZWhVLMHtqV7+9sx/7EFFq+PouHf1pd4DuE20SG8GyvBrSJDKF5aFn61a9MZM7uFhERESkYdpuNm6PCAWgZpoF8cuXik9NJzcy64Gey21pGsvqp3lQq5UufDxfwzG/ryFQLDBERkUumiqcLxSacpnygDwE5PZRF5NIYY7g5KpztIwbwQIeavL9oB3VHTeV/a/eec6tiQQkrG8D429vi7+3BqdRMVu8t+F3TIiIiJdWqPfGU8fWiZoh+sCtXrnIZP5Y91ot+DaoA8Oa8bXy29M/c3LJOxdKsfKIX97Wrwdg5W+n87hz2J552Z8giIiJFhgrKLhSbkExEOX/umbiCF6ZucHc4IkVOGT8v3r+xBSuf6E2l0r7c9OUS+ny4gN1xSW6L6eGfV9P53bn8seuo22IQEREpKZbFxPH58t3UCAnAZjPuDkeKuDN/hpxOi9nbDjPk+5V0HzePmPjs3NLXy4OPb2nF93e2Y9OhEzR5dTpTNh1wZ8giIiJFggrKLhSTkExEuQAcTgunG3ZVihQXLcLKserJXrx3fRTLYuOoP2Yqo2ZsIj3TUeCxvHZVE8LK+tPnwwXM23GkwK8vIiJSkhw6mYLDadGwchl3hyLFiM1mmPFgFz6+uSXR+xJo+Mo03l2wPXcg9M1R4ax5qg9hZf0Z+MkfPP7rGjKyCj7vFBERKSpUUHYRh9PJvuOniSwXwFe3tWH0gCbuDkmkSLPbbAzrXJvtzw/gqkZVeWHaRhq/Np35BVzUrVjKlwX/150aIYH0/3ghszS4RUREJN9sOHgCgFbqnywuZrMZ7mtfky3D+9O5ZgUe+WUNHd+Zw/YjJwGoWb4Uyx7vxdCOtXhr/nY6vD2H2Jyh6yIiInIuFZRd5MCJFLKcFhHBAe4ORaRYqVzGjx//04EZD3Yh0+Gk27h53DZ+KUdPpRZYDOUDfZj/cDfqVCjFwE//YPqWgwV2bRERkZJk86ETALSvEeLeQKTYqhbkz9T7O/PN7W3ZfuQUTV6bzquzNpPpcOLjaWfcjS34+e4O7Dh2iqZjpzNpw353hywiIlLoqKDsIjE5P732stuIeHEyM1RwEnGp3vUqs/m5fjzfuwE/rt1HnVFT+XjxTpzOgmkvExzgw7xh3WhYqQxXf7qI3zeqv56IiIir7cqZm1CnQik3RyLFmTGGW1tGsPX5/gxsWJXnpmzg6cnrcp+/rmkoa5/uQ63ypbj2s0U8/NNqt7ReExERKaxUUHaR2ITsicBedht7Ek7jade3VsTVfL08GNW/MRuf7UvTakE88GM0bd+axfoDxwvk+mX9vZk7rBtNqwZx3eeL+HX9vgK5roiISEmxPzEFD5vBblMuLfmvQilf/nd3B365pwOPdq0DwLGkNNIzHUQGB7Lk0R480qUO4/7YQbu3Zrt1ULSIiEhhokzNRWITkrHbDM6cxxVL+bo1HpHirE7F0swb1o1vbm9LTHwyzcfO5LFf1pCUlpnv1y7j58XsoV1pEVaOL5bvxtIAThEREZeIT07jVFomgd6e7g5FSphrm4RSLcgfy7IY/PVSOr87F8uy8PKw8/Z1zfltSCdiEpJpOnY6/1u7193hioiIuJ0Kyi4SE59MtSA/4pPTAKhYysfNEYkUb2duVdzxwgDubVudtxdsp+7oKfyybl++F3lL+3ox66Gu/Hx3B4wxuRPCRURE5MpF700AoFyAl5sjkZLKGMPj3eoyrFMtjDFYlkVqRhYDG1Vl3TN9aFCpDDd9uYQHflhFakaWu8MVERFxGxWUXSQ2IZmIcgEcOZWGh81Q1s/b3SGJlAhBft58fEsrlj/ei2B/H67/YjH9P16Y71O5A3088fXy4GRqBu3ems2ElTH5ej0REZHiblVOQblyaT83RyIlWe96lRnUIgKAr1bE0OCVaSzYeYSwsgH88UgPnupej4+X7KL1m7PYcfSUm6MVERFxDxWUXSQ2IZnIcgEcOZVKhVI+2GzG3SGJlCitI4JZ/VRv3rq2GX/sOkb9MVN5ddZmMrLyd4CKp91GsL83QX7aTSUiIpIXq/YmEOLvTZ96ld0diggANUMCsRlD1/fmcd/3K0nJyGLs1U2Z9kBnDp5IpfnYGUyMjnV3mCIiIgVOBeU8mhgdS+iISRw5lcbP6/exdv9xKgaqf7KIO3jYbTzatS7bRvSnT73KPDdlA01em84fu47m2zX9vDyYcn9nBjSsCsCfGtYiIiJy2SzLYtXeBAY0qsozPeu7OxwRADrUKM+GZ/vyRLe6fL5sN/XHTGXa5oP0rV+F9c9kD4m+dfwy7pm4ghS1wBARkRJEBeU8mBgdy5DvVrI/MQWAk6mZbDx4AoeGdIm4VbUgf365tyNT7utESoaDzu/O5c5vlhOXlJYv1zMm+46EBTuPUGfUFD74Y0e+XEdERKS4ik1IJj45nZZh5dwdisg5/Lw8eP2aZix/vCdlfL3o//FCbh2/FB9PGwse7s7wXvX5csVuWr4+k62HT7o7XBERkQKhgnIeDP99PSmZ595ObwF/HlMvLZHCoH/Dqmx9vj/P9KjHxOhYao+awufL/sTpzJ8f+rSLDKF/gyoM/Wk17yzYni/XEBERKY5W7cnun/zwT6t5V/+GSiHUMjyYNU/14YU+DflxzV7qjZ7Krxv2M6p/Y2Y92JW45HRavD6Dr1fsdneoIiIi+U4F5TzYl7Mz+XzJGfnbs1VELp2flwevXtWU9c/2pUGl0tz73Uo6vDObTQcTXX4tLw87P93dgeuaVOPRX9bw+tytLr+GiIhIcbRqbwLeHjaGdqpF4ypB7g5H5IK8Pe281K8Ra57uQ2iQP6/N3oLDadGjbiXWP9OXVuHB3PXtCu6YsIwvl/1J+IhJ2IZOJHzEJPVaFhGRYkUF5TwIDbrwBOqwixwXEfepX6kMfzzSg69ubc2Oo0k0HTuDJyetJTk906XX8bTb+P6u9tzULIynJq9jzMzNLl1fRESkOFq1N4Go0HK8eW1zOteq4O5wRP5RoypBrHiiF1Pv74yH3cbx0+nM23GE2Q91YWTfhkxYFcs9361kb2IKFrA3MYUh361UUVlERIoNFZTzYMzAJvh52s855udpZ8zAJu4JSET+kTGGO1tXZ8eIAdzVOpI35m2j3uipPPbLapfuIPG02/j2jrYMbhHO81M38NL0jVjqrS4iInJBmQ4na/cfp1m1IE6mZujfTCkSPOw2KpfJ3kj08ZJd3PntcmLiT/Ni30aUD/Th/D/FKZkOhv++vsDjFBERyQ8qKOfB4BYRfDqoFWX9vAAo5+eFh91Qt2JpN0cmIv+kXIA3nw1qzZJHe2A5Ld5esMPlO0g87DbG39aGO1tFMnL6JkZM3aAPyCIiIhew5fAJUjMd+HjYKfPkT6zed9zdIYlclmd61GfJoz2pVaEUAMcuMgj6Yi0TRUREihoVlPNocIsIXurXCICf7unALc3DqRjo4+aoRORStKteHpvN/O24q3aQ2G02vhjcmnvaVueNedvYdSwpz2uKiIgUN2cG8lUolZ1DB+Vs1hApKmw2Q+uIYABW7om/6OuqllFrRBERKR5UUHaBTIcTgKZVy/LxLa1yb30SkcJv/0V2irhqB4nNZvjk5lZEP9k7d9eKiIiI/GXl3gTK+XvjYcv+aBLkq4KyFF0tw8pxb9vqF3zO4XSyO04bDEREpOhTQdkFzhSUM7KcOJxON0cjIpfjYsM1jTHM3nbYJdew2QwNcybWf71iN//382q1vxAREcmxak88LcPKcSI1A4Ayfp5ujkjkyhlj+HRQa8qe9+c4wMtOWpaTVm/MYtGfR90UnYiIiGuooOwCmY7swtDDP0dTd9RUN0cjIpfjQsM1fTxsVAz0ptcH83n0lzWkZTpcdr2tR06y7chJMrL0wycREfmLMeZmY8w2Y8xpY8xuY0yHnOPdjDHbjTEpxpgFxpgwd8fqSklpmWw5cpKWYeVITMmglI8ndps+okjRN/X+Lvh62jnTXe10hoNrGlejnL8X3cfN56vlu90boIiISB54uDuA4uDMDuVjSemUV/9kkSJlcIsIAIb/vp59iSmEBvkxZmATrm1cjacmr+OdBduZt+MIE+9om7vLOC/GXtWUTIcTLw87SWmZ+Ht5XLCPs4iIlBzGmB7AWOAmYBVQKed4MPArcA8wBRgF/Ai0dk+krrd2/3EsC1qFl+OHNXvVP1mKjTaRIcwb1o2Fu47SPLQcv6zfx6dL/ySsrD9RoUH8Z+IKth09yasDm+iHKCIiUuSooOwCmQ4nNmM4kpRKvYql3R2OiFymwS0icgvLZxt3Ywv61q/MXd+uoMXrM3ntqqY83Kl2ngrAxhi8POykZTroNm4edSuU4stbW+uDhIhIyfYS8LJlWStyHh8EMMYMAbZYlvVTzuORQLwxpo5lWdvdEqmLrdqbPZCvRVg5Plq8SwVlKVbaRIbQJjIEgJ51KzG4RTijZmzmf/9pz/NTN/D63G3sOJrExDvbEuCtVi8iIlJ0qILhAplOJ552w5FTaVQs5evucETEhfrUr8LG5/rRs04lHv1lDb0/nM+hE3kf2Ofjaad/gypMWBXL7ROWk+VQCwwRkZLIGGMHooAQY8yfxpgDxpj3jTG+QH1gw5nXWpZ1Gtidc7xYWLU3gcjgAIIDfEhMzVBBWYq1jjUqMGdYN4L8vXnr2uZUDw5g6uYDtHtrNvuOn3Z3eCIiIpdMBWUXyHRYeNgMiSkZVCyllhcixU35QB9+u68TH93UgiW742j06nQmbdif53Vf6NOQVwY05rvVe7h1/LLc9jkiIlKiVAA8geuBDkAToCnwPBAAnDzv9SeBwPMXMcYMMcasNsasjouLy9eAXenMQD6AxJQMgnxVUJaSIeF0drvEl/s1Zk/CaVq+PpMVsfHuDktEROSSqKDsAlkOJx45t6trh7JI8WSM4f4OtVj7dB/Cyvpz7WeLuGfiCpLTM/O07rO9GvD61U35ce1ebvlqCRlZrhsAKCIiRUJqzu/jLMs6bFlWPPAW0BdIBkqd9/pSQNL5i1iW9allWVGWZUWFhITka8CucuRUKvsSU3ILyne3qc71TUPdHJVIwahcxo+lj/VkeO8GrHiiFxkOJ+3fns23q2LdHZqIiMi/UkHZBTIdztyeqhU1lE+kWKtTsTTLH+/JMz3q8eWK3TR9bQar9uRtN8kT3evx9nXN+WX9fm78cgnpmSoqi4iUFJZlJQIHAOvswzm/bwEanzlojPEHquccL/JW7cnun3ymoPxo17rcEhXuxohECpYx2Z8h61QoRYfqITicFrdNWMaQ71bidFr/craIiIj7qKDsAplOi5xcQDuURUoALw87r17VlAUPdyc9y0Hbt2YzeuYmHM4rb1nxSJc6vH9DFL9tPMB1ny8iTUVlEZGS5CtgmDGmvDEmCHgUmApMAhoYY64zxvgALwAbi89AvnjsNkPTamVxOi0On0zVnTpSIhljmDykEz/c1Q5fTzufLfuTuqOnEJ+c5u7QRERELkgFZRfIdDjJqSeroCxSgnSqWYGNz/bjxqahjJi6kU7vzCU2PvmK13uoU20+ubkl07Yc4o15W10YqYiIFHKjgGhgJ7ANWAeMsSwrDrgOGAMkAq2Am90VpKut2ptAw8pl8PPy4GhSGpWH/8oXy3e7OywRtzDGcFPzcA6OvoZW4eXYeSyJKsMn8cPqPe4OTURE5G9UUHaBTIcTX08PHutah/KB3u4OR0QKUBk/L767qz3f3tGWTYdO0Pi1aXyzKgbLurLbFIe0r8n0BzrzZLd6Lo5UREQKK8uyMi3LetCyrDKWZVW0LOthy7LScp6ba1lWHcuyfC3L6mxZ1h43h+sSTqdF9N7jtMppd+Hv5cGHN7WgU40Kbo5MxL2C/L1Z8URvXhnQmEyHk1u+Xkr/jxZot7KIiBQqKii7QKbDSSkfT968tjleHnZ3hyMibjC4RQQbnu1L4ypB3D5hObd8tZTElPQrWqtP/Sp4e9pJSE7nwR9X5Xnwn4iISGEyMTqWaiMmcSI1g5/X7WNidCylfD15oEMt6lUq7e7wRAqFZ3s1YOWTvSjl48G0LYe44YvF7g5JREQklwrKLpDpyN6JmJqR5eZIRMSdwssFsPD/ujNmQGN+Wb+Pxq9OZ+HOo1e83oo98UxYGcvGgydcF6SIiIgbTYyOZch3Kzl0MhWAhJQMhny3ko8X72T9geMaTCtylhZhwex8YSCNKpdh4a5jvDJrM7HxScTEJ7k7NBERKeFUUHaBTIeTvcdPM+CTP9wdioi4md1m47leDVj2eC98POx0HTeXZ35bd0VDhvo1qELsS1fRNjIEIE9D/0RERAqD4b+vJ+W8onFKpoPnp2yg6Wsz2Jd42k2RiRROFUr5svLJ3gyKCmf4lA10fGcu7d+arR++iIiIW6mg7AKZDidVyvjycKfa7g5FRAqJFmHlWPdMX+5tW4Oxc7bS5s3ZbD9y8rLXCQn0AWD8ihjavTX7ittoiIiIFAb7ElMueDwhJQOAID+vggxHpEjw8bTz7R1tGdW/EQdOpFDGz4uTaZk4nRZbD19+fikiIpJXKii7QKbDScVSvgxsVNXdoYhIIeLv7cEnt7Ri8pCO7D1+mmZjZ/DR4p1XNLCvrL8X6w4k0n3cfBKSVVQWEZGiKTTI74LHS/t4AFDGVwVlkQsxxvB874b8dHcH9iScptUbM3ll9mYavjKNJ35dy+l0tV8UEZGCo4KyC6Q7HJxOz+JEzs4KEZGzXdWoGpue60fHGuV58MdoBn7yB8eSLm9S94CGVZl8b0e2HD5Bt3HziLvM80VERAqDMQOb4Od57hBrP087rSJCCPTxwMOujyci/+T6pqEseqQHGVlOXpu9hZ51KvLm/G00fGUas7cddnd4IiJSQihjc4FjSems2X+ctxdsd3coIlJIVSrty/QHuvDu9c2Zs/0wDV+ZxvQtBy9rjT71q/D7fZ3ZcewUXd+be9lFaREREXcb3CKCTwe1wmayH4cF+fHpoFZUCPShrJ+3e4MTKSKiwsqx6sne1K5Qmtnbj/BQx5p42g29PpjPbeOXEp+sHFFERPKXCsp5tDwmjtj4ZADGztnC8pg4N0ckIoWVzWZ4uHMdVj/Vh4qlfOj30UIe+nEVKRmXfotiz7qVmHZ/Z2ISkun87hwOn0zNx4hFRERc75bm4YBhRO8G7Bl1DYNbRJCYkqH+ySKXoUoZPxY90oOrG1Xlg0W7aBcZwrM96/HDmr3UGTWVb1bFXFGbNRERkUuhgnIeDf56KWf+mU7PcjL466VujUdECr8Glcuw8onePNa1Dh8u3kXUf2ewbv/xSz6/a+2KzHiwC/uOp9D53TkcPHHhAUciIiKF0fGUdJyWRUiAT+4xFZRFLp+/twc/3d2B53rW56sVMSyPTWDh/3WnZkggt09YTu8PFnD8tGZviIiI66mgnEcT72yX+7WPh+2cxyIiF+PjaefNa5szZ2hXTqZm0uqNWbw+dytO56XtJOlYowKzHurC4VOp9P1oAQ6nM58jFhERcY24nOGywQF/tbhITMkgSAP5RC6bzWYYM7AJ39zelmWxcdz57Qq+GNyacTdEkel0UsrH090hiohIMaSCch61iQyhjG/2P9IT72xHm8gQN0ckIkVJ9zqV2PhsPwY0qMJTk9fR/f157E88fUnntqtentkPdePta5tjt+mvcxERKRricvq7hpxfUNYOZZErdmvLCBY+3J1TaZm0e2s2dSqUYt6wbnjYbSQkp9P7g/lsPnTC3WGKiEgxoQqEC5icoSJtIlRMFpHLVy7Am5/v6cAXg1uzak8CjV6Zzv/W7r2kc1tHBNO1dkUAJqyM4ed1e3l11mb1cxcRkUIrLil7h/LZLS/evLYZd7SKdFdIIsVCm8gQVj3Zi6plfOn94QI+XrILgD/jk9h65KR6KouIiMt4uDuA4iAr5xZ1L7vq8yJyZYwx/KdNdTrWKM+t45dy05dLmLb5IONuaEEp33+/VfFESgYP/7ya5PQssCy8POzMG9ZNd02IiEihE3/6TEH5rx3Kt0SFuykakeIlrGwAyx7vxS1fLeHBH6PZduQUb13bjN0jr8Iz5/Pqc7+vp0vNCvSoW8nN0YqISFGlCqgLOM4UlD307RSRvKkREsjiR3vyQp+GfBu9hyavTWfZJew2LuPnRYCXBw6nhcOC1EyHhoSKiEihdKblxZkeyqkZWSzdfUzDw0RcJNDHk9/u68RjXesw7o8d9P94ISkZWQCcSs3k1w376fnBfG6fsIz4nP8fRURELocqoC7g0A5lEXEhT7uNl/o1YvGjPQDo8PYcXpi6gUzHPw/e++nuDvh62rEbsBnD69c0K4hwRURELktccjqlfT3x8rADEJtwmvZvz2H2tsNujkyk+LDbbLx5bXM+G9SKeTuO0ObNWeyOS6KUryfrn+nL870b8P3qPdQdPZVvV8WqHYaIiFwWVUBdpGedirm3EImIuELbyBDWP9OX21pGMGrmZjq8PZs/45Iu+vo2kSHMG9aNhzrWwt/LzhOT17Lv+KUN+BMRESkocUlp5/RPrhbkx8wHu9CpZgU3RiVSPN3TtgZzhnbj6Kk0Wr0xi0V/HsXH086o/o1Z90xfagQHctuEZfT5cAGx8cnuDldERIoIVUBdwOG0aB5aDpvNuDsUESlmSvl68vVtbfjff9qz81gSTV6dzpfLd190F0mbyBDevaEFC/6vO4kpGXR5by4HElMKOGoREZGLi0tOJ9j/r/7JgT6e9KpXmUqlfd0YlUjx1blWBVY+2ZvgAG+6j5vPV8t3A9CgchmWPNaD92+IYllsHA1emcqb87aR9S93xYmIiKignEeWZZHltIhPVs83Eck/NzQLY+Oz/WgVXo67J67g+s8Xk/APf+80Dy3HrIe6EpecRtf35nLohIrKIiJSOMQlp58zkO/PuCR+Xb+P1JweryLiejVCAln+eE861SjPfyau4KnJa3E4ndhtNh7qVJutwwfQvXYlnpi0lrfmb3N3uCIiUsipoJxHWTn9k7+NjnVzJCJS3FUN8mPO0G68fnVTpmw+SKNXpzF3+8X7TbYKD2bmg105fCqVbuPmcfRUagFGKyIicmHxp9MICfyr5cX0LQe57vPFnFZBWSRfBfl5M/3BLjzYoSavz93GtZ8tJjk9E8jOMycP6cikezvyQIdaAOw6dip3mJ+IiMjZVFDOozNDsm5uHubmSESkJLDZDE90r8fKJ3pR2teTHu/P57Ff1pCW6bjg69tGhjD9gS7sSzxN1/fmEZekSd4iIuI+lmX9bYdyYkoGAGV8vdwVlkiJ4Wm38cFNLRl3QxRTNx+k/VtzcmduGGO4unE1An08cTidXPXpHwz4eCHLY+J4ddZmlsfEuTl6EREpLFRQzqMzBeX6lcq4NxARKVGaVivL6qf68FDHWry9YDstX5/J2NlbCB8xCdvQiYSPmMTEnDsnOtQoz9T7OxOTkEy3cfM4flotekRExD2S0rLIyHKeM5QvMSWDQB8PPDTgWqTADO1UmxkPdiE2IZmWr89kRWz8Oc/bbTY+uqkl1zWpRrdx8xgxdQPdxs1TUVlERAAVlPPsTEE5Jj7JzZGISEnj5+XB+ze2YNoDndmTkMwzv69nb2IKFrA3MYUh363MLSp3qVWR34d0omHlMgR4e7g3cBERKbHikrPvlDl/h3KQdieLFLiedSux4ole+Ht70PndOXy/es85z3eqWYE35m4jNdOBw4LUTAeDv17qnmBFRKRQUUE5j870UP5l/X43RyIiJVXf+lUo7ev5t+MpmQ6G/74+93GPupWYeGc7vDzsxCWlcSLnFmMREZGCEpczUDb4/IKyn/fFThGRfFS3YmlWPtGLVuHBDPp6KS9O24gz5zMuwMQ72+Hrac99PKR9TXeEKSIihYwKynl0Zoeyp27RExE3OnjiwgP39iWm/O2Yw+mk1wfzufbzRViWdYGzRERE8sdfO5TPanmRmkGQn3Yoi7hLcIAPc4Z25a7Wkbw8YxO3fL0kdxhfm8gQ5g3rxsi+DalXsRQvzdikthciIqKCcl79VVA2bo5EREqy0CC/Cx6/0Ad0u83GC30aMqJ3A4zR310iIlJwzuxQ/lvLCxWURdzKy8POF4Nb8/rVTflp3T46vzuXQyeyNya0iQzhxb6NWPh/Pahaxo8Bn/zBzqOn3ByxiIi4kwrKeZTpyN7dpx3KIuJOYwY2we+s2xEBbAaOp2Twn2+Xk5qzy+SMqxtXo0utigD8tnE/p9PPfV5ERCQ/xF9oh7IKyiKFgjGGJ7rXY/K9ndh6+CQt35jJmJmbcoc+t/jvDB5oXxObgd4fLuDoqQvfISciIsWfqqB5pJYXIlIYDG4RwaeDWhEW5IcBwoL8+PrWNrzQpyFfrYih7VuzLzg8NCY+ies+X8zATxbm3tooIiKSX+KS0/H1tON/1oBYDeUTKVwGNqrK0sd6kpqRxfNTN54z9HnE1A0M7VSLo0mp9PtoIcnpme4OV0RE3EBV0Dw6U1D2UkFZRNxscIsI9oy6Buf7g9kz6hpuaxXJS/0aMe2Bzuw9fprmY2cyZdOBc86JDA7k61vbsGDXUa7+9A/SMh1uil5EREqCuOT0c9pdWJbFrIe6cl/7Gm6MSkTO17hqEH5eHn87npLp4Mtlu/nxrvasO5DITV8uISvnM7GIiJQcqoLmkXYoi0hh17d+FdY81YfI4AAGfvIHw39fj8P5V+J/a8sIvhzcmrk7jnDtZ4tIV1FZRETySVxyGsFntbswxtChRnlqli/lxqhE5EL+aehz/4ZV+eimFmw9cpIjp9IKODIREXE3VUHzKHeHsoe+lSJSeEUEB7D0sZ7c27YGr8zeQq8PFhCX9Ffyf2fr6nxycytmbD3EDV8sJiNLRWUREXG983coJySn8+2q2NzhXyJSeFxs6HPVnOND2tdk83P9cx+LiEjJoSpoHp0ZyqeWFyJS2Pl42vl0UCu+HNyapTFxNBs7gxWx8bnP39uuBh/c2IIpmw9y81dLc39gJiIi4ipxyWnnFJR3HDvFbROWsenQCfcFJSIXdKGhzwA2Yzh8Mnv3sr+3B1kOJ/d9v5Kvlu8u6BBFRMRNVAXNozMFl1tbRLg5EhGRS3NXm+ose6wnXh42Or4zhw/+2IFlZf9w7MGOtXj3+uZM2rCfwV8vVU88ERFxqfjkdELOannRvFpZdr4wgHbVQ9wYlYhcyIWGPj/RrS7xyem0fmMmWw6fAMBpWcQmJBObkOzWeEVEpOD8vcu+XJbMnD6k9SqVdnMkIiKXrmm1sqx+qje3T1jO0J9Wsyw2nk9vaYW/twcPd65DpsNi5PSN7Dh2ivqVyrg7XBERKQbSMh0kp2eds0PZ29Ou/skihdjgFhEMPm/z1C1R4fT7aAHt3prNpHs70qVWRaY90CV3rpDTaWGzGXeEKyIiBaRAdygbY242xmwzxpw2xuw2xnTIOd7NGLPdGJNijFlgjAkryLjy4swO5T36aayIFDFBft78NqQTYwY05oc1e2n1xkx2HD0FwOPd6rJjxIDcYvKZHcwiIiJXKi45u3d/SOBfO5SXx8TxxtytGggrUoQ0q1aWFU/0okppP3p9sIBvV8XmFpNX702g6djp+nwsIlLMFVhB2RjTAxgL3AUEAh2BGGNMMPArMAIoC6wGfiyouPLqTA/lqZsPujkSEZHLZ7MZnuvVgFkPdeFoUhotXp/BL+v2AVC5TPaAlXcXbGfI9ytxOlVUFhGRKxeXnA5AsP9fO5Tn7DjCk5PXYdduRpEiJaxs9sDn9tVDuG3CMkbP3IRlWfh5ebDveAp9PlzA8dPp7g5TRETySUHuUH4JeNmyrBWWZTktyzpoWdZB4Fpgi2VZP1mWlQaMBBobY+oUYGxX7MwO5f+0qe7mSERErlz3OpVY+3Qf6lcsw/VfLOaJX9fm/v2WcDqdhNMZOLRLWURE8iAuKWeH8lktLxJTMgj08cBDA65Fipwyfl7MfLALt7WMYMTUjdz73Upqlg/kt/s6EpOQzFWf/kGa7j4QESmWCiRzM8bYgSggxBjzpzHmgDHmfWOML1Af2HDmtZZlnQZ25xwv9LJyeihXC/J3cyQiInlTLcifPx7pztCOtXhz/ja6vTeXwydTealfI366uz2edhunUjPV/kJERK7ImR3KZw/lS0zJIMjXy10hiUgeeXnYGX9bG0b0bsAXy3cz4OOFNKlSlm9vb8uS3XHcNmGZ7nITESmGCmorQAXAE7ge6AA0AZoCzwMBwMnzXn+S7LYY5zDGDDHGrDbGrI6Li8vXgC9VemZ2QXnH0fPfgohI0ePlYWfcjS2YeEdb1uw/TrOx01m8+xh2W3Yxue1bs3j817UqKouIyGWLz7n9PSTwrx3Kx0+nE+TnfbFTRKQIMMbwcv/GfDG4NfN2HKHDO7NpGxnCW9c24+d1+3h80lp3hygiIi5WUAXl1Jzfx1mWddiyrHjgLaAvkAycP9q5FJB0/iKWZX1qWVaUZVlRISEh+RrwpUrJzAJgRWy8myMREXGdQS0iWPlEb0r5eNL1vXm8OW8bAd52uteuyNsLtvPMb+tVVBYRkcsSl5SGh81Q5qwdyYmpGQT5aYeySHHwnzbVmfZAF2ITkmn9xiy6167II13q8M6C7bw9f5u7wxMRERcqkIKyZVmJwAHg7OrDma+3AI3PHDTG+APVc44Xemd6Qvl42t0ciYiIazWoXIboJ/twdaOqPDFpLTd+uYSX+jbiwQ41+e/crYyYukFFZRERuWRxyekEB3hjzF8D+BJTVFAWKU561q3E4kd6YmHR7u3Z9K5bieubhvLYr2v539q97g5PRERcpCCnX3wFDDPGlDfGBAGPAlOBSUADY8x1xhgf4AVgo2VZ2wswtiv2V0HZw82RiIi4XilfT366uwNvXNOMyRsP0PKNmdzfoSb3tq3BmFlbeHnGJneHKCIiRURccto5/ZNBBWWR4qhx1SBWPN6b8LIB9P94IT1qV6RD9RD2HT/t7tBERMRFCrKgPAqIBnYC24B1wBjLsuKA64AxQCLQCri5AOPKk7Ss7IKyr3Yoi0gxZYzh8W51mf9wN06lZdL6jVl0rBHCXa0jGTl9E2NmbnZ3iCIiUgSc2aF8tsSUDMqqoCxS7FQN8mPxoz3oUqsC9/2wis41KvB4t7oAGtInIlIMFFhB2bKsTMuyHrQsq4xlWRUty3rYsqy0nOfmWpZVx7IsX8uyOluWtaeg4sqrtJyhfL6eBVmbFxEpeB1rVGDt031pXq0st01Yjq+nncFR4Tw/dQP/nVMkuhSJiIgbZe9Q/qugnJ7pIDXToR3KIsVUaV8vpj3QhbtaRzJq1mbu+nYF83YcpunY6Rw6keLu8EREJA/UpyGP0nN3KOtbKSLFX6XSvsx7uDvP/b6eN+Zto1VYOQY2rMLTv62nbsXSDGhY1d0hiohIIRWXnH5OywtPu40Do6/RnX4ixZin3cYXg1sTUS6AF6ZtZOvhE3jabGRpl7KISJGmKmgepWdl71D2ViIsIiWEp93G69c0o3V4MHdNXM6f8UkM7ViLPvUquzs0EREppLIcThJTMs7ZoWyzGaqU8XNjVCJSEIwxjOjTkLCy/tw9cQW1ywdiTHbrC4dl4WnX3b4iIkWN/ubOozM7lL30j6CIlDDXNQ0l+sk+VCzly4eLd/HfuVs5mJjCd9Gx7g5NREQKmYTT6QDn7FCOjU/m5Rmb2Hs82V1hiUgBur1VJDMf6sr+E6m0/O9M+ny4gHsmrsCytFtZRKSoURU0j87sUFZBWURKotoVSrHyid7c3DyM4VM20P7t2dz3wyqOJaW5OzQRESlE4pLPFJT/2qG849gpXpy2kSOn9G+GSEnRrXZFlj7WE08PGwt3HWXCqlhemLbR3WGJiMhlUhU0j4L8vAj08aB1RLC7QxERcQt/bw++vaMt798QxYETKZT29eTQSQ1aERGRv8QlZxeNg88qKPeuV5mMd28hKrSsu8ISETdoULkMKx7vRd2KpTDA6Jmb+XTJLneHJSIil0EFZRfw9fQg0MfT3WGIiLiNMYaHOtVm8aM9MRjavDmbwV8vZaLaX4iICGfvUPY557in3Ybdpo8kIiVN5TJ+LH60Jz3qVgTg/h9WMWXTATdHJSIil0rZWx4lnE4nPctBfLJu1RMRaR0RzNqn+9A2IpjvVu/htvHL+GaVisoiIiVdXE4rpLNbXkzasJ+Hflyl/qkiJVSgjyfT7u/Cna0isYBrPlvE0t3H3B2WiIhcAhWU8yguOZ2TqZnq/SYikiMk0IfZQ7vyZLe6WMDtE5bx4aKd7g5LRETcKD5nKF85/78Kyov+PMY30bEYY9wVloi4mYfdxpe3tubZnvVwOC26vDeXtfsT3B2WiIj8CxWU86hCoA8R5fypU6GUu0MRESk07DYb/72mGT/c1Q67zfDQ/6IZMXWDu8MSERE3iUtOp6yfFx5nDbJOTMkgyNfLjVGJSGFgjOGVgU15/eqmZDosWr8xmzX7VFQWESnMVFDOI6dl4evpcU5yLCIi2W5qHs6ap3rj52ln9MzN3PLlEhxOp7vDEhGRAhaXnEZI4Ln9k4+fTifIz/siZ4hISfNE93q8f0MUTsui9wcLWL1XRWURkcJKVdA8OpqURnxyOklpme4ORUSkUGpctSx/jhxIOX8vfli7l5b/naW+8yIiJUxccjrB/ucWjxNTMwjy0w5lEfnLQ51qs/HZvgT4eNDxndn8tmG/u0MSEZELUEE5j46fzuBYchrpWQ53hyIiUmhVKu3HzhcGUi3Ij7UHjlNv9FRW7Yl3d1giIlJA4pLSzhnIBzktL1RQFpHz1KtUhkWP9MDTbufqzxbx0WLN4hARKWxUUM6jTEf2rdtedrubIxERKdzK+nuz7um+NK0ahIfN0OGdOXy8eCeWZbk7NBERyWdxyemEBJzb8kIFZRG5mGpB/gxpV4OGlcvw4I/RPDV5LU6nckYRkcJCBeU8ysrpBerloW+liMi/KRfgzZqn+7B5eH+6167IAz9Gc8c3y0nJyHJ3aCIikk8syyL+dPqFdyhrKJ+IXMTr1zRj7dN9eLBDTV6fu41bvl5CWqbuDBYRKQxUBc2jrJyfknrajZsjEREpGowxlPX3ZmDDqnjZbXyzKpbWb8xi17FT7g5NRETywYnUDBxO65yhfOmZDlIzHdqhLCL/yMNu46ZmYfh62vnf2n30eH8eCcnp7g5LRKTEU0E5j7IcFgaw2/StFBG5HAMaVOH/utRm+gOdOXQylaj/zmSyBq+IiBQ7cUnZxZ+zdyifTMvEy8OmgrKI/KtGVYKoHhyAr6edlXviafvWLGLik9wdlohIiaYqaB5lOZ0Yo93JIiKXq3IZP/57dTP61K/CjAc7Uy3Ij2s+W8TTk9eRldOfXkREir645DSAc3oolw/0Ie3tm7m/fU13hSUiRUQZPy+mP9iFsv5elPH14uipNFq/MYuVGvAsIuI2KijnkcNpoW4XIiJ58/yUjRw6mcoNTUP579yt9Hh/PkdPpbo7LBERcYG4nNvTg8/roWyMwWZTIi0i/65akD8zHuhCepaT8oE++Hl50OXdufy2UXe3iYi4gwrKeeSwLCXCIiJ59NHNLfD38mDBrqO8MqAxK/fE0/S1GSzdfczdoYmISB6dKSif3fJi9d4E7vpmOfuOn3ZXWCJSxDSsEsSkezuy5/hpqpTxo0Hl0lzz2SLeW7jd3aGJiJQ4Kijn0f+zd9fRUZxdHMe/z242RhIIENzd3d3dClWo8FaoUnfa0lKhLXWBlhoVqOPu7u7uxZ0QYrvz/pGEppRCEjaZJPv7nLOn7OzuzM1Ok9y9uXOfhA5lFZRFRK5HqbyhzHmsDf5OBx/N3caovo3JEeBHi49n8tGcrViWZXeIIiKSRlcaeXH0fDSzth8hViOORCQVWpUvwIjbG7B493GK5w6hW5XCPPbHKp78cxUej/JFEZGMooLydcoZ5KJb1SJ2hyEikuWViQhl9qNtcBh48Nfl/PK/xnSpUpgn/lzFrd8t5Hx0nN0hiohIGpyIjCEkwI9Al/PSts5VCrP/9RsoExFqY2QikhX1rluSt7vX4I81+ymbL4xHW5TnwzlbuembBVyMjbc7PBERn6CC8nVyeyxCA112hyEiki2Uzx/GrP5tcHssug+fx5AeNXmnew3+WHOAekOmsuXIWbtDFBGRVDoeGf2P7mSAJbuPM3jaRpbsPm5TVCKSlT3bphKPt6xAzSLhfHxjHT7sVZsx6w/Q+tNZHD8fbXd4IiLZngrK1+l8dDxbj6rAISLiLZUK5mT2o22IjvPQ6tNZ3FSzOLP6t+ZUVCx1353Kr6v22h2iiIikwvHImH/MT16y+zjNP57BixPW0frTWSoqi0iqGWP4sFdtetctCUDf+qX4456mrDl4mobvT2PHsXM2Rygikr2poHydYuLd7Dh23u4wRESylSqFcjGzfysiY+IZtnA7LcrlZ81zHalRJJxbv1vE43+sJDbebXeYIiKSAscjY8ibrKDcZ8Qi4twJs04vxrnpM2KRXaGJSDYwdfMhSgwcS5Fcwczu35qz0XE0fH86i/XHKhGRdKOC8nVyOR3cXq+k3WGIiGQ7NYrkZuWzHRjcrQYAhXIFM+exNjzesgIfz91Gy09m8teZKHuDFBGRa7p85MXIvo1xJC5qHeRyMrJvY7tCE5FsoE6x3NxQrShl84XSsFQES55qT+5gf1p9MpM/1uy3OzwRkWxJBeXrFOf24HLqbRQRSQ+l8obidDjYf+oCHYfO5vj5aD7sVZtf727CuoNnqPXOFOZsP2J3mCIi8h8sy/rXyIuGpSKoXDCM0nlDmNW/NQ1LRdgYoYhkdXlDAvnujoaEBwcQHecmV5CLxU+1o3ax3Nz87QL6jFhI8ZfH4HhkJCVeHsPIFXvsDllEJMvzu9qDxpj5KdxPtGVZ7bwQT5ZiWRbxHouV+0/aHYqISLZ2+NxFNh46y19nL1IoVzA31ypO1UK56PX1fNp8Opu3ulXn2TaVMIkdbyIi6U15cspExbqJjnP/o6AMEOu2qFU0t4rJIuI1lmXR86v5HDsfzdzH2zDzkda0+HgGo1buu/Scfaej6DdqGQB96upKYxGRtLpqQRmoCzxwjecY4GPvhJO1xHsSZr/tP3XB5khERLK3+iXysnNgNwJcTgCi49xULJCT5c904N6Ry3h+3FqW7DnB93c0JGeQv83RioiPUJ6cAscjowH+MfIC4OSFGPLkCLjSS0RE0sQYw0NNy9J9+Hxu/mYh4+9vzpFz0f96XlScmwHj16qgLCJyHa5VUF5sWdb319qJMaa3l+LJUuLcHgD8NPJCRCTdJRWTP5i1hRHLdjP70dbkDQnk5/81plGpvDw1ejV13p3Kn/c2pVrhcJujFREfoDw5BY5HxgD8o0PZ47E4dSGWPDn0B0AR8a4uVYsw9Ja6PPDLch78dTn7T195vY3/2i4iIilz1UqoZVmtU7ITX72ML6mgrBnKIiIZp1rhXOw4fp62n83m1IUYjDE82qICcx9rQ1RsPA3em8YPy3bbHaaIZHPKk1MmqUM5b7IO5XPRcXgsi9zB6lAWEe+7v0lZBrSvzNeLd5Ez0HXF5+QLDbzidhERSZk0VUKNMeWNMTcaY2p5O6CsJKmg7K+CsohIhmlToSBj72vG5iNnaffZbM5ExQLQuHQ+Vj/XkQYl83LXj0t48JflxMS5bY5WRHyN8uR/On7+3x3KJy8kbNPICxFJL693qc6d9UpyNjoOf+c/19gwwLHz0XyxYLs9wYmIZAOproQaYx4G/gB6Ar8YY4Z4PaosIs6dMEPZ5dQiUCIiGal9pUKMvrcZ6w+docPQ2Zy7GAdA/rAgpj/ciufaVuKLhTto8uF09p2KtDlaEfEVypP/7UozlGPdHirkD6NQziC7whKRbM4Yw1e969O2QgHcHsgXEoABiocHM/y2enSsXIgHf13BQ78uv9QoJiIiKXfNgvIVuituAmpaltUbqAXcnR6BZQUaeSEiYp/OVQrz+z1NWLX/FB2HzeZ8dEJR2c/p4O3uNRlzXzO2HztPrbenMG3zIZujFZHsSHnytZ24EIO/n4PQwL+XbqlYICdbXu5K24oFbYxMRLI7fz8nf9zTjCqFcnE+Jp7+zcvx8/+acG/jsoy/vznPta3EsAU7aPvpLI6f//fifSIi8t9SUgl9wxjzmTEmNPH+X8DTxpg2wAvAjnSLLpP7e+SF0+ZIRER8U/dqRfnlf01YtvcknYfN4UJM/KXHelQvyqrnOlIkPJiOw+YwaMoGPB7LxmhFJBtSnnwVI1fs4bN524mN91DylbGMXLHH7pBExMeEBbkY1LkqsW4Pn8/fTutPZ7Fk93GcjoQGhJ/uasSyfSepO2Qq6/86bXe4IiJZxjULypZldQIWAPOMMXcADwPhwJNALuDG9AwwM4tPLEz4+2nkhYiIXXrVLMbIuxqxaPcJ7vxh8T8eKxMRypKn2nNH3ZIMnLSeLl/M5WRkjE2Rikh2ozz5v41csYd+o5ZxITbhD337TkfRb9QyRq7Yw6gVe2j+0YxLV5aIiKSnx/9Yhdtj4bbgYpybrl/OxbISPsv3qVuS+Y+3Jc7todH70xm9dr/N0YqIZA0pmtVgWdavQHOgNvAn8L1lWZ0sy3rYsqyD6RlgZpbUoRzopw5lERE73VK7BCPvasSADlX+9Viwvx8j7mjIF7fWY9b2I9R+dwqr9p+0IUoRyY6UJ1/ZgPFribpsYdSoODcDxq/FYRKaMYL9lUOLSPob2bcxQS4nTofB5TCcjY5j5/Hzlx6vWzwPK5/tSNVCuej19QJenbReV7WJiFyD37Wfcmk+XCngSyAA+NIYswQYaFnWxXSML1NLKij3qVvS5khEROTWOiUu/fuXlXu5oXpRAlwJxQpjDPc3KUutorm58ev5NPpgOp/dVJd7G5XGGF1lIiJppzz5yvafjvrP7bfWKfGPn9kiIumpYakIZvVvzdwdR2leNh8hAS7K5gsDYPeJ85TKG0rBnEHMeawND/6ynNembGDDoTN8f2dDQgJcNkcvIpI5pWRRviHAb0AvYCzQLPG2G1hqjOmZngFmZlqUT0Qk81l94BS3jVjEFwv/Pbq0bvE8rH6uEy3L5qffz8u4+6elXIyNv8JeRESuTXnyfysWHpyq7SIi6alhqQheaF+FRqXyUa1wOACj1+6n/KAJvDNjEx6PRaDLybe3N+CDnrUYu/4gjd6fzp4TkTZHLiKSOaWkEvo/Elarvg2oD/zPSvAF0Bbonp4BZmbnEue+rT90xt5ARETkklpFczOrf2seaV7uio/nCQlg0oMtGNixKt8v303D96ezK9lljyIiqaA8+T+82a0Gwa5/jrQIdjl5s1sNbvtuITd/s8CmyEREErQuX4Abqhfl+XFr6TRsDsfOR2OM4YlWFZnyUEsOnI6i7pCpzN1+1O5QRUQynZQUlHcAtxljygK9gW1JD1iWdcyyrLvSK7jM7kJMQlfb2YuxNkciIiLJtSpfAKfDwYHTF3hq9CriE68oSeJ0OHi1czUmPdCC/acvUPvdKUzY4LOjTkUk7ZQn/4c+dUsyvHd9HIlThYqHBzO8d3361C3JzuPnOR+jBflExF45g/z59e4mfHFrPebuOEqNwZOZtyOheNyuYkGWP9OeiJAA2n42i2ELttscrYhI5pKSgvJNQHXgY6A48GC6RpSFBPsnjKDuUqWwzZGIiMiVTNtymA9mb+XOHxbj9nj+9XjHyoVZ/VxHyuQNpduX83hx/Np/FZ9FRK5CefJV9KlbkrBAfx5tUZ69r99wad2RU1Gx5A4OsDk6EZG/19lY9nQHwoJctPpkFoOmbMDt8VA2XxhLn25P+4oFeejXFTzw8zJi493X3qmIiA+45qJ8iatTP5wBsWQ5cR7NUBYRyczubVSGUxdieG7cWvycDr67vQFOxz9/ZpfIE8LCJ9vx2B8rGTx9E8v2nuDn/zUhX2igTVGLSFahPPnaYuLdBPj98+fuyQsx5MmhgrKIZB7Vi4Sz8tkOPPTrCgZOWs/cHUcZeVdjCuYMYtz9zXlpwjrenrGZzUfO8ue9zYhQnigiPu6qlVBjzL0p2Ykx5h7vhJO1/HUmYfXq9X+dtjkSERH5L8+2rcwbXarz4/I93DdqGR6P9a/nBLqcfHlbfb67vQGL95yg1juTWbL7uA3RikhWoTz52izLIjreTYDf37OU490ezl6MI08OfxsjExH5t5AAFz/c2YgRtzdk2d4T3PTNAizLwulwMLh7TUb1bcyK/aeoO2Qq6w6qBiAivu1arbUfmASOq9ycwJCMCDazOXsxYfZb0ixlERHJnAZ0qMLAjlX5buluHvx1+RWLygB9G5RmyVPtCPBz0uyjGXw6dxuWdeXniojPU558DfEeC8viHx3Kp6MS1h5Rh7KIZFZ3NSjFymc78vnNdTHGEB3nJs7t4bY6JVjweFviPR4afTCNP9bstztUERHbXKugHALEA3HXuPnk9R7RifOTAi9bwVpERDKfgZ2q8mK7ygxftJP+v6/4z0JxjSK5WfVsRzpWKsSjf6ykz4hFRGrxKBH5N+XJ1xCTmCsn71A+eSEGgNzB6lAWkcyrYoGcVC8SDsATf66i1ScziXN7qFM8Dyuf7Uj1wuHc9M0CBk5a/5+NCiIi2dm1ZiiXTOF+fPInaHScCsoiIlmFMYY3ulYnzuNhyMwtuJwOPuxVG2PMv56bK9ifsf2a886MTbw0cT3r/jrDn/c2pUKBnDZELiKZlPLka4iJS1hvJHmHclJBWR3KIpJVNCuTjwJhgZfWTioQFsScR9vw4K/LGTRlAxsOneGHOxsSEuCyOVIRkYxz1YKyZVn7MiqQrCip6yJIBWURkSzBGMM73WsS57a4EBOPZcEV6skAOByGF9pXoV6JvNz23ULqDpnKd7c35MaaxTI2aBHJlJQnX9uVOpRPaeSFiGQxt9UpcenfC3cdY+y6g7zVrTrf9GlA9cLhPDl6NY3en864fs0pmTfEvkBFRDLQtUZeyFXExCd0XaigLCKSdRhj+KBnLb64tR4Oh+F0VMxV5yS3Ll+A1c91okrBXNz0zQKeGr2KOLcnAyMWEcmaknLl5B3KuYL86VipEAXCguwKS0QkzWZvP8r7s7fQ5MMZ7D15gcdaVmDqQy05eCaKukOmMmf7EbtDFBHJECooX4ekJDnY/1qTQ0REJDMxxuBwGI6eu0iNwZN5e/qmqz6/SHgw8x5vQ//m5flg9lZafzKTw2cvZlC0IiJZ05U6lJuWycfkh1pSJDzYrrBERNLslY5V+fPepmw/do6a70zmjzX7aVuxIMuf6UC+0ADafjabofO3a1FnEcn2VFC+Dn+PvFBBWUQkK4oICaRXjWK0r1Toms/193PyyU11GNW3MasOnKLm25OZv/NoBkQpIpI1XalDWUQkq+tZoxhrnutE+Xxh3PTNAh7+dTlFcgWz9KkOdKxUiId/W8EDvywnNrFeICKSHSm7uw6xlzqUNfJCRCQrcjgMH/SqTa2iuQFYsvv4NV9zW50SLH+mA7mC/Wn1ySzem7lZXSgiIldwpQ7lJ/5cRa23J9sVkoiIV5TMG8KCJ9rydOuKDF2wgwbvTePIuYuM7deMF9pVZviinbT5dBbHzkfbHaqISLq47oKyMWaSNwLJigwJKzmFBqpDWUQkqxu9dj+NPpjOB7O2XPO5lQvmYvnTHbihelGeGbuGG79ewLmLcRkQpYhkJanNk40xZY0x0caYn5Jt622M2WeMuWCMGWuMye39SNPHlTqUaxYJp33FgnaFJCLiNf5+TobcUIuJD7Tg4Jkoar0zhdFrD/BWtxqM6tuYFftPUffdKaw9eMruUEVEvM4bHcoLvbCPLKlsvlAASucNtTkSERG5Xt2qFuGmmsV4asxqPpm79ZrPDwty8dvdTfigZy3GbThInXensPHQmfQPVESyktTmyZ8DK5LuGGMqA18CdwD5gShgqNeiS2dX6lC+s34pBnevaVdIIiJe17lKYdY+34naxXJfWl/ptjolWPhEWzwWNP5gOr+v3mdzlCIi3nXdBWXLsgZ7I5CsKM7twekwGGPsDkVERK6Tn9PByL6NuaF6UR77YxXDFmy/5muMMTzRqiJzHm3D+Zg46r83lZEr9mRAtCKSFaQmTzbG3AqcAWYl29wHmGBZ1nzLsiKBl4Gexpgs0c1wpQ7li7HxGhMkItlOkfBg5j7Whs5VCgPw3ZJdBLqcrHi2AzWKhHPztwt5ZeI6PB79/BOR7CHFBWVjzJ3GmGqXbatujLnD+2FlDRsPn8GyLKJi4+0ORUREvMDldPDL/xrTtUphHvp1BV8t2pmi1zUtk481z3eiTrE83P79Ytp9OoviL4/B8chISrw8RkVmkWzuevNkY0wYMAh48rKHKgPrku5YlrULiAXKXV/EGeNKHcrlBk3g3lHL7ApJRCTdJDWaXYiJ5+VJ63h3xmYKhAUxu38b7m5YmtenbqTn1/M5H60xaSKS9aWmQ/l14MBl2w4Ab3gvnKwl1p3QdeFQh7KISLbh7+fk93ua0rFSIe7/ZRkjlu5K0esKhAUxq39rOlUqxIxtR9h/OgoL2Hc6in6jlqmoLJK9XW+e/DrwjWVZBy/bHgKcvWzbWeBfHcrGmH7GmJXGmJXHj197gdGMcKUO5VNRMeQKctkVkohIussR4MfKZzvyyU11ADh6PpoPe9bi4xtrM3HjXzR8fxq7T5y3OUoRkeuTmoJyGHDusm1ngVxeiyaLKZ03lFxB/gS6nNd+soiIZBkBLiej72tGm/IFuHvkUn5anrJisJ/TwabDZ/61PSrOzYDxa70bpIhkJmnOk40xNYA2wIdXeDgycd+XH+tflQjLsoZbllXHsqw6ERERKQg5/V3eoRwd5yYq1k2eHAF2hiUiku4KhAWRM8gfj8ei51fzqfPuVJqWzsfUh1py6OxF6r47ldnbjtgdpohImqWmoLwZ6HXZthuALd4LJ2uJc3twOb2xrqGIiGQ2gS4nY/s1p0XZ/Dw9ZnWKL0/cfzoqVdtFJFu4njy5BVAC2G+MOQI8DfQyxqwGNgHVk55ojCkFBADXHvKeCVzeoXzyQgyACsoi4jMcDsOHvWoTFRdPg/ense3oOZY/3Z4CYUG0+3w2n83bprnyIpIl+aXiuc8Bk40xtwC7gDJAa6BTegSWFaw+cIpTUTF2hyEiIukk2N+PCfe34OCZKEIDU3aJdrHwYPZdoXjs5zBs+Os0VQuHeztMEbHf9eTJw4Ffkt1/moQC84NAPmCJMaYpsJqEOcujLcvKEtdKX96hfEoFZRHxQU3L5GPt852468clPPL7SnpWL8qUh1ryyG8r6P/7Stb9dZrPb66Lv5+ufBaRrCPF7bWWZS0EqgIrgBzAcqCKZVmL0im2TC8yJo54rdIqIpKt5Qjwo3z+MCzLYuCk9Yxdd/mY1H96s1sNgi8bhRTg5yDI5aTukKnqRBHJhq4nT7YsK8qyrCNJNxLGXERblnXcsqxNwAPASOAYCbOTH0qvr8PbLnUou5I6lGMByB3sb1tMIiJ2yBsSyIT7W/DeDbUYv+EgzT+ewQvtKjOgfWW+XryL1p/O4tj5aLvDFBFJsVTNa7Asa59lWW9blvVw4n+v/qk6m4tzWzjQgnwiIr4gJt7DtC2HmL718FWf16duSYb3rk/x8GAMUDw8mG/6NGDHq91pXb4A/X9fSfcv53EiUh8aRLITb+XJlmW9alnW7cnuj7Isq5hlWTksy+puWdYp70Wdvi7vUNbICxHxZQ6H4anWFVn4ZDssC5p9NIPw4ABG9W3Eqv2nqPPuFNYcyDI/4kXEx6Vm5AXGmG5AcyAv/F1JtSzrTi/HlSW4PRZG9WQREZ8Q6HIys39rgl0Jvzrj3R78/mOOfp+6JelTt+S/tk98oAWfztvGM2PXUO2tyfx4VyNaly+QrnGLSMZQnvxvMfEejEkY+QNwKiqhQ1kFZRHxZfVL5GXN8x25d+Qynh6zmvH3N2fhk+3oMXwejT+Yzog7GnJzreJ2hykiclUp7lA2xgwEvkx8zU3ASaA9cCZdIssC4j0WDlWURUR8RkiAC4fDsPdkJFXfmsTMa3QrX84Yw6MtKrD86Q7kCnbR9rNZPD9uDbGJXXwikjUpT76ymHg3AX5OTGK+nNShnDuHRl6IiG8LDw7gj3ubMunBFnSpUphaRXMz45FW1Cqam1u+XchLE9bi0XhNEcnEUjPy4m6grWVZTwCxif/tSsKiIT7J7fHgUD1ZRMTnhAa4cDkddPtyHnO3H03166sXCWflsx25r1EZ3pmxmcYfTGfn8SyxxpaIXJny5CuIifcQ4Pf3x41aRXPTv3l5gv1TdZGkiEi2ZIyhU+XCGGPYcewcDd6bzr2NSnNPw9K8OW0TPb+ez/noOLvDFBG5otQUlHNZlrUx8d+xxhiXZVnLSbi0zyepQ1lExDflCQlgZv/WlMwTQucv5rBg57FU7yPY348vb6vPn/c2ZdeJSGq+PZnvl+7Wgn0iWZPy5CuIiXNfmp8M0K5iQT65qY6NEYmIZE75Q4O4qWYxWpcvwFe96/PJjXWYuPEvGr4/jV1qOhCRTCg1BeVdxpjKif/eCDxojLkDOO39sLIGt8fCoRZlERGflC80kFmPtqZoeA46DZvD4t3H07SfnjWKse6FTtQumpu+Py2hz4hFnL0Y6+VoRSSdKU++gss7lM9ejCXO7bExIhGRzCksyMXw3vUpGp4Dy4LVB04xuFsNDp+9SL0hU5m17YjdIYqI/ENqCsovAXkS//088CgwBHjS20FlFW7LwqkOZRERn1UgLIjZ/VtTMCyIDkNns3zviTTtp2h4DmY92po3ulTntzX7qfH2ZJaksUAtIrZQnnwFSTOUk3T5Yi7tPpttY0QiIpnf8cholu07wXPj1tC7TgkKhAXS/vPZfDp3m65kE5FMI0UFZWOMA4gGlgJYlrXcsqwylmUVsCxrdHoGmJkF+DnJGeSyOwwREbFRoVzBzH60DREhgbT7fDar9p9M036cDgcDOlRhweNtAWj60QzemLoBt0fdfCKZmfLk/xYT7yEwWYfyQ03L8VDTsjZGJCKS+eUPC2LFMx3pW78Un83fTnhwAK3KFeDRP1bS7+dlWsxZRDKFFBWULcvyAOMsy9I1uMkUyhlE9cLhdochIiI2KxIezOxHW5MryJ+2n81m36nINO+rYakI1j7fiVtqFeflietp/cksDpy+4MVoRcSblCf/t8s7lG+rU4KbahW3MSIRkawhR4Af397ekB/ubMjag6dZc+AUt9YuzteLd9Hqk1kcPXfR7hBFxMelZuTFfGNMg3SLJAuKc3twOVPzFoqISHZVPHcIcx5tw+MtK1AsPMd17StnkD8/3dWI7+9oyKoDp6g+eDKj1+73UqQikg6UJ19BTLyHAFdCrmxZFuv/Os2ZKNXdRURS6o56pVj5bAcK5Qril1X76Fa1MKv2n6TukKmsPnDK7vBExIelphq6D5hijBlhjHndGDMo6ZZewWV2e09GsuHQGbvDEBGRTKJk3hBe6VgVYwy/r97HE3+sSvMsZGMMd9YvxZrnO1EmIpReXy/g/p+XERUb7+WoRcQLlCdfQfIO5ciYeKoPnsxXi3faHJWISNZSoUBOlj7VngealGX8hr8omy8Mt8eiyQfT+XXVXrvDExEflZqCchAwFrCAIkDRxFsR74eVNTgdDkID/ewOQ0REMpnFu49xy3cL+WjuVlp/Ouu6FtgrExHKwifa8lzbSny1eCe135nCuoOnvRitiHiB8uQriIn3EJA4Q/nkhRgA8uQIsDMkEZEsKcjfj2G31uPXu5tQJFcwy55uT62iubn1u0UMGL8Wj0eL9YlIxrpqNdQY84hlWZ8l3n3Tsiy1FCQTFuiiWiHNUBYRkX+6fcRikhbhvhjnpveIRex+rTvGmDTtz9/Pydvda9K2QkHu+H4x9d6byrvda/Joi/Jp3qeIXB/lydeWUFBO6FD+u6Dsb2dIIiJZ2s21inNTzWIYY/jt7iZ0+WIub03fxIZDZ/jprsaEBbnsDlFEfMS1OpTfTPbv1ekZSFakGcoiInIlI/s2JsjlxOkwBLmcNCqVl5u/Xcj56Ljr2m/r8gVY/2In2lcoyON/rqLzsLkcOx/tpahFJJWUJ19DwsiLhFz51IWE2cm5g9WhLCJyPZKaCaZsPsTmI2d5sV1lJm8+RMP3p7Hz+HmboxMRX3GteQ27jTHvA5sAlzHm7is9ybKsb70eWRZwPDKaFftO2B2GiIhkMg1LRTCrf2vm7jhKi7L5WbznBM+NW8Omw2cYfW8zKhTImeZ95w0JZNz9zRk6fztPjVlNtbcm8cOdjWhXsaAXvwIRSQHlyddw5Q5lFZRFRLzhnkZlaFuhIMVy56B1+QLcMHwe9YZM5be7m9CmgvJCEUlf12qvvQXICdwGuIA7rnC7PT0DzMw8FqBLjUVE5AoalorghfZVaFgqgqdaV2TGI604ERlDvfemMnrt/uvatzGGh5uXZ+WzHckbEkD7z2fz9OjVxMa7vRS9iKSA8uRrSN6hrJEXIiLeVyx3DgBi3R7OxSQs3Nz+89l8MncrlqW5yiKSfq5aULYsa7tlWfdaltUWmGdZVssr3FplUKyZkkZeiIhISrQsV4DVz3WiYv6c9Pp6Ac+PW0O823Nd+6xSKBcrnunAw83K8f7sLTR8fzrbjp7zUsQicjXKk68teYfyqajEkRfqUBYR8brW5QvwfNtKnI6KJSTAxWN/rOLeUcuIiVOzgYikjxRXQy3Lap2egWRVLqc6lEVEJGWKhAcz//G23N+4DO/M2EyHoXM4fp0zkIP8/fjs5rqM69ecfacuUOudyXy7ZJe6UkQykPLkK7u8Qzk00E/NGCIi6cDldDC4e02mPNSSAD8HLqfh2yW7aPXpTI6cu2h3eCKSDSmjS6N4d8Jf+vyVFIuISCoEuJx8cVt9vu3TgIW7jlH73SlsPHTmuvfbrVoR1r3QiQYl8nLPyKXc+t1CziR2BIqI2OHyGcqanywikr46VCrE2uc70bhUPgCW7T1J7XemsGr/SZsjE5HsRtXQNIqKTSgoq8tCRETS4n8NS7PoyXaUzBNCgbBAr+yzcK5gpj/SisHdajB67QGqD57Ewl3HvLJvEZHU8Hgs4tyeSx3Kd9YrxaDO1WyOSkQk+yuUK5iZ/VvxaqeqeDwWx85H0+iD6fyycq/doYlINpLh1VBjTFljTLQx5qdk23obY/YZYy4YY8YaY3JndFypFRmbMPDe308FZRERSZvaxfIw7/G25A0JJM7t4d0Zm4i+zll3ToeD59tVZtGT7XA5HTT/aCavTlp/3fOaRURSIzbxZ05Sh3LbigW5o14pO0MSEfEZToeDgZ2qMevR1uTJEYCfw3DbiEW8OH4tHo/GoonI9bOjGvo5sCLpjjGmMvAlCSth5weigKE2xJUqUUkFZafT5khERCQ7mL7lMM+NW8usbUe8sr96JfKy5vlO3F63BK9N2UCLj2ey71SkV/YtInItSX8cS+pQXnvwFIfPao6niEhGalmuAOtf7MziJ9vRr3EZBk/fRKdhczh3Mc7u0EQki8vQgrIx5lbgDDAr2eY+wATLsuZblhUJvAz0NMaEZmRsqZVUUA7QyAsREfGCzlUKs+HFznSuUhiAo15YQCU00MX3dzZi5F2NWH/oNNUHT+b31fuue78iItcSE59UUE5ovmj1ySzenLbRzpBERHxSvtBAqhfJzRe31qNZ6XxM23KYekOmsPP4ebtDE5EsLMOqocaYMGAQ8ORlD1UG1iXdsSxrFxALlLvCPvoZY1YaY1YeP348PcO9JodJeOu8NfdSRESkSqFcAKw+cIqSA8fxzoxNWNb1X5bYu25J1j7fiQr5w7j524XcM3IpF2Lir3u/IiL/JSY+aeRFQs488q5G3NeojJ0hiYj4NGMMb3arTr/GZThxIZZ6Q6Yyc+thu8MSkSwqI9trXwe+sSzr4GXbQ4Czl207C/yrQ9myrOGWZdWxLKtOREREOoWZMmGBLuDvD/8iIiLeUi5fKF2qFOb5cWu58esFXrkssVTeUBY80Y4B7Svz3dJd1HpnMqsPnPJCtCIi/3Z5h3LHyoWpXiTczpBERHxek9L5+PK2+qx4pgO5gly0/Ww2b03b6JUGBhHxLRlSUDbG1ADaAB9e4eFIIOyybWFApr7+Ii5xoRGXRl6IiIiXhQS4+PXuJrx3Qy3GbThI/femsuXI5X97TT2X08EbXWswu38bLsTG0+C9abw/a4sWZxERr0veoXz2Yizj1h/g2Plom6MSERGAknlDeLp1RYyBARPW0fWLucRc58LQIuJbMqoa2gIoAew3xhwBngZ6GWNWA5uA6klPNMaUAgKA7RkUW5qsPXgagM2Hz9gbiIiIZEvGGJ5qXZGZj7Tm5IUY6g2Zyp9r9ntl3y3K5Wfd853pXLkQT49ZTcehczjihZnNIiJJkncobzlyjh7D57Ny/0mboxIRkSQPNSvPkifbkyvIxaRNhyg3aDyHzkTZHZaIZBEZVVAeDpQGaiTevgAmAe2BkUBXY0xTY0wOEuYsj7YsK1N3KIcE+AGQPyzI5khERCQ7a1EuP6uf60Tlgjm58ZsFPDt2NfGJV8lcjzwhAYy+rxlf3FqPBbuOUe2tSUze9JcXIhYR+WeH8qmoGADy5AiwMyQREblM/ZJ52TuoBw1K5GX/6ShKvzqOGVs0V1lEri1DCsqWZUVZlnUk6UbCmItoy7KOW5a1CXiAhMLyMRJmJz+UEXFdj3yhCYvxlcwTYnMkIiKS3RUJD2beY215oElZhszcwk3fLPDKfo0x3N+kLCuf7UjBnEF0HjaXx/9YSbQueRSR65S8Q/nkhYSCcu5gfztDEhGRK8gZ5M/ip9rxQrtKRMd7aPf5bF6esNbusEQkk/Oz46CWZb162f1RwCg7Ykmri7HxADgdxuZIRETEFwS4nAy7tR71S+S5tDCst1QqmJNlT3fguXFr+HjuNubuOMbP/2tMxQI5vXocEfEdyTuUT16IBdShLCKSWRljeKtbTdqUL0iXL+byxrRNLN5zgumPtMLp0LpRIvJv+smQRgt3Hwdg36kLNkciIiK+pG+D0vSsUQyALxfu4KtFO72y30CXk49vrMPEB1pw6GwUtd+ZwvCFO7Tqt4ikyaUOZVdCh7LDGHIFqUNZRCQza1W+AAde70HZiFBmbz9K9y/ncfZirN1hiUgmpIJyGkXHJXRdBLr0FoqISMazLItJG/9i3PoDeDzeK/p2rlKYdS90pknpCO7/ZTk3fr2AU4mXq4uIpNQ/ZihfiCE82B+HruwTEcn08oQEsn1gN4beUpdpWw5TftAERizZZXdYIpLJqBqaRtGJXRdBLlumhoiIiI8zxjCmXzN+ubsJDofhwOkL7PfSVTMFcwYx9aFWDOlRkwkb/6L64MnM23HUK/sWEd/wzxnKsZqfLCKSxTzYtBxTH2rJiQsx9PtlOdO1WJ+IJKOCchrFXCooO22OREREfJXT4SAkIGGe8j0jl1LrnSnM3OqdZN/hMDzdphJLnmpHkMtJy09m8vLEdcS5PV7Zv4hkb/+coRyj+ckiIllQ6woFWf98J8pGhNJx6BwGjF/L/lORdoclIpmACsppFB2ngrKIiGQen91UlwJhgbT/fA5vT9/ktdnHtYvlYfXzHelbvxRvTN1Isw9nsOeEPkiIyNXFxP3doXwqKpY8OdShLCKSFVUqlItlz7SnR7UivDV9E+UGTWDM2v12hyUiNlNBOY2Sui5UUBYRkcygXP4wlj7dnptqFuOF8Wvp9fUCzl2M88q+QwJcfHt7Q375X2O2HD1LjbcnM2rFHq/sW0Syp+QdykNvqcurnarZHJGIiKRVSICL3+9pSv/m5YiJ99Dz6wU88PMyYhOv3BYR36OCcholjbzI4a8ZyiIikjmEBLj4+X+N+aBnLcZvOEi996ay5chZr+3/ltolWPt8J6oUykmf7xdz1w+LOR/tnaK1iGQvyWco1y+RlzrF89gckYiIXA+Hw/DJTXUZdVdj/ByGLxftpObbU3TlmoiPUkE5jWITuy6CVVAWEZFMxBjDE60qMqt/a05HxVJvyFT+WOO9yxJL5Alh3mNtGdixKj+t2Eutd6awYt9Jr+1fRLKHpA5lA/y8ci+7jp+3NyAREfGK2+qWYOWzHYkICWDzkbNUeXOiV3NNEckaVFBOoxgVlEVEJBNrXjY/q5/rSJWCubjpmwXM2X7Ea/v2czp4tXM15j7Whph4N43en8a7Mzbh8XhnbrOIZH0x8W5cTgenL8bSe8QipntpwVAREbFf9SLhbBrQhXrF8xAV5+ambxbw0C/LL601JSLZnwrKaVQsPBhImAsnIiKSGRXOFcy8x9sw/Lb6tCibH8Bri/UBNC2Tj3UvdKJH9aI8N24t7T6fzaEzUV7bv4hkXTHxHgL8HOTNEcCWl7pwU81idockIiJeFBEayMIn29GvcRkAhi3cwUitsSHiM1QNTaOy+cIAcDn1FoqISObl7+fkvsZlMMaw92Qktd6ZwuoDp7y2//DgAH67uwlf967Pkj3HqTZ4MhM2HPTa/kUka4qJdxPg58TP6aBCgZzkDQm0OyQREfEyl9PBl7fVZ9gtdXEaGDJzM9uPnmP/qQt2hyYi6UzV0DSKio0HVFAWEZGs43x0HAYIC3R5db/GGO5pVIZVz3akaHgw3b6cxyO/reBi4u9KEfE9SR3KW46c5cPZWzh1IcbukEREJJ080LQcsx5tw8moWOq8O5UKr0/g/Vlb7A5LRNKRqqFpNG59QveVCsoiIpJVVC0czqrnOlImIhTLsvhy4Q6vzrqrUCAnS59qz5OtKvD5/O3UGzKVjYfOeG3/IpJ1JHUoL9lzgidHr+Z8TJzdIYmISDpqXjY/K57pQIk8wUTHuTkTFYtlWV4dtyYimYeqoWlUPn/SyAtjcyQiIiIpZ0zC763Fu4/zwC/LafLBdPadivTa/gNcTt7vWZspD7XkWGQMdYdMZej87fowIeJjkjqUTyZ2JucODrA5IhERSW8l8oSw+Kn29KxRlDembaTvj0vo+dV8vl2yS7mgSDajgnIaFc+dA1CHsoiIZE2NS+djXL/m7Dh+ntrvTGXGlsNe3X+HSoVY/0InWpbNz8O/reCGr+ZzIjLaq8cQkcwroaDs5OSFGFxOByEBfnaHJCIiGSAkwMVvdzfltc7V+GH5HmZvP8I9I5dyxw+LOR+tq1VEsgtVQ9Po1IUYHObvTi8REZGsplu1Iqx8tgMFwwLpMHQOg6dt9Gr3SP6wICY+0IIPe9VmyuZDVB88mdnbjnht/yKSeSWMvHBw6kIseXL4K2cWEfEhDofhlY5VGX1fM+LdFqEBfvy8ci913p3C2oPeWxxaROyjgnIaTd1yGF2xISIiWV3ZfGEsfboDN9cqxosT1tHzq/mcu+i97hGHw/B4ywosfao9oYEu2nw2ixfGrSHO7fHaMUQk80kaebH92Dk8Hoslu4/bHZKIiGSwG6oXZenT7ckTEoDTYTh+PoZ6704l7KlfMI+MpOALfzByxR67wxSRNFBBOY3iPR7UaCEiItlBjgA/RvVtzIe9ajNh41/UHTKFzYfPevUYNYvmZtWzHbm3YRnenrGZxh9MZ9fx8149hohkHjHxbi7GuVmw6xjHImNo/eksFZVFRHxQ1cLhrHimA41L5eP0xVjiPBbnYxIWhT5yPoa7f1qiorJIFqSCchrFuy1duiciItmGMQmdxLMfbc3Zi3E89Otyry+ekiPAj+G96/P7PU3Zcew8Nd6ezI/Ld3v1GCKSOcTEe9h0+CyexB8jF+Pc9BmxyN6gRETEFnlDApn+SKsrztOPdVsMGL8244MSkeuignIaxXs8OFRPFhGRbKZZmfyseq4jP9zZCGMMF2LiiffyeIobaxZj/YudqFU0N3f+sITbv1/k1TEbImK/mHg39YrnwQAGCHI5Gdm3sd1hiYiITVxOBxdi4q/42P7TUYxeu5/5O49mcFQiklYqKKdRvMfCoQ5lERHJhgrnCqZY7hxYlkWf7xfRadgcPB7vdisXDc/B7EdbM6hzNX5ZtY8ab09m6Z4TXj2GiNgnJt5DoZxB5Ar2p27xPMzq35qGpSLsDktERGxULDz4itsLhAXyxtSNvDZ5QwZHJCJppYJyGrlVUBYRkWzOGEPP6kXpXrUIjnS4LMfpcPByx6rMf7wtFhZNPpzOW9M24vZowT6RrC4m3k2An5O1z3di3P3NVUwWERHe7FaDYJfzX9tPRMbQs0ZRvupdH4CDp6PoPGyOZu+LZGIqKKeR22Ph1MwLERHJ5u6sX4qHm5cHYPz6gwxfuMPrs5UblYpg7fOduKlmMQZMWEebT2dz8HSUV48hIhkrJt5DoMtJsdw5KBAWZHc4IiKSCfSpW5LhvetTPDwYAxQPD+aTG+vQuUphXp64nhu+ms+yvSfYevQsy/edpNEH0+k0dA4r9p20O3QRuYwKymnkttShLCIivmXUyr3c/8ty7h21jOg4t1f3nTPIn1F9G/Pd7Q1Yse8k1QdPYuy6A149hohknJh4N04Db03byOoDp+wOR0REMok+dUuy9/Ub8HzWh72v30D/FuUZ0685Y+5rxskLMTR8fxpj1x9k3fOdeLt7DZbtPUG9IVPp+sVc/T4RyURUUE4jj8fCqYKyiIj4kJF9G/Fyhyp8u2QXTT6Yzr5TkV7dvzGGvg1Ks+b5jpTME8INX83ngZ+XERV75QVcRCTzion34LFgwIR1rFRnmYiIXEOP6kXZPKAr/ZuXZ+iC7dQdMpWyEaHsea07b3atzqLdx6n9zhR6DJ/H2oMqLIvYTQXlNCqVN4S8If52hyEiIpJhnA4Hg7pUZ/z9zdl54jy135nKjC2HvX6csvnCWPxUO55pU5EvF+2k7rtTWf/Xaa8fR0TSh2VZxMS7yRsSQPSHt9K3QSm7QxIRkSwgLMjFxzfWYdnTHYgICaTX1wu444cl3FGvJHtf68GgztWYt+MYNd+ewkdzttodrohPU0E5jQqEBZE3JNDuMERERDJc16pFWPFMBwqGBdJh6BwGT9vo9bnK/n5O3u1RixmPtOJUVAz1hkzlk7lbvX4cEfG+eI+FZUGAn5MAlxN/v38vwCQiIvJf6hbPw8pnOzCkR01mbjtMxdcn8u3SXbzYvjJ7XuvOwI5VaVehIAC7jp9n0+Ez9gYs4oNUUE6jsxdj7Q5BRETENmXzhbH06Q7cUqsYL05YR8+v5nPuYpzXj9OmQkHWv9CZthUK8tgfq+j6xVyOn4/2+nFExHti4hNmrJ+9GMujv69k94nzNkckIiJZjZ/TwdNtKrFpQBealcnHE3+uov6Qaew5GcmrnatRqWBOAF6dvJ7GH0zXiDSRDKaCchqtOnCKv85ctDsMERER2+QI8GNk38Z81Ks207ceZuvRs+lynIjQQMbf35xPb6rDzG1HqDZ4UrqM2hAR74iJ8wBwLjqOT+dt4+QFNWKIiEjalMgTwqQHW/DL/xpz8EwUdd6dylOjVxEZk9DI8FGvOvx+d1OC/f2wLIuXJqxl+9FzNkctkv2poJxGJfOEUCRXkN1hiIiI2MoYw2MtK7DntR7UK5EXIF3mHRtjeKR5eZY/04HcwQG0+3w2z4xZTWxiJ6SIZB5JHcpuT8KImpAAPzvDERGRLM4Ywy21S7Dl5S7c16g0H8zeSuU3JjJp41/kCQmgbcWE8Rdbj57jwzlbqfjGRO76YTE7j+sKGZH0ooJyGoUGusiTI8DuMERERDKFfKEJ6wpM33KY6oMnM2bdgXQ5TrXC4ax4tgMPNCnLe7O20Oj96epCEclkolVQFhGRdBAeHMAXt9Vn4RNtCQlw0eWLudz8zQIOn024erxigZzsea0HT7SswO9r9lPh9Qnc/dMSjV4SSQcqKKeB2+PhdFQscW6P3aGIiIhkKi3K5uO9G2rRuXIhgHRZRC/Y349ht9ZjzH3N2HMyklrvTOG7Jbu0YJ9IJhETn5AjxycWlEMDXHaGIyIi2Uzj0vlY83xH3uhSnfEbDlLh9QkMW7Adj8ciX2gg7/Wsxe7XutO/eXl+XrWP8oMmcN+opew9GWl36CLZhgrKaRAZE8++Uxc4ck6LAomIiCTn7+fkqdYV8fdzcupCDM0/msHSPSfS5Vg9qhdl3QudqVs8D3ePXMpt3y3iTJRmtYrYLWnkRbwnobCcQx3KIiLiZf5+TgZ0qMKGFztTp1huHvp1BU0+nM7GQ2cAKBAWxIe9arNrYDcebFqOH5bvodygCbw8cZ29gYtkEyoop0FsYteFy2lsjkRERCTzOnY+moNnLtLsoxl8sWB7unQQFwkPZmb/VrzVtTp/rN1Pjbcns2jXMa8fR0RSLqlDOdbtIcDPgcupjxwiIpI+yuYLY2b/1nx/R0O2HztPzbcn8+L4tVyMjQegUK5gPrmpDrsGdue+RqUplDNhLaw4t4e/zkTZGbpIlqbsLg1i3UkFZb19IiIi/6VCgZysfLYDrcvn58FfV3D3T0svJffe5HQ4eKF9FRY92Q6nw9Dso5kMmrKBeI2mErFFUodynNtDiMZdiIhIOjPGcGf9Umx9uQt96pZk8PRNVH1rEjO3Hr70nCLhwXx+Sz0ebFoOgO+X7ab0q+PYfPisXWGLZGmqiKZBUoeyv5/ePhERkavJnSOAiQ+04OUOVRixbDdNPpyRbvPr6pfIy5rnOtG7TnEGTlpPy09m8smcrZR4eQyOR0ZS4uUxjFyxJ12OLSJ/i4lL7FCO92hBPhERyTB5QwIZcUdDZj/aGocxtP1sNnd8v4jj5/89rrRN+QIMaF+FigXCAJi08S+OnLuY0SGLZFmqiKaBOpRFRERSzulwMKhLdcbf35xdJ85T+50pTN9y+NovTIOwIBc/3tWYH+9sxIq9J3jsz1XsOx2FBew7HUW/UctUVBZJZ0kdyjHxHkJVUBYRkQzWslwB1r/YmZc7VOHX1fup8PqEfy3gXCJPCC93rIoxhqjYePp8v4hSA8fx9OjVHLtCAVpE/kkV0TSITUySVVAWERFJua5Vi7Dy2Y4UyhlEh6GzeXPqxnSZqwxwe72S5AkJ/Nf2qDg3A8avTZdjikiCpBnKH/aqxYpnO9ocjYiI+KJAl5NBXaqz9vlOVCqYk7tHLqXlxzPZdvTcv54b7O/Himc6cGPNYnw4ZyslB47lubFrOBGpwrLIf1FFNA2SOpQDVFAWERFJlTIRoSx9ugO31irO8chojEm/BW4Pn73yZYv7T2sBFpH0lNShHOjyI9DltDkaERHxZZUK5mTeY20Zflt91v11hmqDJ/Ha5PXExLn/8byy+cL44c5GbH6pCzdUL8qQWZspOXAcA8av5dSFGJuiF8m8VBFNg79nKCtBFhERSa0cAX6M7NuY93vWAmD1gVNsOnzG68cpFh58xe0Oh+HH5bvxeNKnO1rE1yV1KA9bsJ1vl+yyORoREfF1DofhvsZl2PJyF3pWL8qrkzdQ4+3JzN959F/PLZ8/jJ/uasymAV3oUqUwg2dsosTAsbw8cZ1yR5FkVFBOg+jErgstyiciIpI2xhicDgeWZfHgL8u55duFXk/S3+xWg+DLuiMD/BwUzRXMnT8sofa7U5iRTrOcRXxZUofygl3HWLb3hM3RiIiIJCgQFsTP/2vClIdaEhPvoflHM7l35NIrdiBXLJCTn//XhA0vdqZDxUKsPXgahyPhyrqkMagivkwV0TQoGxEKQKGcQTZHIiIikrUZYxhzXzN+7tsYh8MQ5/YQnzha6nr1qVuS4b3rUzw8GAMUDw/mmz4N2PVqd0b1bcyZi7G0+3w2HT6fzbqDp71yTBH5u0N5xiOt+fK2+jZHIyIi8k8dKhVi44DOPNumEiOW7abC6xMYuWLPFdf2qFwwF7/d05TR9zUDYPeJ8xR5aQzTNh/K6LBFMhUtu5wGuXMEABAe7G9zJCIiIllfoVzBFMqVMJ7iyT9XseHQGX69uwn5w67/D7d96pakT92S/9p+W50S9KxelKELtvP61I3UfGcyd9YrxetdqlE0PMd1H1fElyV1KAdoPJyIiGRSwf5+vNOjJr3rlKDfz8u4/fvF/LBsD0NvqUvpxCbC5FyJa2h5LGhWJh9VC+UCYM+JSPKGBBAa6MrI8EVspw7lNPjrTMJiPpqfIyIi4l31S+Rl+b6T1H53Ckv3pO+l8gEuJ0+0qsiuV7vxdOuK/LJqL+UGTeD5cWs4ExWbrscWyc6SOpRv+XYBf67Zb3M0IiIi/616kXAWP9WOT2+qw5K9x6ny1iTenr6JuP+4Yq5MRCh/3NvsUjNE35+WUHLgON6ZsYnImLiMDF3EVioop8HcHQmD2y/ExNsciYiISPZye72SLHmqPQF+Tpp9NINhC7Zf8fJDbwoPDuDdHrXY9kpXbqpZjHdnbqbMa+P5eM5WzcgTSYOYeDcGmLTpEPtOXbA7HBERkatyOhw80rw8W17qSsdKhXhh/Fpqv5Oy5oYhPWpSr3genh+3llIDx/HezM1ExapWJNmfCspp0KBEXgDyhQbYHImIiEj2U71IOCuf7UDbCgV46NcV/O+npVzMgMS8eO4QfrizEaue7UjNIuE8/ucqKr4xkV9X7U33orZIdhIT7yEgcfFqXQIsIiJZReFcwYy+rxlj+zXjdFQsjT6YxsO/Lufsxf++cq1eibxMfqgli59sR80iuXlm7BpKDRzHh7O3ZEj+KmIXFZTTIGdQwuzkHAFKkEVERNJDeHAAE+5vwcCOVfl+2W4afzCdPSciM+TYNYvmZvojrZj6UEtCAvy49btF1H9vGvMSr1ASkauLiffgcibMTw4J0JItIiKStXSvVpTNL3Xh0ebl+WLhTiq+PpE/1uy/aoNBw1IRTHukFQufaEuVQrl4cvRqSr86nk/mbiU6Tle8SfajgnIabD16FgD1KomIiKQfh8PwaudqTHygBXtOXqDOu1NYvjd95yonMcbQvlIhVj/XkRG3N+Tw2Yu0+Hgm3b6Yy+bDZzMkBpGsKibejctpABWURUQkawoNdPHRjXVY9nR78ocFctM3C+j25Tz2X2OUU+PS+ZjZvzVzH2tD2XyhvDp5A7HxV57HLJKVqaCcBnO2J3YoqaIsIiKS7jpXKczKZzvQrEw+yuULy9BjOx0O7mpQiu2vdOXt7jWYt/MYVd+aRL9Ryzh89mKGxiKSVcTEe/BzqKAsIiJZX53ieVjxTAfeu6EWs7cfodIbE/lw9hbi/2PRviTNy+Zn7mNtWPdCJ8KCXHg8Fp2GzuEPLVYr2YQKymkQnbhAT5C/0+ZIREREfEPpiFDG9GtOrmB/YuLcvDBuzVXn2XlbkL8fz7WtzK5Xu9G/eTlGLNtNmdfGMXDSes5Ha0VvkeRi4t04HQkfM0I0Ik5ERLI4P6eDp1pXZNOALjQvm48nR6+m/nvTWLX/5FVfZ4yhaHgOAI5HRnPmYuylQnR0nJu4axSlRTIzFZTTICbxcoVAPxWURUREMtqi3cd5f/ZWFu46nuHHzhsSyEc31mHLS13oWqUIg6ZsoMxr4xm2YLs+FIgkion34Ez8lBGqDmUREckmSuQJYeIDLfjt7iYcOhtFvSHTeOLPVUTGXLu5IH9YEIuebMcttYsD8MHsLZQfNIHvluy6ZrezSGakgnIaxCQOVE9avVpEREQyTqvyBdg5sBudqxQGYNfx8xkeQ+mIUH65uwnLnm5PhfxhPPTrCqq8OZEx6w5cdcEWEV8QE+/GYZJGXqhDWUREsg9jDDfVKs6Wl7rSr3EZPpqzlUpvTGTChoMpeq1J/P1Yt1gecgf7c/fIpVR4fQI/LNutwrJkKaqIpkFSh7K/OpRFRERsUSx3wuWDq/afpMLrE3jyz1W2dAjXK5GXuY+1Yfz9zXE6DD2/mk/TD2ewZHfGd0+LZBYx8R5cTgf5QgM1Q1lERLKlXMH+DLu1HouebEdYoItuX87jxq/nc+hMVIpe37ZiQVY824Hx9zcnLNDFXT8uodIbExm5Yg9ujwrLkvmpoJwGSQXlpNWrRURExB5VC+Xiwabl+HDOVtp8Oouj5zJ+oTxjDF2rFmH9C50Zflt9dp04T6MPpnPj1/PZcexchscjYreYeDfFcufg6OBe5Ar2tzscERGRdNOoVASrn+vIm12rM2nTISq+MZGh87fj8Vz7irWkHHLVcx0Zc18zgvyd3P79Yqq8OYlfVu5N0T5E7KKCchrEuhNGXricevtERETs5O/n5JOb6vDjnY1Yse8ktd6ZYlt3sJ/TwX2Ny7BzYHde61yNqZsPU+mNiTzy2wqOnY+2JSYRO8TEezQaTkREfIa/n5MX21dhw4udqVc8Dw//toLGH0xnw1+nU/R6Yww9qhdlzXOd+OOepjgdhttGLGKRrniTTEyZXhr83aGst09ERCQzuL1eSZY81Z5Al5PmH89k6Pztts0yzhHgxysdq7Lr1W7c17gMXyzcQZnXxvHm1I1ExcbbEpNIRoqJd3PwTBR3/bDY7lBEREQyTJmIUKY/0oof72zEzhPnqfXOFJ4ftybF+Z/DYehVsxjrX+jM9Idb0aR0BAAfzdnK2HUH0jN0kVRTRTQNYt0qKIuIiGQ21YuEs/LZDrStUICHf1tB3x+XcNHGAm7+sCCG3lKPTQO60LpcAV6auI6yr43nm8U7NRtPsrWYeA9YcDwyxu5QREREMpQxhtvrlWTrS125o15J3pmxmapvTWL6lsMp3ofDYWhbsSDGGNweD98v28249X8v+qcFoCUzUEU0DXpUKwKAy6EZyiIiIplJeHAAE+5vwaudqvLjij10/mKu7Ul3+fxhjOnXnAVPtKVYeA7uHbWM6oMnM3nTX7bHJpIeYuLd1Cyam8kPtbQ7FBEREVvkCQng29sbMufRNvg5DO0/n02fEYtSPQbN6XCw8tkOfHRjbQBW7jtJ3XenMnHDQeWRYisVlNMgIiQQUIeyiIhIZuRwGAZ2qsbEB1rwTOuKLN1zgrembrRttnKSJqXzsfipdvxxT1Ni4j10HjaX1p/OYuW+k7bGJeJtMXGaoSwiIgLQolx+1r3QmYEdq/LH2v1UeH0C3yzemapisNPhIGdQwiK3Zy7GcvpiLF2/nEf996YxRQ0KYhNlemmw9mDCYHUVlEVERDKvTpULkyvIn9afzuKlieto8uF05u84amtMxiTMxtv8Uhc+u6kOGw+doe6QqfT+biF7TkTaGpuIt8TEu5m34xiP/r7S7lBERERsF+hy8mrnaqx7vhNVC+Xi3lHLaPHxTLYeOZvqfbWpUJCtL3fl6971OR4ZTadhc2n4/jSmbzmswrJkKFVE02DSxr8AFZRFREQyuz4jFnExzo0FeCzo++MSIOF3eWRMnG1xuZwOHm5enp0DuzOgfWXGrj9IhTcm8NToVZy6oLmzkrXFxHs4FRXLwTNRdociIiKSaVQokJM5j7bh69712XDoDNUGT2bgpPVEx7lTtR+X08E9jcqw7eWufHlrPQ6dvUj7z2fT5MPpzNp2RIVlyRCqiKbBHfVKACooi4iIZHYj+zYmyOXE6TAEuZyM7NuYg6ej6PblPIq8NIZnxqxm3yn7OoPDgly80bUGOwZ24466JflozjZKvzqeITM3p/rDhUhmERPvJt7tISTAz+5QREREMhWHw3BPozJseakLN9UsxqApG6g+eBJzt6f+Kjp/Pyf9mpRlxyvdGHpLXfadukCbT2cxdP72dIhc5J9UEU2DYH8XAC6nFuUTERHJzBqWimBW/9a83rkas/q3pmGpCIqEB7PoyXZ0qFiID+dspdTA8dz0zQIW7TpmW0dH4VzBfN2nAete6ESjUnl5duwayg8az0/L9+DxqMtEsg6PxyLeYxHnUUFZRETkv+QPC2Jk38ZMfaglcW6Llp/M5O6flnAyMvVXqgW4nDzYtBw7B3bn05vqcHOt4gAs3XOCBTuPeTt0EUAF5TRZlLiojzqURUREMr+GpSJ4oX0VGpaKuLStQcm8/HJ3E/a81p1n2lRk1rYjNPlwBvWGTGXkij3ExtvTHVylUC4mPdiSWf1bkzckkDt+WEztd6cwc+thW+IRSa2YxO+d2HgVlEVERK6lfaVCbBzQmefbVuLH5Xuo8MYEflq+J01NDoEuJ480L09EaCAAb07byB0/LCbO7fF22CIqKKfFvJ0JlyL4OfT2iYiIZGVFw3PwdveaHHj9BobeUpfzMfHc/v1iKr4x0dbku1X5Aqx4pgOj+jbmzMVY2n42mw6fz2b9X6dti0kkJWLiE75v4j0WoQEum6MRERHJ/IL9/RjcvSarn+tImbyh3PHDYtp/Pptdx89f135/vbsJE+5vjsvpIDrOze3fL2LpnhNeilp8nSqiaRCfeOmpRl6IiIhkDzkC/HiwaTk2D+jC5Adb0L95+UtXIr09fRNb0rAK9/VyOAy31SnB1pe68v4NtVi+7yQ13p7M/35cwoHTFzI8HkkfxpgAY8w3xph9xpjzxpi1xpiOyR5vbYzZaoyJMsbMMcYUtzPea4lJ1t2vDmUREZGUq1o4nIVPtuXzm+uybO9Jqrw1icHTNqb5yrlgfz+qFg4HYPORs0zbcpiG70+j09A5rNh30puhiw9SQTkN4hM7ljTyQkREJHtxOAwdKxfm8ZYVADhw+gKvTdnAtC0JIyfi3Z4Mn2kc4HLyZOuK7Hq1G0+3rsjPq/ZSbtAEXhi3hrMXYzM0FkkXfsABoDmQE3gJ+M0YU8IYkxcYDbwM5AZWAr/aFWhKJHUoA4SoQ1lERCRVnA4HDzUrx5aXutC5ciFenLCO2u9MYXHi6NW0qlU0N3te687gbjVYtvcE9YZMpesXcxmxdBeDp21kyXXuX3yPKqJp4PZYGMAYdSiLiIhkZ0XDc3Dg9R7c26g0AD8s30OlNycybMF2LsTEZ2gs4cEBvNujFtte6cpNNYvx9ozNlH51PJ/M3WrbzGe5fpZlXbAs61XLsvZaluWxLGsisAeoDfQENlmW9btlWdHAq0B1Y0wFG0O+KnUoi4iIXL9CuYL5495mjL+/OWej42jy4XQe/GU5Z6LS3kwQEuDi+XaV2fNaD97oUp15O47yv5+W8uKEdbT8ZKaKypIqKiingdtj4XComCwiIuIL8oYEXuq0LBgWSGiAHw/9uoIiL43hubFrMnz8RPHcIfxwZyNWP9eRGkXCeeyPVVR8YyK/rd6XpgVcJHMxxuQHygGbgMrAuqTHLMu6AOxK3H756/oZY1YaY1YeP27fB8KkDuWyEaEUDAuyLQ4REZHsoGvVImx+qQuPtajA8EU7qfjGBH6/zpwvLMjFgA5VyB3sf2lbTLyHDp/P9kbI4iNUUE6DeMtC9WQRERHf07FyYZY/04FFT7ajbYUCvDdrCyUHjuPWbxdm+CInNYvmZsYjrZj6UEty+Ptxy7cLafDeNOYnLh4sWY8xxgWMBL63LGsrEAJcPsD7LBB6+WstyxpuWVYdy7LqREREpH+w/yE6LqFD+f2etWhRLr9tcYiIiGQXIQEuPuxVm+XPtKdQzmBu/nYhXb+Yy75Tkde135//14QglxOnMbichoGdqgJwMjKGcesPZPiYN8laVFBOA4/HwqlxFyIiIj7JGEOjUhH8dk9Tdr/WjSdbVWDqlkM0fH8aDd6byozEecsZFUv7SoVY83xHRtzekENnL9L8o5l0+2KuLQsJStoZYxzAj0As8Eji5kgg7LKnhgHXt+x7OkoaeRHg57Q5EhERkeyldrE8LHu6PR/0rMXcHceo9MZEPpi15dI6X6nVsFQEs/q35vUu1Zj3WFuebF0JgO+W7qLH8PlsO3bOm+FLNqOCchq4PRZOtSiLiIj4vOK5Q3i3Ry0OvnEDn99cl9NRsZy4EAPAuYtxnIyMyZA4nA4HdzUoxfZXujK4Ww3m7TxGlTcncf/Pyzh89mKGxCBpZxIW5vgGyA/0siwrLvGhTUD1ZM/LAZRO3J4pJY28eOjX5ew/lbHjYERERLI7P6eDJ1pVZNNLnWlVrgBPjVlNvSFTWbnvZJr217BUBC+0r0LDUn9f3fR4ywrMfrQ1FQvkBODZsasZvnAHMXFas0P+poJyKrk9HiwSPriJiIiIQMKliAkrcnfl5lrFAPh8/jaKvTKGo+cyrqAb5O/H8+0qs+vVbvRvXo7vlu6mzGvjGDhpPeej4669A7HLMKAi0NWyrOT/w4wBqhhjehljAoFXgPWJ4zAypaQO5cK5gglyqUtZREQkPRTPHcL4+5vz+z1NOXIumvrvTePxP1Z6Jd/zczpoWa4AALHxbhbsPM79vyyn1Kvj+GDWFiJjlFOKCsqp5jCG7lULkyvI/9pPFhEREZ/icJhLf3TuVq0IgzpXJ3/iwmRDZm5m2uZDGbJwXt6QQD66sQ5bXupClyqFGTRlA2VfG88XC7YTl8bLIiV9GGOKA/cDNYAjxpjIxFsfy7KOA72AN4HTQH3gVtuCTYGkDuWPetUmIjTQ5mhERESyL2MMN9YsxpaXu3B/kzJ8Mm8bld+cyPj1B712DH8/J4ufasfM/q2pkD+Mp8aspsQr43h9ygZOR2XMlXiSOamgnErGGAJdfgS69NaJiIjIf6tcMBdPta4IJCxU9um8bXQYOofKb07ky4U7iIqNT/cYSkeE8uvdTVn6dHvK5QvlwV9XUPWtSYxddyBDCttybZZl7bMsy1iWFWhZVkiy28jEx2dallXBsqwgy7JaWJa11+aQr0ozlEVERDJWziB/ht5Sj0VPtCNnoIvuw+fR66v5/HUmyiv7N8bQunwBZj3ahiVPtadRyby8Mmk9xV4ey3Nj13AkA6/Gk8xDVdFUuhATz8ZDZ4jXapciIiKSQoEuJzsHduOHOxsS6OfkgV+WU/SlMbw4fi0HT3sn2b+a+iXyMu/xtoy/vzkOAzd8NZ9mH81g6Z4T6X5s8S1JHcptP5tlcyQiIiK+pWGpCFY/34nB3WowefMhKr4xgc/nbcPt8d7VaQ1K5mX8Ay1Y90InulYpzHuztlB+0ASNwfBBKiin0tmLsWw6cpbYeF0uKiIiIinn7+fkjnqlWPVcR+Y/3pYWZfPzzozNlBw4lt7fLWT53vQt7hpj6Fq1COtf6MyXt9Zj5/HzNHx/Gjd9s4AdWsVbvCSpoBythXtEREQynMvp4Pl2ldn4YmcalMjLI7+vpPEH01n/12mvHqda4XBG/a8J217pyuc31yUkwAXA4Gkb2XLkrFePJZmTCsqpVDBnEG0rFCB/mGbCiYiISOoZY2haJh9/3teMnQO78WiL8kzadIjGH0zn2PnodD++n9NBvyZl2TGwG691rsaUTYeo9MZE+v+2guMZcHzJ3pJGXoQE+NkciYiIiO8qHRHKtIdb8dNdjdh9IpJa70zhubFrvD5yrUxEKLfXKwnAgdMXeGPaRqZuPgSg8WrZnArKqWSMwWOBv1NvnYiIiFyfknlDeL9nbQ6+cQMTHmhBvsRFzO78YTHfLN6ZrscOCXDxSseq7Hq1G/c1LsOwhTso/do43pq2MUPmO0v2lNShHJrYqSQiIiL2MMbQp25Jtr7clbvql+LdmZup8uYkpiUWfL2taHgO9g3qwf1NygIwYulu2n82m3k7jqq4nA1lSFXUGBNgjPnGGLPPGHPeGLPWGNMx2eOtjTFbjTFRxpg5iatdZ0p/nYliy5Gzl5JlERERkesVGuiiQ6VCAFyMjeevM1GciooFIDbezbaj6TeSIn9YEENvqcfGFzvTulwBBkxYR9nXxvPtkl1enbknviGpQzk0UB3KIiIimUHuHAF806cBcx9rg7+fgw5D59D7u4UMnbeNEi+PwfHISEq8PIaRK/Zc97HyhgQS7J+QAxgD6/46TYuPZ9Lkw+lM2viXCsvZSEa12foBB4DmQE7gJeA3Y0wJY0xeYDTwMpAbWAn8mkFxpdrR89EcOnuReH3AEhERkXQQ5O/HrEfb8FSrigD8tno/FV6fQOdhc5ix5XC6JeIVCuRkTL/mLHiiLcXCc3DPyKXUGDyZyZuU/EvKJTVdhAWqQ1lERCQzaV42P+ue78Srnary2+p9PPz7SvadjsIC9p2Oot+oZV4pKifp26A0e17rzuc31+WvMxfp8sVcar49hd9W71PTQjaQIQVly7IuWJb1qmVZey3L8liWNRHYA9QGegKbLMv63bKsaOBVoLoxpkJGxJZaSYvxuZzG5khEREQkO3M4EnKNdhUL8lrnaqzaf4p2n8+m6luT+GrRTi6m01iKJqXzsfipdvxxT1Oi4z10HjaXNp/OYtX+k+lyPMleYuLdGLi0OI+IiIhkHgEuJwM7VSN/WNC/HouKczNg/FqvHi/I34+HmpVjx8BujLi9IdHxbm75diEVX5/It0t2ERuvRXyzKlsGARtj8gPlgE1AZWBd0mOWZV0AdiVuz3SSLuPzdzhtjkRERER8Qb7QQF7pWJV9g3ow4vaGuJwO+v28jKIvj+WlCWs5dCbK68c0xtCrZjE2v9SFT2+qw/pDZ6jz7lT6jFjE3pORXj+eZB9JHcpalE9ERCTzOnz24hW37zsdxbqDp71+PJfTwV0NSrFpQGf+uKcpoYEu7hm5lDHrDnj9WJIxMrygbIxxASOB7y3L2gqEAGcve9pZIPQKr+1njFlpjFl5/Pjx9A/2Cv7uUNaifCIiIpJxAlxO7mpQitXPdWTuY21oWjqCt6ZvovgrY3lt8vp0OabL6eCR5uXZNbA7A9pXZsy6A5R/fQJPj17NqQsx6XJMydr+nqGsDmUREZHMqlh48H8+VuPtyTR6fxo/LNtNdJx3O4idDge9ahZj5bMdmPFIK3rVKAbAsAXbeXPqRjwejVnLKjK0KmqMcQA/ArHAI4mbI4Gwy54aBpy//PWWZQ23LKuOZVl1IiIi0jXW/xLrTigo+/upoCwiIiIZzxhD87L5GdOvOTte6cYjzctTsUBOAM5ExfLnmv3Eu707ly4syMUbXWuwY2A37qhbkg/nbKX0q+N5b+Zmr3/QkKwtJt5DoMtJnWK57Q5FRERE/sOb3WoQ7PrnlffBLidf3lKPD3vV5lRULHf9uITCA0bz9OjV7Djm3QWijTG0qVAQv8RmzWV7T7Jg17FLI98uxKTPaDfxngyrihpjDPANkB/oZVlWXOJDm4DqyZ6XAyiduD3TSSooB6igLCIiIjYrHRHKh71qc3Ot4gCMWrmXG79ZwMbDZ9LleIVzBfN1nwasfb4jjUrl5Zmxayg/aDw/Ld+jjhIBEjqUC+YMom+D0naHIiIiIv+hT92SDO9dn+LhwRigeHgww3vXp1/TsjzesgJbXurC7Edb07p8AT6eu5VygybQ9tNZ/LlmP3FeblwAGHFHQ8b1aw7A3pORFBowmsf+WMmB0xe8fizxjowcbjYMqAi0sSwr+bCWMcAQY0wvYBLwCrA+cRxGppM0MFwdyiIiIpLZ3N+kDJUL5qRGkYTu0Id/XY4xhsdalKdsvssvCEu7qoXDmfRgS2ZvO8IzY9dwxw+L+WD2FobcUIvW5Qt47TiS9cTEe9R4ISIikgX0qVuSPnVLXvExYwwtyxWgZbkCHD57kW+X7GL4oh3c+M0CCoYFcV/jMtzbqDRFw3N4LZ6AxI5pp8PQq0ZRhs7fztD527mzfimea1OJcvm9l8vK9cuQbM8YUxy4H6gBHDHGRCbe+liWdRzoBbwJnAbqA7dmRFxpcalD2alF+URERCRzcTocNC+bHwDLsohzW3y1eCflX59A1y/mMmvbESzLe53ErcoXYMUzHRh5VyNORcXS5tNZdBw6m/V/eX8xF8kazlyIYdvRc4xcscfuUERERMQLCuYMYkCHKux+rTsT7m9OzaLhvD51AyVeGUeP4fOYuvmQV69UKxqeg29vb8iuV7vzYNNyjFq5lwpvTOCWbxew9uAprx1Hro/x5oeKjFSnTh1r5cqVGX7cbxbv5N5Ry7izXkm+v7NRhh9fREREJDWOnLvIFwt2MHTBdo5HxlClYE4eb1mB3nVKEOTvvYvVYuLcfD5/O29M28iZi7HcVa8Ur3epTpGrLPqSkYwxqyzLqmN3HBnBrjwZoOVHM9h67Bzj+jWnXom8tsQgIiIi6WvPiUi+WryTb5bs4tj5aErlDeH+xmX4X4PSRIQGevVYR89d5OO52/h8/nbORcfRqXIhXmxXmcal83n1OL4sLXmyCsqp5PFY5HzmV+5pWIaPbvSJzyQiIiKSDUTHufll1V4+nLOV9X+dIW9IAA82KctjLSqQJyTAa8c5HRXD4Omb+GTuNowxPNGyAs+1rUTOIH+vHSMtVFDOGC0+moEFzHu8rS3HFxERkYwTG+9mzLoDDFuwg3k7j+Hv5+DGGsV4oElZmpSOIGE5Ne84ExXL0AXb+XDOVjpVKnSpydOyLK8exxelJU/OyBnK2YLDYYj3aIayiIiIZC2BLid9G5TmrvqlmLvjKB/N2cbbMzZzb6My5CGAi7HxXulYDg8O4N0etXi4WTlemrCOwdM3MXzRTl7pWIWcgS4GTlrP/tNRFAsP5s1uNf5zdp9kTRfj3IQEOPXhTkRExAf4+zm5pXYJbqldgs2Hz/Lloh18v2w3o1bupUrBnDzQpCy31yvplcaCXMH+vNi+Co+3rEBkTDwAqw+cot+oZfx4VyMqFsh53ceQlFNBOZVmbDlMTJw7Y4ZPi4iIiHhZ8kVWjp2PJl/iZYk3fDWfXEH+/HJ3E68cp3juEH68qzFPtqrIM2PX8NgfqzBA0rVx+05H0W/UMgAVlbORE5HRLN93gTUHT1OraG67wxEREZEMUqlgTj6+sQ5vda3Br6v3MWzBdh75fSXPjVtL7zoleKBpWa/kBsH+fgQnNkGciYrFGCiUMwiAvScjKZwrGJdTVbv0pnc4lTYcOoMF+Ol/ThEREcnikorJlmXRvmJBWpZLWNAvzu1h6PztnL0Ye93HqFk0NzMeaUW+kAAuH7QWFedmwPi1130MyTxi4hMWsA7x4nxuERERyTpyBPhxd8PSrHi2Iyue6cCttYvz04o91H5nCvWHTGXE0l1ExcZ75VityhdgxbMdyRnkj8dj0fWLuZR9bTxD52/nopeOIVemqmgq9W9RHki4bFREREQkOzDG8ESritzfpCwAc7cf5eHfVlD05TE8/sdKdh0/f937Px4Zc8XH9p+Ouq59S+YS604sKAeooCwiIuLr6hTPw9d9GnDozZ58cmMdzsfE8b+fllJ4wBie+HMV246e89qxjIG3u9ekUM4gHv5tBSUHjuPdGZs4dzHOa8eQv6mgnEpxiUmy2udFREQku2pbsSArn+1Aj2pFGbpgB2UHjafH8HnM3X6UtC7oXCw8OFXbJWuKTepQDnDZHImIiIhkFrmC/enfojybBnRh7mNt6FCpIJ/P306F1yfQ6pOZ/L56H7Hx7us6hjGGzlUKs+jJdsx5tA3VCufiuXFrKf7KWF6ZuI4TkdFe+moEVFBOtW+X7ALA5dBbJyIiItlX7WJ5+OHORuwb1IOX2ldh0e7jtPxkJrXemcL3S3cTE5e6pP/NbjUIvuwKr2CXkze71fBi1GK3OE9CQTlHgK7mExERkX8yxtC8bH5+/l8TDrzeg8HdarDnZCQ3f7uQYi+P5aUJa9l/6sJ1H6NFufxMf6Q1y5/pQMty+Xl96kaKvzKWJ/9cpY5lL1FVNJXWHDwFqENZREREfEPBnEEM6lKd/YN68HXv+sS7PfT9aQkdh81J1X761C3J8N71KR4ejAGKhwczvHd9LciXzcS7LfwcBqeaL0REROQq8ocF8Xy7yuwc2I1JD7agXvE8DJ6+mZIDx9H1i7lM3vQX7sQ/VKdV3eJ5GH1fMzYO6EyvGsUYu/4gga6EHEUzlq+PhpulUkxc0sgLY3MkIiIiIhknyN+PexqV4e6GpZm9/ShuT8Loi/PRcTw1ejXPtKlI2XxhV91Hn7olVUDO5uI9Hq01IiIiIinmdDjoVLkwnSoXZv+pCwxftIOvF+9i4sa/KJEnB/0S88/8YUFpPkblgrn44c5GXIyNx9/PSUycmwqvT+CBJmV5oX0VL341vkOtA6kUkzjTRR3KIiIi4ouMMbQuX4B2FQsCsGr/KUat3MvpqFgAzl2Mu+5uEsmaLMvCY0GA8mQRERFJg2K5c/BG1xoceOMGfru7CaXyhPDihHUUfXkst367kHk70r6eByQ0SEDCIsK31C5OvRJ5AThy7iJL95zwytfgK9ShnEox8VqUT0RERCRJi3L5OfRmT8KCEhZhe3L0KubuOMqjLcrzvwalCQ3U4my+Imnx6gA/dSiLiIhI2rmcDm6qVZybahVn29FzfLFwByOW7ubX1fuoWCCMB5qU5c56pcgV7J+m/YcGuni3R61L9z+Zu43B0zfRqlx+XmxfhVbl8mOMJhNcjaqiqaQOZREREZF/SiomA3SpUpgCYUE89scqirw0hif/XMWeE5E2RicZJanxom7xPDZHIiIiItlF+fxhfNirNofevIHvbm9AWKCLx/5YRaEBo7ln5FJW7jt53cd4sX1l3ruhFluOnKPNp7No8N40xq0/gMeT9m7o7E4dyqmkDmURERGR/9ajelF6VC/K8r0n+HjuNj6dt42P526je7UiPN6yPH4Ow7wdx2hRNj8NS0XYHa54UVLjRdsKBW2ORERERLKbIH8/+jYoTd8GpVlz4BTDFuxg5Mo9fLtkF7WL5ubBpmW5tXYJcgSkvtQZEuDiqdYVebhZOb5ftpt3Zmymx/D5VC6YkxfaVeaWWsXxUx3wH/RupFKsW4vyiYiIiFxLvRJ5Gdm3MXsH9eD5tpWYt+MozT+aSbMPZ/LyxHW0/nQWS3YftztM8aKkxgulySIiIpKeahbNzfDe9Tn0Zk8+u6kO0fFu7h21jMIvjebR31ey+fDZNO030OXk/iZl2f5KV366qxEAt3+/mPKvT2Dm1sPe/BKyPBWUUylWHcoiIiIiKVY4VzBvdktYXCVPDn/cloXbgotxbvqMWGR3eOJFSR3Ko1btszkSERER8QU5g/x5uHl5NrzYmQVPtKVz5cJ8uWgHld+cSPOPZvDLyr3EJuYnqeHndNCnbknWv9CZsf2akTdHAHlDAgA4eu4ikTFx3v5SshxVRVPJ3y/hLXM59NaJiIiIpFSwvx8T7m9BkMuJ02EIcjkZ2bex3WGJFyV1KDctrVEmIiIiknGMMTQpnY+RfRtz8PUbeKd7DQ6eieK2EYso+vJYXhi3Jk1rejgchu7VirLsmQ7UKJIbgKfHrKbyGxMvLUbsq1QVTaU3u1YHwE/X8omIiIikSsNSEczq35rXO1djVv/WmqGczSR1KNcrkdfmSERERMRXRYQG8mzbyux4pRtTH2pJw5J5eXfmFkq/No5OQ+cwYcNB3J60F4MfaV6e1zpXw+V0YFkWH87ewuGzF734FWQNWpQvleLcCSs8auSFiIiISOo1LBWhQnI2dTEuoaAc6079paUiIiIi3uRwGNpXKkT7SoU4eDqKrxbv5KtFO+n25TyKhgfTr3EZ7m1UhgJhQanab/0Seamf+MfzjYfO8PSYNbwwfi13NyzNM60rUTJvSHp8OZmOqqKp9Om8rYAKyiIiIiIiyZ2MjAFg/o5jNkciIiIi8rci4cG81rka+17vwZ/3NqVC/jBenrieoi+N4aZvFjB72xEsy0r1fqsWDmfbK125s14pvl68i7KDxnPnD4vTvChgVqIO5VQ6fDYaUEFZRERERCS5MxcTFqgJDXTZHImIiIjIv7mcDnrWKEbPGsXYcewcXy7cyXdLd/HHmv2UyxfKA03Kclf9UuTOEZDifZaJCGV47/q80rEqH8zewpeLdvDj8j3cUL0oL7arTJ3iedLxK7KPqqKp9Hy7ygC4HJqhLCIiIiKS5Gx0LABhKiiLiIhIJlc2Xxjv9azFX2/25Ic7G5I3JIAnR6+m8Etj6PvjEpbtPZGqruUi4cF80Ks2+wb14OUOVZiz/Sh1h0zlju8XpeNXYR91KKdS0iqO6lAWEREREfnbueh4AHKpoCwiIiJZRKDLyR31SnFHvVKsO3iaLxbu4KcVe/h+2W5qFgnngSZl6V23BCEBKctv8oYEMqhLdZ5uXYkvFm4nZ5A/APFuD7O2HaFdxYIYk/WbVFUVTaU3pm4EVFAWEREREUnufHTCyIukD04iIiIiWUn1IuEMu7Ueh97sybBb6uK2LO7/ZTmFBozmkd9WsPHQmRTvKyzIxbNtK3N/k7IA/Ll2Px2GzmHm1iPpFH3GUodyKu08fh5QQVlEREREJLmkgnKuYHUoi4iISNYVGujigabluL9JWZbuOcGwhTv4evFOPp+/nSalI3igSVlurFGMAJczxfvsWaMYv9/joHX5AgB8Pm8bQf5+3F63BP5+Kd9PZqGCcirFexLmp6igLCIiIiLyt8iYxJEXwepQFhERkazPGEPDUhE0LBXBhz1rM2LZbr5YuIPbv1/M43+u4u4GpenXuAylI0KvuS+X08GNNYsBYFkWY9YfZNa2IwyctJ5n2lSkaqFcLN1zghZl89OwVER6f2nXTQXlVPB4LDxWUkE56887ERERERHxlguxCQXlcI28EBERkWwmT0gAT7WuyBMtKzB7+xGGLdjB+7O38O7MzbSvWJAHmpSlS5XC+KWgAdUYw4xHWjF9y2Hemr6Jx/5YBYDDQICfk1n9W2f6orLabFMhaUE+UIeyiIiIiEhySQXlPDkCbI5EREREJH04HIY2FQry533N2D+oB691rsbGw2e44av5lBg4ltcmr+evM1HX3I8xhvaVCjHv8bYUDAsEwGPBxTg3fUYsSu8v47qpKpoKMfEqKIuIiIiIXEnR8GAAwjVDWURERHxAoVzBvNKxKntf68HYfs2oUjAXr07eQPFXxtLrq/nM2HIYT+Lo3Kv5895mBLmcOB2GIJeTkX0bZ0D010cjL1Ih1u2+9G8VlEVERERE/pYnOACnw+Dvp48YIiIi4jv8nA66VytK92pF2XX8PMMX7eTbpbsYve4AZSJCeaBJWfrWL0WekCtfxdWwVASz+rdm7o6jmqGcHcUm61D2c2iGsoiIiIhIkuPnY7TOiIiIiPi00hGhvNOjJoM6V+PPtfsZtnAHT49ZzYAJa7m5VnEeaFKWhiXzYsw/c6akxf+yChWUUyE2cYayMfzrxIuIiIiI+LJ5u47+owFDRERExFcFuJz0rluS3nVLsvHQGb5YuIMflu/mx+V7qFY4Fw82KUufuiUJDXQxcsUeBoxfy/7TURQLD+bNbjXoU7ek3V/CVamgnAoOY4gICeDMxTi7QxERERERyVQq5c/J8fPRdochIiIikqlUKZSLz26uy9vda/Dzyn0MW7CdB39dwTNj11C/eB4W7T5OdOIf5fedjqLfqGUAmbqorEHAqVAsdw761C1JoEtvm4iIiIhIcmFBLsKC/O0OQ0RERCRTCglwcV/jMqx6riPLnm7PjTWKMWv70UvF5CRRcW4GjF9rT5AppMpoKsW5PbgcettERERERJI7eCYKrGuvZC4iIiLiy4wx1CuRl+/uaMh/DdTdfzoqQ2NKLVVGU2HDX6f5fc0+u8MQEREREcl0Vuw7yWmNhhMRERFJsWLhwananlmooJwKxhj8HA781KEsIiIiIvIPcW4Ll1MLV4uIiIik1JvdahDscv5jW7DLyZvdatgTUAqpMpoKVQrlolW5/OQI0FqGIiIiIiLJxXs8+Dv18UJEREQkpfrULcnw3vUpHh6MAYqHBzO8d/1MvSAfgCqjqaTOCxERERGRf3N7LBWURURERFKpT92Smb6AfDllfKkwdfMhxm84iNujxUZERERERJLExruxAH8/5zWfKyIiIiJZmwrKqXAuOo6LcW5c6rwQEREREbnkfHQ8AIEu5ckiIiIi2Z0yvlSIjfcAqKAsIiIiIpJMZGwcAIF+mqgnIiIikt2pMpoKse6EgrK/n2Yoi4iIiIgkiYxJ6FAOUoeyiIiISLanjC8VYuPdAPg79LaJiIiIiCS5VFD2V4eyiIiISHanymgq/N2hrMVGRERERESSlI0IJYe/H4VzBtkdioiIiIikMxWUU+HSDGWNvBARERERuSR3jgAsLMKDA+wORURERETSmQrKqZDUoRzgVIeyiIiIiEiSfaciiY5z41DfhYiIiEi2p4JyKuw6fh6A89FxNkciIiIiIpJ5TNr4Fx4LLLsDEREREZF0p4JyCi3ZfZyfVuwFYNHuEyzZfdzegEREREREMonOVQoDEB7sb3MkIiIiIpLeVFBOoT4jFl0aeeG2LPqMWGRzRCIiIiIimUNYoAuAYH8/myMRERERkfSmgnIKjezbmCBXwuxkp8Mwsm9jmyMSEREREckc5u04BkCAnz5eiIiIiGR3yvhSqGGpCGb1b02Ivx9dKheiYakIu0MSEREREckUfluzD4AAPy1eLSIiIpLdqaCcCg1LReDv56BIeA67QxERERERyTTOR8cD6lAWERER8QXK+FIpzuPB5dTbJiIiIiKSJDImDlCHsoiIiIgvUGU0leLcFi6nsTsMEREREZFMIzJGHcoiIiIivkIZXyrFuT24HHrbRERERESSXLhUUFaHsoiIiEh2p8poKliWhdtjaeSFiIiIiEgyF2LVoSwiIiLiK5TxpUKc2wOggrKIiIiISDIX49yAOpRFREREfIEqo6kQ57YA8NMMZRERERGRS5JmKG89etbmSEREREQkvamgnAqXOpQ1Q1lEREREBIDFu49d6lB+8JflLNl93OaIRERERCQ9qTKaCvEejbwQEREREUmuz4jFl/4dHe+hz4hFNkYjIiIiIulNldFUSBp54dLICxERERERAEb1bXyp4SLQz8nIvo1tjkhERERE0pMKyqmgRflERERERP6pYakIHmlWDoA/721Kw1IRNkckIiIiIulJldFUUEFZREREROTfCuUMAqBJ6Xw2RyIiIiIi6U2V0VRQQVlERERE5N9i4hPy5AA/5ckiIiIi2Z0yvlRQQVlERERE5N9i4t0A+KugLCIiIpLtKeNLhTiPFuUTEREREblcTLyHAD8HxihPFhEREcnuVFBOBXUoi4iIiIj8W0y8mwA/p91hiIiIiEgGUGU0FS4VlB1620REREREkiR1KIuIiIhI9qesLxXUoSwiIiIi8m/qUBYRERHxHaqMpkKcWzOURUREREQupw5lEREREd+hrC8V1KEsIiIiIvJv6lAWERER8R2qjKZCUkHZTwVlEREREZFL1KEsIiIi4juU9aVCvCdx5IVDIy9ERERERJKoQ1lERETEd6ignAoaeSEiIiIi8m/qUBYRERHxHcr6UkEFZRERERGRf1OHsoiIiIjvUGU0FVRQFhERERH5N3Uoi4iIiPgOZX2poIKyiIiIiMi/xcS7CXCpQ1lERETEF6gymgpx7sRF+ZxalE9EREREJIk6lEVERER8h7K+VFCHsoiIiIjIv2mGsoiIiIjvUGU0FeI8KiiLiIiIiFxOHcoiIiIiviPTZH3GmNzGmDHGmAvGmH3GmN52x5TcyBV7GDx9EwAVX5/AyBV7bI5IRERERLK7zJ4jQ0KefDIyhmELdlDi5THKk0VERESyOT+7A0jmcyAWyA/UACYZY9ZZlrXJ1qhISJL7jVpGVJwbgP2no+g3ahkAfeqWtDM0EREREcneMm2ODH/nyVbi/X3Kk0VERESyvUzRoWyMyQH0Al62LCvSsqyFwHjgDnsjSzBg/NpLxeQkUXFuBoxfa09AIiIiIpLtZfYcGZQni4iIiPiiTFFQBsoB8ZZlbU+2bR1QOfmTjDH9jDErjTErjx8/nmHB7T8dlartIiIiIiJekKIcGZQni4iIiEjGySwF5RDg3GXbzgKhyTdYljXcsqw6lmXViYiIyLDgioUHp2q7iIiIiIgXpChHBuXJIiIiIpJxMktBORIIu2xbGHDehlj+5c1uNQh2Of+xLdjl5M1uNewJSERERER8QabOkUF5soiIiIgvyiwF5e2AnzGmbLJt1YFMsdhIn7olGd67PsXDgzFA8fBghveur4VGRERERCQ9ZeocGZQni4iIiPgiY1nWtZ+VAYwxvwAWcC8JK1hPBhr91wrWderUsVauXJlxAYqIiIhIlmWMWWVZVh2740it1ObIoDxZRERERFIuLXlyZulQBngICAKOAT8DD14tURYRERER8QHKkUVEREQkU/GzO4AklmWdAnrYHYeIiIiISGahHFlEREREMpvM1KEsIiIiIiIiIiIiIpmYCsoiIiIiIiIiIiIikiIqKIuIiIiIiIiIiIhIiqigLCIiIiIiIiIiIiIpooKyiIiIiIiIiIiIiKSICsoiIiIiIiIiIiIikiIqKIuIiIiIiIiIiIhIiqigLCIiIiIiIiIiIiIpooKyiIiIiIiIiIiIiKSICsoiIiIiIiIiIiIikiIqKIuIiIiIiIiIiIhIiqigLCIiIiIiIiIiIiIpooKyiIiIiIiIiIiIiKSICsoiIiIiIiIiIiIikiLGsiy7Y0gTY8xxYJ8Nh84LnLDhuGIPnW/fovPtW3S+fYvOt2+50vkubllWhB3BZDTlyZJBdL59i863b9H59i06377FK3lyli0o28UYs9KyrDp2xyEZQ+fbt+h8+xadb9+i8+1bdL7toffdt+h8+xadb9+i8+1bdL59i7fOt0ZeiIiIiIiIiIiIiEiKqKAsIiIiIiIiIiIiIimignLqDbc7AMlQOt++Refbt+h8+xadb9+i820Pve++Refbt+h8+xadb9+i8+1bvHK+NUNZRERERERERERERFJEHcoiIiIiIiIiIiIikiIqKIuIiIiIiIiIiIhIiqigLCIiIiIiIiIiIiIpooJyChljchtjxhhjLhhj9hljetsdk3iXMWauMSbaGBOZeNuW7LHeief9gjFmrDEmt52xSuoYYx4xxqw0xsQYY0Zc9lhrY8xWY0yUMWaOMaZ4sscCjDHfGmPOGWOOGGOezPDgJdX+63wbY0oYY6xk3+ORxpiXkz2u850FJZ63bxJ/Rp83xqw1xnRM9ri+x7ORq51vfY/bR3ly9qYcOXtTnuxblCf7DuXIviej82S/9PxispnPgVggP1ADmGSMWWdZ1iZboxJve8SyrK+TbzDGVAa+BDoDq0lYEXMocGvGhydpdAh4A2gPBCVtNMbkBUYD9wITgNeBX4EGiU95FSgLFAcKAHOMMZsty5qaYZFLWlzxfCeTy7Ks+CtsfxWd76zIDzgANAf2A52A34wxVYFI9D2e3VztfCfR93jGU56c/SlHzr6UJ/sW5cm+Qzmy78nQPNlYluWtwLMtY0wO4DRQxbKs7YnbfgT+sizreVuDE68xxswFfrpCsvwWUMKyrN6J90sDW4A8lmWdz/BAJc2MMW8ARSzL6pt4vx/Q17KsRon3cwAngJqWZW01xhxKfHx64uOvA2Uty9IHpSzgCue7BLAHcF3pl6jOd/ZhjFkPvAbkQd/j2V6y870KfY9nOOXJ2Z9yZN+gPNm3KE/2TcqRfU965skaeZEy5YD4pCQ50Tqgsk3xSPoZbIw5YYxZZIxpkbitMgnnGwDLsnaR0IVTLuPDEy+7/NxeAHYBlY0x4UDB5I+j7/vsYp8x5qAx5rvE7ht0vrMPY0x+En4+b0Lf49neZec7ib7HM5byZN+gHNn36Heob9Lv0GxKObLvSe88WQXllAkBzl227SwQakMskn6eA0oBhUm4ZG9CYqdFCAnnOzmd/+zhauc2JNn9yx+TrOkEUJeEy3hqk3AuRyY+pvOdDRhjXCSc0+8ty9qKvseztSucb32P20N5cvanHNk36Xeob9Hv0GxMObLvyYg8WTOUUyYSCLtsWxigS7myEcuyliW7+70x5jYSZs7o/GdfVzu3kcnuR1/2mGRBlmVFAisT7x41xjwCHDbGhKLzneUZYxzAjyR0xz2SuFnf49nUlc63vsdtozwpm1OO7LP0O9SH6Hdo9qUc2fdkVJ6sDuWU2Q74GWPKJttWnX+2jUv2YwGGhPNcPWmjMaYUEEDC/xeStV1+bnMApYFNlmWdBg4nfxx932c3SYsIOHS+szZjjAG+IWFBsF6WZcUlPqTv8WzoKuf7cvoezxjKk32PcmTfoN+hvk2/Q7MB5ci+JyPzZBWUUyBxnsxoYJAxJocxpjHQnYSKv2QDxphcxpj2xphAY4yfMaYP0AyYSsJlAF2NMU0Tf9AOAkZrsZGsI/GcBgJOwJl0noExQBVjTK/Ex18B1ideEgLwA/CSMSbcGFMBuA8YYcOXIKnwX+fbGFPfGFPeGOMwxuQBPgHmWpaVdGmPznfWNQyoCHS1LOtisu36Hs+erni+9T1uD+XJ2Zty5OxPebJvUZ7sc5Qj+56My5Mty9ItBTcgNzAWuADsB3rbHZNuXj2/EcAKElr6zwBLgbbJHu+deN4vAOOA3HbHrFuqzu+rJPwFLvnt1cTH2gBbgYvAXBJWK096XQDwLQmzIY8CT9r9teiW9vMN3EbCyrYXSPgL7A9AAZ3vrH0jYQ6YRcLlWZHJbn0SH9f3eDa6Xe1863vc1vOiPDmb3pQjZ/+b8mTfuilP9p2bcmTfu2V0nmwSXygiIiIiIiIiIiIiclUaeSEiIiIiIiIiIiIiKaKCsoiIiIiIiIiIiIikiArKIiIiIiIiIiIiIpIiKiiLiIiIiIiIiIiISIqooCwiIiIiIiIiIiIiKaKCsoiIiIiIiIiIiIikiArKIiIiIiIiIiIiIpIiKiiLiGQgY8wmY0yLDDjOCGNMrDFm73XsI9IYUyqFz92VeLyf0no8EREREfFdypNFRLIOP7sDEBHJTowxkcnuBgMxgDvx/v2WZVXOwHDetSzrpbS+2LKskFQ8t7Qx5lWgTFqPJyIiIiLZl/Jk5ckikn2ooCwi4kXJk8vErod7LcuaaV9EIiIiIiL2U54sIpJ9aOSFiEgGMsbsNca0Sfz3q8aY340xPxljzhtjNhhjyhljXjDGHDPGHDDGtEv22pzGmG+MMYeNMX8ZY94wxjhTcey5ia9ZnHiZ3gRjTB5jzEhjzDljzApjTIlkz7eMMWUS/z3CGPO5MWZSYqzLjDGlvfjWiIiIiIgPU54sIpJ1qKAsImKvrsCPQDiwBphGws/mwsAg4Mtkzx0BxJNwuVxNoB1wbyqPdytwR+L+SwNLgO+A3MAWYOA1XvtaYqw7gTdTeWwRERERkZRSniwikkmpoCwiYq8FlmVNsywrHvgdiADetiwrDvgFKGGMyWWMyQ90Ah63LOuCZVnHgA9JSF5T4zvLsnZZlnUWmALssixrZrLj17zKa8dYlrU88bkjgRqpPLaIiIiISEopTxYRyaQ0Q1lExF5Hk/37InDCsix3svsAIUAhwAUcNsYkPd8BHLjO411+/2oLjBxJ9u+oazxXREREROR6KE8WEcmkVFAWEckaDpCwEnbexM4HERERERFRniwikuE08kJEJAuwLOswMB143xgTZoxxGGNKG2Oa2x2biIiIiIhdlCeLiGQ8FZRFRLKOOwF/YDNwGvgDKGhrRCIiIiIi9lOeLCKSgYxlWXbHICIiXmaM+Qq4DThqWVbpDDjeNhJWxP7Nsqy70/t4IiIiIiJpoTxZROT6qaAsIiIiIiIiIiIiIimikRciIiIiIiIiIiIikiIqKIuIiIiIiIiIiIhIiqigLCIiIiIiIiIiIiIpooKyiIiIiIiIiIiIiKSICsoiIiIiIiIiIiIikiIqKIuIiIiIiIiIiIhIiqigLCIiIiIiIiIiIiIpooKyiIiIiIiIiIiIiKSICsoiIiIiIiIiIiIikiIqKIuIiIiIiIiIiIhIiqigLCIiIiIiIiIiIiIpooKyiIiIiIiIiIiIiKSICsoiIiIiIiIiIiIikiIqKIuIiIiIiIiIiIhIiqigLCIiXmWMaWGMOWh3HCIiIiIiIiLifSooi4ikE2NME2PMYmPMWWPMKWPMImNMXWPMi8aYyMRbtDHGnez+pmSvn2uMOW2MCUi8/0Wy58UaY+KS3Z+S+BzLGHMh2favrxDXq4nPq59x74aIiIiIiIiIZAfGsiy7YxARyXaMMWHAfuBB4DfAH2gKHLEsa32y5/UF7rUsq8llry8B7ALOAvdblvX7ZY+/CpSxLOv2y7ZbQFnLsnb+R1z/Z+++46uuz/6Pvz7ZGwIJmzCUJcpQVNyzbm1ddbXVLttaq629294/u2ytHXenbe/erV1iRW1r1Tpq1bpxICigIijKRkbCDglZ5/P74yQRBCHBJCchr+fjkUfO+c7rBJTknetcn9B43R7AHTHGz+/Ba8uIMdbvYv+xwK0xxkGtvbYkSZIkSerc7FCWpDYSQlgcQvhaCOFlYD2QEWO8PcbYEGOsjjE+vG2YvBsfA54HbgYubcMyjwL6A1cBF4YQsnZ3Qgjhssbu6p+HENYC14UQskMIPwkhLA0hrG7sns5twzolSZIkSVInZKAsSW3rIuB0oBdQE0KYEkI4NYRQ3MrrfAyY2vhxcgihbyvOfSqEsCqEcFdjp/O2LgXuI9k1DXBmC695KLAQ6AvcAPwQGAlMAPYFBgLfakWNkiRJkiSpCzJQlqS29csY47IY40bgSCACvwfKQwj3tiQYDiEcCQwB/hZjfJHkiIqLW3j/Y4ChwGjgbeD+EEJG43XzgPOB22KMdcCdJIPrlng7xvirxlEXW4HLgS/FGNfFGDcD3wcubOG1JEmSJElSF2WgLElta1nTgxjjvBjjZY2zhPcHBgC/aME1LgUejjFWND6/jRaOvYgxPhVjrI0xbgCuBoYBYxp3nw3UA/9qfD4VODWEUNqCSy/b5nEpkAe8GELYEELYAPy7cbskSZIkSdqLZaS6AEnay+x0pdMY4/wQws3AZ3Z1cuMc4g8D6SGEVY2bs4GeIYTxMcY5e1BPaHx8KVAALE2uzUcAMkl2P9/Ygus0qQCqgbExxhWtrEeSJEmSJHVhdihLUjsIIYwOIXw5hDCo8flgkvOVn9/NqR8CGoD9SM4nnkCyw/hpdjOeIoQwNoQwIYSQHkIoAH4KrADmhRAGAicAZ2xz3fHAj3Z33XeLMSZIjvH4eQihT+O9B4YQTm7NdSRJkiRJUtdjoCxJ7WMzyYXspocQtpAMkl8Fvryb8y4F/hxjXBpjXNX0AfwauKRpHvJ76Av8FdhEcgG9ocAZjfOSPwrMjjE+/K7r/hIYF0LYv5Wv72vAm8DzIYRNwH+AUa28hiRJkiRJ6mJCjDt9d7YkSZIkSZIkSduxQ1mSJEmSJEmS1CIGypIkQgi/DSFU7uTjt6muTZIkSZIkdR6OvJAkSZIkSZIktciuFnfq1EpKSuLQoUNTXYYkSZK6gBdffLEixlia6jokSZKkrq7LBspDhw5l5syZqS5DkiRJXUAIYUmqa5AkSZL2Bs5QliRJkiRJkiS1iIGyJEmSJEmSJKlFDJQlSZIkSZIkSS1ioCxJkiRJkiRJapEuuyifJEnqvBKJBMuXL2fLli2pLkXdSH5+PoMGDSItzZ4JSZIkqb0YKEuSpDZXUVFBCIFRo0YZ7qlDJBIJVqxYQUVFBX369El1OZIkSdJey5/wJElSm9uwYQN9+/Y1TFaHSUtLo2/fvmzcuDHVpUiSJEl7NX/KkyRJba6hoYHMzMxUl6FuJjMzk/r6+lSXIUmSJO3VDJQlSVK7CCGkugR1M/6dkyRJktqfgbIkSZIkSZIkqUUMlCVJkvZSS5cupaCggIaGhja/9s0338yRRx65x+efeuqpTJkypQ0rkiRJktQRDJQlSVK3N23aNA4//HB69OhBr169OOKII5gxYwbf//73KSgooKCggJycHNLT05ufjx07tvn8Y489luLiYmpqagD47Gc/23xcVlYWmZmZzc9PPfVUIDmeIT8/v3n7pz71qR3quu666wghMH369D16XWVlZVRWVpKenr5H57eV6667jo985CPbbXvwwQe59NJLU1SRJEmSpD1loCxJkjqVqTMWMfSbd5N25VSGfvNups5Y1G73qq+vZ9OmTZxxxhl84QtfYN26daxYsYJvf/vbZGdnc+2111JZWUllZSW//e1vOeyww5qfz507F4DFixfz9NNPE0Lg3nvvBeC3v/1t83HXXnstF1xwQfPzBx98sPn+c+bMad7+hz/8YbvaYozccsst9OrVi1tuuaXdvgaSJEmS1BodFiiHEJ4IIWwNIVQ2fry+zb6LQwhLQghbQgj3hBB6dVRdkiSp85g6YxGX3zadJeuriMCS9VVcftv0Ng2Vhw4dyo9+9CPGjRtHfn4+b7zxBgAXXXQR6enp5ObmT5rg3AAAhVdJREFUctJJJzFu3LgWXe+WW25h8uTJXHbZZW06wuHpp59m5cqV/PKXv+SOO+6gtrb2PY994YUXmDRpEkVFRfTt25drrrkGSIbdIQTq6+uBZCf1N77xDQ4//HAKCgo488wzWbt2LZdccglFRUUcfPDBLF68eKfnNp3/7uC7ydVXX83gwYMpKirioIMO4umnnwbg3//+N9///vf561//SkFBAePHj9/hWolEgu9973sMGTKEPn368LGPfYyNGzduV8eUKVMoKyujpKSEG2644X18ZSVJkiS9HxkdfL8rY4zb/RQSQhgL/A44HXgJuAn4DXBhB9cmSZLayRfvnMns5et3e9zziyuoqU9st62qroFPTn2e3z/z5i7PnTComF+cN6lF9dx+++088MADlJSUUFdXR3p6OpdeeikXXnghkydPpri4uEXXgWSgfM0113DooYcyefJkVq9eTd++fVt07tFHH00ikeDwww/nZz/7GUOHDm3eN2XKFM4880w+/OEPc9VVV3Hfffdx7rnn7vQ6V199NVdffTUf/ehHqays5NVXX33Pe95xxx089NBDlJSUcNhhh3HYYYfxm9/8hilTpvCJT3yC73znO/z5z39u8etvcvDBB/Otb32LHj16cOONN3L++eezePFiTjnlFK699lrefPNNbr311p2ee/PNN3PzzTfz+OOPNwfKV155JX/5y1+aj5k2bRqvv/46b7zxBocccgjnnHMOY8aMaXWdkiRJkt6fzjDy4hLgvhjjUzHGSuCbwDkhhMIU1yVJkjrYu8Pk3W3fU1dddRWDBw8mNzeXoqIipk2bRgiBT3/605SWlnLWWWexevXq3V5n2rRpLFmyhA9/+MMcdNBB7LPPPtx2220tquHJJ59k8eLFzJ8/nwEDBnDGGWc0dwNXVVXx97//nYsvvpjMzEzOO++8XY69yMzM5M0336SiooKCggImT578nsd+/OMfZ5999qFHjx6ceuqp7LPPPpx44olkZGRw/vnnM2vWrBbV/24f+chH6N27NxkZGXz5y1+mpqaG119/ffcnAlOnTuWaa65h+PDhFBQU8IMf/IA77rhju+7ob3/72+Tm5jJ+/HjGjx/PnDlz9qhOSZIkSe9PR3co/yCE8EPgdeDrMcYngLHAs00HxBjfCiHUAiOBF7c9OYRwOXA5JBeZkSRJXUNLO4eHfvNulqyv2mH7kOI8nvjiB9qsnsGDB2/3fMyYMdx8880AzJ8/n4985CN88Ytf5Pbbb9/ldaZMmcJJJ51ESUkJABdffDFTpkzhS1/60m5rOProowHIysrixhtvpKioiHnz5nHAAQdw9913k5GRwWmnnQbAJZdcwoknnkh5eTmlpaU7XOuPf/wj3/rWtxg9ejTDhg3j29/+NmecccZO77tt93Rubu4OzysrK3db+8785Cc/4Y9//CNvv/02IQQ2bdpERUVFi859++23GTJkSPPzIUOGUF9fv12o369fv+bHeXl5e1ynJEmSpPenIwPlrwGvAbUkx1ncF0KYABQAG9917EZghw7lGONNJEdiMGnSpNiexabKcwvLeWLBao4d0ZfDhu/4A6MkSXuzG86awOW3TaeqrqF5W15mOjecNaFN7xNCeM99o0eP5rLLLuN3v/vdLq9RXV3N3/72NxoaGprDzpqaGjZs2MCcOXOaZwW3pqYYk9/eTJkyhcrKyuZfoMcYqaur47bbbuPqq6/e4dwRI0Zw++23k0gkuOuuuzjvvPNYu3Ztq+7/bvn5+UCyW7qoqAiAVatW7fTYp59+mv/5n//h0UcfZezYsaSlpVFcXNz8enb19QYYMGAAS5YsaX6+dOlSMjIy6Nu3L8uXL39fr0OSJElS2+qwkRcxxukxxs0xxpoY4xTgGeA0oBIoetfhRcDmjqqts3huYTkn/OpRvnn/HE741aM8t7A81SVJktShLjl4GDddfChDivMIJDuTb7r4UC45eFi73XP+/Pn89Kc/bQ4uly1bxu23377LsREA99xzD+np6bz22mvMnj2b2bNnM2/ePI466qhdjqcAmDt3LrNnz6ahoYHKykq+/OUvM3DgQMaMGcOKFSt49NFHuf/++5uvO2fOHL72ta+953VvvfVWysvLSUtLo2fPngCkpb2/b/NKS0sZOHAgt956Kw0NDfzpT3/irbfe2umxmzdvJiMjg9LSUurr6/nud7/Lpk2bmvf37duXxYsXk0jsfHTJRRddxM9//nMWLVpEZWUl1157LRdccAEZGR39ZjpJkiRJu5PKGcoRCMBcoLmFJ4QwHMgG3khRXSlzyc3PUF3XQEOE6roGLrn5mVSXJElSh7vk4GEsvv5sEr++hMXXn92uYTJAYWEh06dP59BDDyU/P5/Jkyez//7789Of/nSX502ZMoWPf/zjlJWV0a9fv+aPK6+8kqlTp243//fdVq9ezQUXXEBRURHDhw9n8eLF3H///WRmZvKXv/yFCRMmcNJJJ2133auuuoqXX355pwvu/fvf/2bs2LEUFBRw9dVXc8cdd5Cbm/u+vza///3v+fGPf0zv3r2ZO3cuhx9++E6PO/nkkznllFMYOXIkQ4YMIScnZ7uxIueffz4AvXv35sADD9zh/E984hN89KMf5eijj2bYsGHk5OTwq1/96n3XL0mSJKnthaa3IrbrTULoCRwKPAnUAxeQHF0xEcgEngNOB14CfgdkxBgv3NU1J02aFGfOnNmOVXe85xaWc+yN/6E+kSA7I51Hv3CCYy8kSV3SvHnzGDNmTKrLUDf0Xn/3QggvxhhbNsxbkiRJ0nvqqPcRZgLfA0YDDcB84EMxxjcAQgifBaYCvYH/AB/voLo6lcOGl/LE1Sc6Q1mSJEmSJElSp9QhgXKMsRw4eBf7bwNu64haOrvXVm2ktDCH3zz9BpOG9CYzPZVTSSRJkiRJkiTpHaaVnUhVbT2fum06Nz+/kFtnLObheStTXZIkSZIkSZIkNTNQ7kTKK7cC8JGDh1JSkM1fXliU4ookSZIkSZIk6R0Gyp1IRWUNAAN65HHRQUO55+VlbKiqTXFVkiRJkiRJkpRkoNyJNAXKJQXZfPSQYdTUJ7hz9tIUVyVJkiRJkiRJSQbKnUh5U6Ccn82ksl6M7lvELdMXprgqSZIkSZIkSUoyUO5EKrYkA+XSwmxCCHzskGE8/VY5iyoqU1yZJEkd57oHXiZcObX547oHXk51SZIkSZKkRgbKnUhF5VbS0wI9crIAuOTgYYQAt85wcT5JUvdx3enjOGbfPhyzbx/iry/hutPHpbokSZIkSVIjA+VOpKKyht752aSlBQDKeuVz7Ii+3PLCImKMKa5OkqS907Rp0zj88MPp0aMHvXr14ogjjmDGjBl8//vfp6CggIKCAnJyckhPT29+Pnbs2Obzjz32WIqLi6mpSb7T6LOf/WzzcVlZWWRmZjY/P/XUUwEIIZCfn9+8/VOf+tQOdV133XWEEJg+fXrHfCEkSZIkqQUMlDuR8soaSvKzt9v25ePH8PmjR1KfMFCWJKmtbdq0iTPOOIMvfOELrFu3jhUrVvDtb3+b7Oxsrr32WiorK6msrOS3v/0thx12WPPzuXPnArB48WKefvppQgjce++9APz2t79tPu7aa6/lggsuaH7+4IMPNt97zpw5zdv/8Ic/bFdXjJFbbrmFXr16ccstt3TcF0SSJEmSdsNAuRP52bkHcvvHj9hu2+n7D+SLx40mM90/KklS97Gxuo6l67bw3MLyNr/20KFD+dGPfsS4ceMoLi6mvr6eiy66iPT0dHJzcznppJMYN65lYzZuueUWJk+ezGWXXcaUKVParMann36alStX8stf/pI77riD2traNru2JEmSJL0fGakuQO8Y0qtgp9s3b63jrtnLuPCgIWRnpndwVZIktY1jf/HIbo85Y/+BHDG8lJffXk8iwrE3/ocnrj6REX0KOe8PT+/y3Ce++IEW13L77bfzwAMPUFRUxPDhw7n00ku58MILmTx5MsXFxS2+zi233MI111zDoYceyuTJk1m9ejV9+/Zt0blHH300iUSCww8/nJ/97GcMHTq0ed+UKVM488wz+fCHP8xVV13Ffffdx7nnntviuiRJkiSpvdj22on89uk3mL64Yoftzy4s57Jbn+Ph+StTUJUkSR3riQWraZr0VJ9I8MSC1W1+j6uuuorBgwfTo0cPpk2bRgiBT3/605SWlnLWWWexevXu7zlt2jSWLFnChz/8YQ466CD22Wcfbrvtthbd/8knn2Tx4sXMnz+fAQMGcMYZZ1BfXw9AVVUVf//737n44ovJzMzkvPPOc+yFJEmSpE7DDuVOIpGIXPn3mfy/k8Zy6NCS7fadOLofz15zEpOHlbzH2ZIkdX4t7SB+bmE5aQESEbIz0jl2RF9KCnJa1YG8O4MHD25+PGbMGG6++WYA5s+fz0c+8hG++MUvcvvtt+/yGlOmTOGkk06ipCT57/PFF1/MlClT+NKXvrTb+x999NEAZGVlceONN1JUVMS8efM44IADuPvuu8nIyOC0004D4JJLLuHEE0+kvLyc0tLSPXm5kiRJktRmDJQ7iRCg/IfnEgg77EtPS+Ow4f4AKUnqHg4bXsq4AcVsrK5l6mVHtMu/gSHs+O8twOjRo7nsssv43e9+t8vzq6ur+dvf/kZDQwP9+vUDoKamhg0bNjBnzhzGjx/f6npiTLZlT5kyhcrKSsrKyoDkAn11dXXcdtttXH311a26riRJkiS1NUdedBIhBIrzsumZl7XT/TV1DVzx1xe4+fm3OrgySZI6Xo/cTMp65bf7L1Tnz5/PT3/6U5YvXw7AsmXLuP3225k8efIuz7vnnntIT0/ntddeY/bs2cyePZt58+Zx1FFH7XY8xdy5c5k9ezYNDQ1UVlby5S9/mYEDBzJmzBhWrFjBo48+yv3339983Tlz5vC1r33NsReSJEmSOgUD5U7izfLN/L9/zmLx2sqd7s/OTOfZhRX839MLOrgySZL2XoWFhUyfPp1DDz2U/Px8Jk+ezP77789Pf/rTXZ43ZcoUPv7xj1NWVka/fv2aP6688kqmTp3aPA95Z1avXs0FF1zQvCDg4sWLuf/++8nMzOQvf/kLEyZM4KSTTtruuldddRUvv/wyr776alt/CSRJkiSpVULT2yu7mkmTJsWZM2emuow288+Xl/Ghm55i5ldP4aCy3js95qePzuO/7n6Jed84g9H9enRwhZIktdy8efMYM2bMHp9/7C8eAVo+d1lq8l5/90IIL8YYJ6WgJEmSJGmvYodyJ1FRWQNASUH2ex5z8aShpIXAX15Y9L7u9dzCcn7w0Ks8t7D8fV1HkqT2cN0DL/Pkm2t48s01hCunct0DL6e6JEmSJElSIxfl6yQqtjQGyvk573lM/x65nDSmH7fOWMT1Z4wnLW3nCwrtynMLyznul/+hriFBdkY6j37hBBf8kyR1KtedPo7rTh+X6jIkSZIkSTthh3InUVFZQ25mOvnZu874P3rwMJaur+KpN9e0+h4xRk77v8epqU+QiFBd18CHfv8kiUTXHHsiSZIkSZIkqWMZKHcS5ZU1uxx30eRD4wdTkJ3BLS8s3KP7HD+yL+khEIAArNlcw5jv3cf/Pf0GW2reewEhSZJaq6uu06Cuy79zkiRJUvszUO4kKiq3UpK/+0A5LyuD8yeW8fdZS6mqbVkAXFVbz1vlmwkh8LdPHsWTXzyRG84cz5Nf/AC3X3YERTmZXPHXGZR9826+fu9sNlXXvd+XI0nq5tLT06mr898Tday6ujoyMpzoJkmSJLUnA+VOomJLyzqUAT52yHAqa+r558vLW3T8R6c8ywm/epStdQ2kp6VxxD59+H8n789R+/bhwklDeeErp/D0lz7AsSP68ufnF5KVkfxrsaGqdo9fjySpe+vZsyerV68mkUikuhR1E4lEgtWrV9OjR49UlyJJkiTt1Wzh6CQqKmvYp6SwRccevW8frjvtACaV9WrR8d88dX8WVlSSk5m+0/0hBI7cpw9H7tOHypo6cjLTqW9IMPFH/+LscYP52bkHtfh1SJIEUFJSwvLly3n99ddTXYq6kfz8fEpKSlJdhiRJkrRXM1DuJFrToZyWFvj2aeN2ecysZet4YO4KvnHKAUwY1IsJg1oWPhdkZwJQn4h8/qiRHDCgJwCrN1Vz15xlXHrocPKy/GsjSdq1tLQ0ysrKUl2GJEmSJKmNha66eMmkSZPizJkzU11Gm9la10B9ItEc6LbEI/NWUp9IcOrYgdttf3jeSs79w1P0ysti1n+fRq8WzGbend889Qaf/9sMeuVl8dkjR/D5o0cyoGfe+76uJElSRwghvBhjnJTqOiRJkqSuzlbTTiI5jmLnIyney9fvn0NORtp2gfIt0xfyyanPs1//Hjz4uePaJEwG+NxRIxg3sCc/e2w+P3hkLj9+dB4XHTSELx0/usXdz5IkSZIkSZK6NjuUO4Gl67bw08fm8dkjRzCmX8sXkllYsZkBPfLIyUwnxsgPHp7L1++bw/Ej+3LXp4+mR25Wu9T7Vvlmfvnk6/zx2bfYUlvPcSP7cs1xozlt7EDS0kK73FOSJOn9sENZkiRJahtpqS5AsGJDFVOmL2T1pq2tOm94SSGzlq3jhn+/wrl/eIqv3zeHiycN5cErjmu3MBlgn9JCbjxvEsu/dzb/86GJLFizmTN/9yRX3/lOwP/cwnJ+8NCrPLewvN3qkCRJkiRJktSx7FDuwp5bWM6xN/6H2oYEABdPGsJfPnZEh3cJ1zUk+MespYzqW8TEwb2448XFfHTKs8QYycpI59EvnMBhw0s7tCZJkqRt2aEsSZIktQ07lLuwS25+pjlMBnhuYUVKRk5kpqdx4aShTBycnKV85d9mUJ+INESormvgkpuf6fCaJEmSJEmSJLU9A+VO4NYXFnHRn6fR2m7xqZcdQW5mOulpgdzMdKZedkQ7Vdg6933m2E5ZlyRJkiRJkqT3JyPVBQimL67g36+tJITWdRcfNryUR79wAk8sWM2xI/p2mrESTXU9+sYqjhhe2mnqkiRJkiRJkvT+GCh3AhVbaigpyN6jcw/rpIHtqL5FnPHbJ8jLzOC4kf1SXY4kSZIkSZKkNuDIi06gorKGkvw9C5Q7q1752QwuzueuOctSXYokSZIkSZKkNmKg3AlUbKmhdA87lDuzcycM5tlF5azcWJ3qUiRJkiRJkiS1AQPlTqC8cusej7zozM6dUEaMcLddypIkSZIkSdJewUA5xWKMyZEXe2GgPKZfEaP6Fjn2QpIkSZIkSdpLGCin2JbaemrqE5QW5KS6lDYXQuDc8YN5YsFq1lbWpLocSZIkSZIkSe+TgXKKVTQGrXvbonxNzpkwmIZE5N5Xlqe6FEmSJEmSJEnvk4Fyim2prWdAj1z6Fu19HcoABw7uxZBe+fxj9tJUlyJJkiRJkiTpfcpIdQHd3dj+PVlxwzmpLqPdhBA4Z/xg/vfpN9hUXUdRbmaqS5IkSZIkSZK0hwyU1e6+cMwoPj55OIU5/nWTJEmSJEmSujJHXqTYX19czFm/fYLq2vpUl9JuhpUUcMDAYkIIqS5FkiRJkiRJ0vtgoJxiW2obWLGxmpzM9FSX0q7mLF/PJ6c+T9VeHJxLkiRJkiRJezsD5RT7xGH78OLXTt3ru3crttRw1+xlzFu1MdWlSJIkSZIkSdpDDrVVhzh2RB9W/+AcsjL27k5sSZIkSZIkaW9mh3KKXfTnaXzujhdSXUa7S09LIysjnRgjMcZUlyNJkiRJkiRpDxgop9icFeup2FKT6jI6xOurNzHqu/fx79feTnUpkiRJkiRJkvaAgXKKlVfWUJKfneoyOsSQXvms2lzNXXOWpboUSZIkSZIkSXugwwPlEMKIEMLWEMKtjc+PDSEkQgiV23xc2tF1pUJDIsG6LbWUFHSPQDknM53Txw7knpeXU9+QSHU5kiRJkiRJklopFR3K/wvMeNe2t2OMBdt8TElBXR1uQ1UdiRgp7SaBMsC5E8qoqKxh2lvlqS5FkiRJkiRJUit1aKAcQrgQ2AA82pH37ayaZid3l5EXAKfuN4CczHT+MXtpqkuRJEmSJEmS1EodFiiHEIqA7wLX7GR3nxDC6hDCohDCz0MI+R1VVypVVG4FoKQgJ8WVdJz87AxOGdOfu19eRiIRU12OJEmSJEmSpFboyA7l64E/xhiXv2v7fGAC0B84HjgI+NnOLhBCuDyEMDOEMLO8vOuPTGjqUO5OIy8gOfZixYZqXliyNtWlSJIkSZIkSWqFDgmUQwgTgBOBn797X4xxVYzxtRhjIsa4CPgqcO7OrhNjvCnGOCnGOKm0tLRda+4I5ZWNIy+6WaB8xv4DyUxP4645jr2QJEmSJEmSupKO6lA+FhgKLA0hrAL+Czg3hPDSTo6NHVhXShXnZnHE8NJuNUMZoGdeFieM6ss/Zi8jRsdeSJIkSZIkSV1F6IhAL4SQBxRts+m/SAbMnwP2BxYCS4FBwC3A4hjjx3d1zUmTJsWZM2e2S71qf9PeWkN1bQMnjOpHWlpIdTmSJGkvF0J4McY4KdV1SJIkSV1dRkfcJMZYBVQ1PQ8hVAJbY4zlIYSJwK1AMbAWuBv4ekfUpdQ5cp8+qS6hU3huYTlPLFjNsSP6ctjwrj/GRZIkSZIkSXu3DgmU3y3GeN02j3/GeyzCt7f76JRnqG1I8NdPHJXqUlJi7soNPPDqCr76gbGpLiUlnnlrDSf86lHqGhJkZ6Tz6BdOMFSWJEmSJElSp9YtZhV3VmP792Rs/56pLiNlHn9jNV+/bw7L11ft/uC9RCIReeatNXzpHy9yzI3/oaY+QSJCdV0DF9/8TKrLkyRJkiRJknYpJR3KSvrvk7pnZ26Tjx0ynIsnDaVXN1iU8IXFFdw6YzH/mL2UtzdWk5WRxmFDS3hhyVrqGhJE4JKDh6a6TEmSJEmSJGmXDJRTKJGI3XpBuqLczFSX0G4aEgmeWVjOkcP7kJYWuHXGYm56ZgGn7jeA8yeWccb+gyjKzeS5heU8vmA1iRj578bRH7X1DWRlpKf4FUiSJEmSJEk7cuRFitTUNZD1xdv56aPzUl1KSr24dC1H//xhFlVUprqU962+IUFVbT0Ad85ayjG/+A/PLioH4Bun7E/5D8/j7suP4eKDhzWH6YcNL+Xak/fnG6ccQEZ6Gms2b2XM9+7n9pmLU/UyJEmSJEmSpPdkoJwia7fU0JCIFGR37ybx4rwsnn6rnLvnLEt1KXukriHBw/NWcvlt0+n/9bv436feAOC0sQP52yeOZOKgXgD0KcyhMGf3HdnpITBuQE/G9Ctq17olSZIkSZKkPdG908wUKq+sAaCkG8wP3pXhJYVMGFTMP+Ys5ZoTxqS6nBaprW/gsTdW8/dZS7lnzjLWVdVSkJ3BGfsPZFJZMkAuzMnk/AOHtPravQuyufvyY5qff/+hVzl3Qhmj+howS5IkSZIkKfUMlFOkYktjoFzQvQNlgHPGD+ZbD7zM2xuqGNAzL9XlvKdH5q3ktpmLuefl5WyorqUwJ4OzDhjEeRPKOHlMf3Kz2vY/p9Wbqvn54/P5wcNz+eMlk/nwHgTUkiRJkiRJUlty5EWKVFRuBQyUAc6dUAbAPS8vT3El25v21ho+NfV5nluYnIP8+2ff5O6Xl3HWAQO59zPHsOYH53HrpUfwofGD2zxMBuhblMusr53GAQN6csGfpnH1nTOprW9o8/tIkiRJkiRJLWWHcopUNI68KC3ISXElqTemXxGj+hbxj9lLueLokakuB4DnFpZz/I3/oS4RmTpjEY9ddSK/PH8SxblZZGemd1gdg4rzePKLH+Br98zi54/PZ/riCv72iaMo65XfYTVIkiRJkiRJTexQTpGmkRe98rJSXEnqhRA4d/xgnnxzTXPndqpdcvMz1CUiAFvrE1xy8zP0K8rt0DC5SWZ6Gj879yDu/ORRvLZqIwf+6EH+/drbHV6HJEmSJEmSZKCcIhWVNRTnZZGR7h8BwLkTy2hIRO59ZUWqS6GmroHfXXQouZnppKcFcjPTmXrZEakui3MnlvHiV09lYM9cTvu/x/n2Ay/TkEikuixJkiRJkiR1I6aZKVJeWUNJvvOTm0wcVMzQ3vncNXtpqkvhhode5eNTn+OuTx3N9aeP49EvnMBhw0tTXRYAI/oU8dyXT+bSQ4Zz+8zFVNU6U1mSJEmSJEkdxxnKKXLMiD6M6VeU6jI6jRAC1506juyM1P6O45UV6/nBw3O5aNJQThk7gFPGDkhpPTuTl5XBnz96GOuraijMyaS6tp5XV27k4CG9U12aJEmSJEmS9nIGyinyuaM6x+Jzncmlk4en9P4NiQSfvn06PfOy+Nk5B6a0lpYozkt2uF//71f5yaPzePPbZ7lYnyRJkiRJktqVgXKKbK1rICcFC7x1dkvXbWHOivWcecCgDr/3r598g+mL1zL10sMpKcjp8Pvvqa+euB8HDOjZHCY3JBKkpznNRpIkSZIkSW3P1CkFYoz0+Mrf+Pq9s1NdSqfzw0fmcuGfp1FdW9+h9128tpKv3zeHU/cbwEWThnbovd+vnnlZzTU/uWA1B3z/AV5esT61RUmSJEmSJGmvZKCcAg2JyHdOG8cHRvdPdSmdzldO2I85/+90crM6rnk+xshn73gBgN9eeAghhA67d1vLTE9jQ1Udh/7kIW5+/q1UlyNJkiRJkqS9jIFyCmSkp/HfJ43l2JF9U11KpzOspIB9Sws79J63zVzMQ/NW8oOzJnT5GcSHDy9l1n+fyuHDSvj4rc/zqanPd3i3tyRJkiRJkvZeBsopsKWmnsVrK6lrSKS6lE5p+uIKPjrlGWrrG9r9Xltq6vnSP15k8tASrjh6RLvfryP0Lcrl4SuP5xun7M8fn3uLw376MG+Wb051WZIkSZIkSdoLGCinwFNvrmbYt//JS8vWpbqUTqmisoZbZyzm0ddXtfu98rMzuOPjR/LHSybvVQvZpaelcf0Z43ngc8eydP0WDvrRg9w9Z1mqy5IkSZIkSVIXt/ckaF1IeWUNACX52SmupHM6cVQ/CnMyuKudA9CmURDHj+rHfv17tOu9UuW0sQOZ9d+nMqpvEef8/imuf/CVVJckSZIkSZKkLsxAOQUqmgLlAgPlncnOTOeMsQO55+Xl1LfTWJDKmjr2//4D3Pj4/Ha5fmcypFcBT3/xA3z+6JEcMqR3qsuRJEmSJElSF2agnAIVW2rISAsU5WSmupRO69wJZVRU1vD0W2va5fqJBBw/si+Tynq1y/U7m+zMdH794YM5eb8BAPz6ydd5rANGikiSJEmSJGnvYqCcAhWVNZQUZBNCSHUpndYp+w0gNzOdu2a3z9iLotxMfn/xZI7Yp0+7XL8zq61v4HfTFvCn599KdSmSJEmSJEnqYgyUU6C8ciulBTmpLqNTy8/O4JT9BnDXnGUkErHNrltb38DFf57WrRdEzMpI57n/OpnfXngIAIsqKlnbOIZFkiRJkiRJ2hUD5RSo2FLj/OQWOHfCYN7eWM0LS9a22TX/5z+vcfuLS1ixoarNrtkVFWRnUpCdSYyRD//paQ780b94YXFFqsuSJEmSJElSJ2egnAIVlTWU5Bso787pYweSmZ7GP2YvbZPrzV+1kev//SoXHDiEMw8Y1CbX7OpCCPzmgkMIIXDkzx/hN0+9QYxt1xEuSZIkSZKkvYuBcgqUV9qh3BI987K4+thR7Nevx/u+ViIR+fTt08nPyuDG8w5qg+r2HgcP6c1LXzuVk0b34/N/m8ElNz9DZU1dqsuSJEmSJElSJ5SR6gK6o+tOO4AxbRCSdgc/PvvANrnOTc8sYNpb5fz5I5PpW5TbJtfcm/TKz+bezxzLDx+Zyzfvf5nZK9Zz5yePZr/+/j2VJEmSJEnSO+xQToErjxnFCaP6pbqMLmPz1jpefXvDHp+/YkMVX/3nLE4Y1Y9LDx3edoXtZdLSAteevD+PXHk8a7fUcvCPH+S2GYtSXZYkSZIkSZI6EQPlDlZVW89rKzdSXVuf6lK6jHP/8BQf/tPTe3RujJEr/jqD+obI7y5MzgrWrh0/qh8vfe1UDhzci0umPMvTb65JdUmSJEmSJEnqJBx50cFeXLqOo3/xCA9//ng+MKZ/qsvpEr516gFAMhxubSD8j9nLuPeV5fz4QxPZp7SwPcrbKw3smcdjV53InbOWcuQ+pQDUNSTITPd3UJIkSZIkSd2Z6VAHG9W3iNsvO4Lxg4pTXUqXceQ+fThynz571F0cY+Sk0f354nGj26GyvVtmehoXTRpKCIH5qzay73X/tFtZkiRJkiSpmzNQ7mB9CnO4cNJQ+hTmpLqULuWlZev40SNzW33e+QcO4d+fP44MO2vfl8z0NEb37cHwkoJUlyJJkiRJkqQUMmXrYPNXbeTxN1YRY0x1KV3KY6+v4r//OZtFFZUtOv7xN1bx6ydfpyGRcG5yG9intJCHrjyegT3zaEgk+MZ9s1m9qTrVZUmSJEmSJKmDGSh3sN8/+yZn/vZJQ85WOmfCYADunrOsRcf/9cUl3PjE69TWJ9qzrG7p5RUb+Olj85n4wwcdgSFJkiRJktTNGCh3sPLKGkoKslNdRpczvKSQCYOK+cecpS06/v8uPIRpX/oAuVmuO9nWJg7uxfNfPpn87AyO++V/+Ml/XuPZhWv4wUOv8tzC8lSXJ0mSJEmSpHZk2tbBKiprKMk3UN4T504YzDfvf5m3N1QxoGfeTo+Zt2ojeVnpDOlVQN+i3A6usPsYP6iYmV89hU9OfZ6v3DOLtBCASGZ6Gn+8ZDJn7j+IotzMVJcpSZIkSZKkNmaHcger2FJDaaGB8p44Z3wZAPe8vHyn++sbElxy8zOc+KvHaEg46qK99cjN4u+fPIpeeVkkYiQRoaY+wUemPMutMxYB8MqK9fT7f//g4XkrAXhx6Vou/vM0rvjrC3z93tn85D+v8Ydn3+Qfs5by6OureGnZOhZVVFJT15DKlyZJkiRJkqT3YIdyByuv3MqoPoWpLqNL2q9/D0b3LeIfs5dyxdEjd9j/s8fmMWv5eu785FGkp/m7ko4QQuD+zx7L8b96lLr6BjLS0/j6yWP5wOh+AORnZ/DBcYMY0CPZLb5uSy0zlq5jfVUtG6praUjsfHHKB684jlP2G8ADr67g83+bwb+vOI7R/Xrw0Gtv87dZSynOzaJnXmbj5yyK87K2e1xakO3fAUmSJEmSpHZgoNzBKiprKCnISXUZXdY54wfzo/+8RkXl1u2+jm+Wb+bb/3qFD40b1LyAnzrGYcNLeewLJ/DEgtUcO6Ivhw0vbd43vKSQ3110aPPzD4zpz4JvnwVAjJHKmno2VNeyvqq2OWReX1XLuAE9Aeidn83R+/ahZ14WAEvXV/HQvLdZX1VLVe17dzHP/+aZjOpbxE3TFvDzx+cz86unkp+dwR0zFzNtYfkOAXTP3EyWrt/CgjWbOX3swO1egyRJkiRJkt5hoNyBttY1UFlT7wzl9+HciWV8/+G53PvKCj5x2D5AMpi8/PbpZKWn8esPH0wIIcVVdj+HDS9tdQgbQqAwJ5PCnEwGF+fv9JjJw0qYPKyk+fmnj9iXTx+xLwC19Q1sqK7bLojeUFXL+upaBvZMdkT3Lcph/wE9yc1MB2DOivXcNnMxG6priTtvjuaHD7/GI184nuNG9mvV65EkSZIkSeoODJQ70NotNQCUFhgo76mJg4o5Zt8+xG3SwD8/v5DH31jN7y48hIHvsVif9j5ZGen0KUynT+F7d/x/cNxgPjjunY71H3xwIj/44EQSicjmmrrmIPrU/32cVZu3AtAQI5+89XkWfvdDvLh0LeMHFpOR7vgMSZIkSZIkcFG+DlVemQysSgyU91gIgSe++AE+eXiyS3XVpmq+fNdLHL1vHz7VuE3anbS0QI/cLIb0KmDCoF7c9emjyc1MJz0tkJuZztTLjqB881aO/PkjXHvf7FSXK0mSJEmS1GnYodyBhvYq4L7PHMOkIb1TXUqX15BIsL6qli/8fSbVdfXcdNGhpKU56kJ75rDhpTz6rjnQDYkEt112BPv37wHAC4sr+PuspVx17Kj3HNEhSZIkSZK0twvxvQaJdnKTJk2KM2fOTHUZSpER191LZW0dFVtq+M5p47j25P1TXZL2cjc+Pp8v3/0SAB+eWMaXTxjDQWX+ckiSuooQwosxxkmprkOSJEnq6hx50YHmrdrI/a8sp74hkepSurTnFpazdP0W1mzeSkYIHLVPn1SXpG7g6uNG89Z1Z3H1saO4f+4KJv3PvznmF49w78vLSSS65i/mJEmSJEmSWstAuQPd8eISzrrpyVSX0eVdcvMz1DYkSETYWp/g0lueTXVJ6iaG9Crgp+ccxLLrz+anZx/I4rWVfPCmJxl9/X385qk3qKqtT3WJkiRJkiRJ7cpAuQN9/uiRvPBfp5CR7pf9/Zh62RE7LKAmdaQeuVlcc8IY3rrug9zx8SPomZfF5/82g588Oi/VpUmSJEmSJLUrZyirS3puYfl2C6hJqRRj5NmF5YzoU0Sfwhzuf2U5d85exs/PPZDivOxUlydJwhnKkiRJUlvJSHUB3ckdMxdTmJPJ6fsPTHUpXd5hw0sNktVphBA4YptZ3ovXbWHm0rUUZmcmn6+tZEivfEIIqSpRkiRJkiSpTXT47IUQwogQwtYQwq3bbLs4hLAkhLAlhHBPCKFXR9fVEX7wyFx+/+ybqS5DUju78phRzPl/p5GRnsbWugYm/+Qh9r/hAf747JtsrWtIdXmSJEmSJEl7LBXDfP8XmNH0JIQwFvgd8FGgL1AF/CYFdbW78s01lOT79nepO0hPS2v8HPjx2RPJTE/jU7dNZ8i37uG7D75C+eatKa5QkiRJkiSp9To0UA4hXAhsAB7dZvMlwH0xxqdijJXAN4FzQgiFHVlbe4sxUrGlhpICA2WpO8lMT+Ojhwxn1n+fyqNfOIFJZb349gMvU/ate/jM7dOZv2pjqkuUJEmSJElqsQ6boRxCKAK+CxwPfGqbXWOBZ5uexBjfCiHUAiOBFzuqvva2eWs9dQ0JSgtyUl2KpBQIIXD8qH4cP6of81Zt5OePzWfK9IXc9MybnD52ALd//EgKczJTXaYkSZIkSdIudWSH8vXAH2OMy9+1vQB4d4veRmCHDuUQwuUhhJkhhJnl5eXtVGb7KK9Mvr3dkRdqMnXGIoZ+827SrpzK0G/ezdQZi1JdkjrImH49uOniQ1l6/dlcd9oBJCIUZCd/vzdjyVpq652zLEmSJEmSOqdddiiHEG5p4XVqYoyf3sV1JgAnAhN3srsSKHrXtiJg87sPjDHeBNwEMGnSpNjC2jqFii01AI686CKmzljE1++dzdL1VZQV53HDWRO45OBhbXr9y2+bTlXjAm1L1ldx+W3TAdr0Purc+hTm8O3TxjU/X19Vw7E3PsKnDt+XG8+blMLKJEmSJEmSdm53Iy8uAL7fgut8GXjPQBk4FhgKLA0hQLIrOT2EsB/wb2B804EhhOFANvBGC+7bZVRUGii3lc4Q9sYYqWtIUJ9o/NwQqUsk3nm87b5EgrqG2Pg5+fhL/3ix+fpNquoa+K+7X2LcgJ7kZmWQm5ne/JGTmU7jfzudTnv/eXQnPXOz+MenjmZY7wIAXlq2jpufX8jVx45in9K9aqy8JEmSJEnqokKM793oG0J4M8a4724vEsL8GOPoXezPY/su5P8iGTB/DugDPAecDrwE/A7IiDFeuKt7Tpo0Kc6cOXN3pXUaU55fyGW3Psdb153F8BKDoT317rAXIC8znZsuPnSXIebWugY2VNeyoaqWDdV12zx+9/M6/vnyMrbWJ3a4RgCyMtKoa4gkdvHfTXsIAXIyGgPmrHRyMzPIy2oKnLcJn7PSycvMaDzmnY+8bQPqbR7nvSu4bjo/KyOtRQH2nv55qGVumraAK/8+k/pEgrPHDeaa40dz+PDSTvvLBUnqzEIIL8YYffuHJEmS9D7tskO5JWFy43HvGSY37q8CqpqehxAqga0xxnKgPITwWWAq0Bv4D/Dxlty3K3lnhrKL8r0f1947e6edvVf89QWmvVXeGBDXsqGq7p3H1XVsrdv1TNrM9DSK87LomZu50zAZIAJXHzuazPRAZnoaGWlpZKaHxs9pZDRvT37e9vE7n5PnnPfHp1m1aesO9ygtyOY3FxxCdV091bUNVNe981FVW//O88bHVbUNVNfVU15Zt82+Bqrqkvtr3+O17E4I7BBWN4fP24TV/37t7Z3+eXzl7pc4fmQ/+hRmk57WkaPa9y6XHzmCMw8YxK+ffJ3/m7aAu+Ys49Chvbnm+DGcM34wGel+bSVJkiRJUsfaZYfye54UQk9gX2BpjHFNWxfVEl2tQ3ljdS3L1lcxtn8Puwt3Y0NVLYvWVjZ+bGHxNo9fW/Xu9RvfUVKQTXFuFj0bg+GeuVnJj7xtHudmNgbHTcclt207UmLoN+9myfqqHa4/pDiPxdef3SavsaM6exsSCbbWJaiuq28Mnxt2CKu3C6p3ElbvNNRuPH9Xfx4AaSFQWpBN/x659CvKoX9RLv2Kchs/5zRuTz7Pz97dBJ7ubUtNPVOmL+Tnj8/nzfLNDOmVz9XHjuKTh+1LUW5mqsuTpE7PDmVJkiSpbbQ6wQkhnAf8DFgO7BtCuCHGeGObV7aX6ZGbRY/crFSX0SF2N1O3qraexWu3sHhdJYsqkkHxtgHyhura7a5XlJPJsN4FjOxTyLL1W9hcU7/DPcuK81jSRmHvDWdN2GnYe8NZE9rk+vDOLOb2nj2cnpZGfnZau4W17xW+lxZk853Tx7Fq01ZWbqxm5aZqVm2q5pW3N7B601bqEzv+IqsgO2O7oPm9wueS/GzS0rrfL2XyszO44uiRfPbIEdz36nJ+9th8rrnrJSoqa9r076YkSZIkSdKu7LZDOYQwMMa4YpvnjwNnxRg3hxD6Aq/EGPu0c5076GodyrfPXAzARZOGprSO9razztuMtMDBZb2IBBatrWT15u1HPeRkpjO0Vz7DehcwrHfy89BtHhfnZTV3D3dUZ68LzbXMnvx5JBKRtVtqWLWpmpWbtjZ+rm4On7d9vmlr3Q7np6cF+hbm7LTLebsu6B655GSmt/h1dMU/75lL1jKoOI9+Rbn8+7W3mTJ9IR87ZBizl6/n2BF9OWx4aapLlKROww5lSZIkqW20JFB+HrgT+HmMsSGEcA9wO/AicDxwdYxxbHsX+m5dLVA+8mcPk5WRxmNXnZjqUtrFig1VPP7Gaj57xwtsqd2xgzg9LXDMvn0aQ+NkWDy08XHfwpxWdZx21fBvb9Wefx5baupZvbm6scu5MXzeWM2qzduHz2s21+x0ocQeuZn0bwyX+xXuJHzukcu0N8u55q4Xu/zCgn949k2+/9CrrNq0ldr6BjLS0/jzRw7b63+JJUktZaAsSZIktY2WBMoZwDXAOcB/AUuAnwAHAAuBa2OML7dznTvoaoFyfUOC6roGCnP2jlmnFZVbeWLBGh57YxWPvbGa11dv2uXxAUj8+pKOKU7dTkMiQXllzTuB86at73Q9N47baBq9UVW76wUam5TkZ/OvK45jRGkhPfO6xriaYd+6h8Xrtmy3bUy/Is4ZP5hzJpQxcVCxM9wldVsGypIkSVLbaPGifCGEIcAvgE3Af8UYy9uxrt3qaoFyV7exupan3lzDY2+s5rE3VvHyig0AFOZkcPQ+fTh+ZD+OH9WXD/7uSZa284J20vuxeWtdY5dzMmS+8M/P7PackoJsRpQWJj/6JD/vW1rIiNKiTrUg3nMLyznhV49S25AgMz2NK44awezl63nyzTU0JCJDeuU3hsuDOWxYCelpaakuWZI6jIGyJEmS1DZaFCiHEPoAZcBbwJHAd4GbgN/GlibSbawrBcoNiQRX/m0m508s4/hR/VJdTotsqannmYXlzR3ILy5dRyJGcjLTOXJ4KceP7Mvxo/px0OBeZKS/E0p11Ixjqa2818KC/Yty+c0FB7OgfDML1mzmzYrk5+Ubtj+2T2HOzsPmPoUUZHd82PzcwnKeWLB6uxnKFZVbue+VFdw1ZxkPz19JbX2CvoU5/Or8SZx/4JAOr1GSUsFAWZIkSWobLRl58SXg68ACYAjwReA+4FvAMcBVMcYOT3a7UqBcvnkrff7fP/jV+ZO48phRKa3lvebd1tQ18PziCh5v7EB+fvFa6hq7HA8d2jvZgTyyL5OHlpC9m4XOnHGsrqS1vwSpqq3nrfLNyaC5KWxufPz2xurtju1X1Bg29ylqDp33bfzIz85o99e2M5uq63jwtWS4/MVjR3PY8FKeXVjOb6ct4IdnTWBAz7yU1CVJ7c1AWZIkSWobLQmU1wDjY4wrQwiDgHuavhkPIewH/DrGeHz7l7q9rhQoz1u1kf2+dz+3X3YEF6ZwgaydBWeZ6YGRpYUsXLuF6roG0kLgoLJeyQ7kkf04YnhpyoIvqaO01S9BttTUN4fLC9Zsag6d3yzfzKpNW7c7dkCP3O26mkf0KWLfkgL2LS0kN6tj/5ubOmMRX71nFq9/60wKsjO5Z84yqmrrOX3/gfTI7RrzoyVpdwyUJUmSpLbRktRiDXBACKECGA+sbtoRY3wN6PAwuaspr0wGSSUF2Smt4+v3zt4uTAaoa4i8Ub6ZK44ayfEj+3H0vn26zAJkUlu55OBhbdJFn5+dwfhBxYwfVLzDvs1b67YJm5s6nDdx7ysrWLN5+7B5UM+8d4LmxtB539JC9ikpJGcX7xDY02D8koOHcdFBQ0lLSy7Y9/tn3+Rfc98mMz2NE0f145wJgznrgEH0Kcxp5VdEkiRJkiTtbVoSKF8M/IDkgnyvAJ9rz4L2RhWVNQCUFqQujHnqzdU7nRMLUN8Q+cV5NuxI7akwJ5OJg3sxcXCvHfZtrK5Nhs1rth+lcdecZc3//wAIAQb3zNtuhEZT2PzCogqu+NuM5l8aLVlfxeW3TQdoUajcFCYD3PeZY5m+uIK75izjrjnL+PRt0/lMeIGj9inlnAmDOXv8YAYX57/fL4kkSZIkSeqCWrQoX2fUlUZe3DRtAZ+54wWWf+9sBnbgfNIYIw/NW8kND73KtLfKSQuQ2Mkf95DiPBZff3aH1SWp5dZX1fBmeeV2IzSaguf1VbW7Pb+sOI8l7+O/7xgjL6/YkAyXZy/l1ZUbAfh/J43l+2dN2OPrSlJHc+SFJEmS1DZ22aEcQjgpxvjw7i4SQvhAjPGRtitr71KxJdlh2Du/Y0ZeJBKRe15exvcfmsuLy9YxqGcevzxvEgXZGVy5TQcjJBcfu8FQSOq0ivOyOXhINgcP6b3DvnVbapoD5o/e8uxOz1+6vorxP3iACQOLGT+wmAmDkp97t3AETwiheYzHd04fxxurN3H3y8uYVJas5/XVmzjn90/xx0smM3lYyZ6/UEmSJEmS1CXsbuTFnUBRC67zV2DH93ELSI68KMjO2OXs0z3x7nmp158xnhACP3h4Lq+t2si+pYX84eJD+eghw8jKSN47KyOtTRYfk5R6vfKzOTQ/m0OHlvCN+2bvdKxNUU4mA3vk8Z/XV3HLC4uatw/qmceEQcmAecLAZGA8vHfBdqMvdmZk3yK+9oGxzc8ra+roU5jDwJ65ANwzZxlPv7WGc8YP5rBhpbu9niRJkiRJ6lp2OfIihJAAlu/uGkCvGGOHDtTsSiMvPjrlGZ5ZWMHC73ywza45dcYiLr9t+nbdxgGIwNj+Pfj6yftz/sQyMtLT2uyekjqvnf0/IS8znZsuPrT5l0ZrNm9lzvL1zF6xnjkr1jN7+Xrmr95EQ+MsnILsDMYPLGb8wJ5MGNSLCYOK2b9/D3KzWjJuP+n6B1/h+n+/Sl1Dgn5FOXxo3GDOGT+YY0f2JdP/H0lKIUdeSJIkSW1jd4HyMS28TiLG+HTblNQyXSlQPuu3T7Bq81Ze+MopbXbNod+8e6fdiKUF2az6/rl2BUrd0LvftdCSdyBsrWtg7soNzF6eDJibwubNW+sBSAuBUX0LmbDNuIwJg4rpW5T7ntfcWF3Lv+a+zV1zlvGvuSuoqm2gZ24WZx0wkHMmDOak0f1bFVJLUlswUJYkSZLahovydZDa+obmsRNtIe3KqezsTy4AiV9f0mb3kdT9JBKRxesqmb18PXNWNIXN61i6zS+x+hXlNIfLTSMzRvYpJD1t+y7k6tp6Hp6/krtmL+O+V1ewvqqWU/brz4NXHN+833BZUkcwUJYkSZLahj/Fd5C2DJNjjPTIzWRDdd0O+8qK89rsPpK6p7S0wPCSQoaXFHLOhLLm7eu21PDyig3MbhyXMWfFen722HzqGhIA5Gamc8CAntt1Mo8b2JMPjhvMB8cNpq4hwZMLVpPRGDpXVG5lyLfu4X8/fDCXTd4nJa9VkiRJkiS1joFyB/jU1Oc584CBfHDc4Pd9rfqGBFf8dQYbqutITwvNs08hOS/1hrMmvO97SNLO9MrP5tiRfTl2ZN/mbbX1Dcxbtal5JvPsFev5+6yl3PTMmwCEAPuWFDK+sZN5wqBiRg/sQYyR+kTks0eO4MDByTVdH563kh88PJdzxg/mQ+MHMbi4Q0fzS5IkSZKkFjBQbme19Q385/VVjOnX431fq7Kmjg//cRoPvvY2Xz95LGP6FvH1++a0al6qJLWlrIx0xg9Kjrz42KHJbTFGlm+oap7LPGfFemYtW8eds5Y2n9c7P7uxk7knc1asJ5D8f1x55VauunMmV905k0OG9OacCclF/Ub0KUrNC5QkSZIkSdtp9QzlEMJgYGCM8fn2KallutoM5fdr5cZqzvjtE8xZsZ7ffPhgLj9yRKpLkqRW2VRdxytvv9PJPHv5el5duZGtdQ0AZGWkMbZfD4b1zqe2IfJm+Wbmr94EwP79e3DOhDLOGT+YcQN7EoILj0pqHWcoS5IkSW2jxYFyCKEMuB2YAMQYY0EI4TzglBjjp9qvxJ3rToHyays3cupvHmPtllr+9skjOW3swFSXJEltor4hwRtrNjN7+bp3FgBcsZ41m7c2H9MrL4sQYN2WWgb0zGXal05iSK983qqoZHjvAtLSDJcl7Z6BsiRJktQ2WhMoPwg8DfwQWBtjLA4h9ABejjEOaccad6qrBMrTF1fw7Qde5sbzJjGqb+vfsv3EG6v50O+fJDcznQc+d1zzrFFJ2put2lTdPDKjaWxGU7cyQFFOBltqG9i/fw+uOnY04wf2ZHSfIvJzMlNYtaTOzEBZkiRJahutmaF8CHB6jDERQogAMcaNjaGy3sPCikoemreS1o4WAbhtxiIuu/V59i0t4MErjmNIr4J2qFCSOp9+Rbmcsl8up+w3oHnblpp6Xl25gTnL1/PisrU89sZqXl+9mU9OfWcCU3FuFuMH9eTkMQM4eEhvxg/sSUlBTipegiRJkiRJe6XWBMqrgX2BN5o2hBD2A5a+5xmivDL5tu2SguzdHjt1xiK+fu9slq6vokduJhuq6zh2RF/u+vRRFOft/nxJ2pvlZ2dw6NASDh1aAiTnyCcSkbcqNnP/Kyv40/NvMX/1Jp5YsIYnFqxpPq9/jxwOHNSL8QOLmTAo+bFPSaGjMiRJkiRJ2gOtCZR/AtwfQvgBkBFCuAi4luQIDL2HisoaQoDivKxdHjd1xiIuv206VY2LU22oriM9LXDZIcMMkyXpPaSlBUb0KeJLJxTxpRPGUFvfwBML1nDbzEXc+8oK1lfVsnrTVp56cw3/eu1tmt4skp+VwbiBPZMB88Bixg8q5oABPcnLas0/i5IkSZIkdT8t/sk5xvinEMJa4DPAMuBjwDdjjPe0U217hYotNfTKyyY9LW2Xx3393tnNYXKThkTk2/96mUsP26c9S5SkvUZWRjonjenPSWP605BI8NyiCu6avYy75iwjKyONf11xHK++vZEHX1vBsvVVTJ2xmP97egEAaSEwsk8hEwYVb9fN3K8oN8WvSpIkSZKkzqNVrVgxxn8C/2ynWvZKFZU1LRp3sXR9Vau2S5J2LT0tjSP36cOR+/Thp+ccyPINVQwuzufgst5879+vMrpvERt+fD5L1m3hP/NXsXxDFbNXrOf5xRXc8eKS5uv0KcxhQmPAPH5gTyYM6sXIPoVkpO/6F4WSJEmSJO2NWhwohxB+CdwRY3x2m22HAx+OMX6xHWrbK1RsqaG0BYFyWXEeS3YSHpcV57VHWZLUrYQQGFyc3/z4gc8dS019AyEEstLT+PTt0xk3sCfnjB/M9aePY1DPPF5+ewNzVqxn9vLkxy+emE9tfQKAnMx0DhjQMxkwN4bN4wYWU5iTCWw/E7+sOI8bzprAJQcPS9nrlyRJkiSprYTYNFBydweGUA4MjDHWbrMtG1gWY+zTTvW9p0mTJsWZM2d29G1bbdz3H2CfkgLuvvyYXR73mydf5/N/3/715GWmc9PFhxpCSFI7Wl9Vw5Tpi7hr9lKmLSwnRti3tJBzxg/mnAmDObisN2lpgbqGBPNXbWR2Y8g8Z8UGZi9fz9otNc3X2qekgF55WcxesZ66hnf+ffX/51LqhRBejDFOSnUdkiRJUlfXmpEXEXj3+3vTd7JN2yiv3MqhQ3vv9rilG5LdyQN65LJyY7UdbZLUQYrzsvnicaP54nGjWb2pmn++vJy75izj54/P53/+8xoDe+Zy9rjBfP2U/TlgYDEHDCzmo4ckz40xsmJD9TudzCvWc8+cZdQntv9lbVVdA1f89QXSQ2Di4F6MKC0kLS2k4NVKkiRJkvT+tKZD+R/AIuCrMcZECCEN+CEwIsZ4djvWuFNdpUN5xHX3Mrwkn+tOG8dhw0t3eszG6lrKvnkPp+43gDs+cWQHVyhJ2pkNVbU8MHcFd81exmNvrGbJdz9EUW4mD732NnUNCU7ffyAh7BgKp105ld39y5qflcH4QT05cFAvJg7uxcRBxYzt34OsjPT2eTGS7FCWJEmS2khrOpSvBu4HVoYQlgBlwErgzPYobG/w3MJyVmysYtHazTz9VjmPfuGEnYbK//f0AjZtreNrH9gvBVVKknamZ14Wlxw8jEsOHkZdQ4LMxkX4fvLoPNZuqeGMAwYB8Mxbaxg/qJiC7OT85F3NxP/nZ45h1rL1zFq+nlnL13Hz9IX8+qk3AMhMT2P//j2aA+aJg4q3u64kSZIkSZ1BizuUARq7kg8FBgHLgBdijIl2qm2XukKH8vBv3cOidVuanw/rlc/C735ou2Oqa+sZ9u1/MmFQMf/+/PEdXKEkqbVq6xtYsaGaYSUFVNXWU/K1O0nEyMljBnDO+MFsra/nmn+8RFVdQ/M57zVDOZGIvFm+mVnL1yVD5mXreWn5Oioqk3OZQ4CRfYqaA+aJg3oxcXAxJQU5Hfqapb2BHcqSJElS22hNhzKN4fFzjcEykAyZUxUqd3ZXHD2Sr/1zFgHIykhn6mVH7HDMzdMXsnrzVv77A2M7vkBJUqtlZaQzrKQAgOyMNB76/PHcNWcZd81eyr2vLCc9LTCmbxFL1lWyuaaBfoXZ/OScg3Y6Ez8tLTCybxEj+xZxwUFDgXfmMr8TMq/j2YXl3PHikubzBhfnJcPlQcVMHJwMmgcX5+10BIckSZIkSW2pxYFyCOFA4H+BcUBTa1QguVifQx93Yky/HhwwoCdnjx/MSaP77zDuor4hwY//M4/JQ0s4ZkSfFFUpSdpT6WlpHLVvH47atw8/O+dAXlq2jrtmL+PWGYvYXJPsUF61uYZ1W2oB2Ly1joZEpGde1nteM4TAoOI8BhXncWbjWA2AtZU1zF6RDJhnLV/PS8vWcd+ry2l6o1Hv/OztAuaJg4oZ0aeQ9DTXzpUkSZIktZ3WLMr3CnAf8Bdgu+GQMcYlOz2pHXWFkRe7c/vMxVx88zPcc/nRfHDc4FSXI0lqI+8eeTSwRy7LbziHPz77Jp+6bToLr/sgw0oKmLtyA1tq6hk/sJjszNb/bnZLTT0vr1jfHDDPWr6eV1duoLY++cahpsX/mgLmAwf3cvE/dVuOvJAkSZLaRmsC5U1Aj9iaocvtqCsEyolEJC1t528/jjEy4Yf/oq4hwavXnvGex0mSup7nFpZzwq8epbYhQVZ6WvOirHNXbuC+V1bwtQ/sRwiBT059nj899xaZ6WlMGFTMoUN6c8jQ3hwypIQRpYV79G9DbX0D81ZtYtbydby0LLn43+zl66msqQeSi/+N7d+jeSbzgYNd/E/dg4GyJEmS1DZaEyhPAW6LMT7UviW1TGcPlOsaEpR87U6+e/o4rj5u9A77/zV3Baf/3xPc/JHDuHTy8BRUKElqT88tLOeJBas5dkTfHUYeNVmxoYrnF1XwwpK1vLBkLTOXrm0OfnvkZnJwWW+O2rcP3zr1gPdVSyIReatic3MX86zGoLl8m8X/RpQWNi/6d6CL/2kvZKAsSZIktY3WLMqXA9wdQpgGrNp2R4zxY21a1V5gwZrNbNpaR+/87J3u/+HDcxlcnMdFk4Z0cGWSpI5w2PDS9wySmwzsmce5E8s4d2IZAA2JBPNXb2L64rW8sDgZND8yf2VzoHz+H59mdN8irj9jPADVtfXkZu3+n/K0tMCIPkWM6LP94n9vb6zeJmRex/OLK/jrS+9MsRrUM69xLnOyk9nF/yRJkiRJrQmUX2v8UAvMXbkBgLH9e+yw75m31vD0W+X84tyDnGMpSWqWnpbG2P49Gdu/J584bB8g2V3cpCgnk4Ls5D/dNXUN9P7anQwvKeCQIb2TH0NLOGBATzLTd78QXwiBgT3zGNhz94v/3T93RfPif73ysrYLmF38T5IkSZK6lxYHyjHG77RnIXubuSs3khYCo/sW7bDvR4+8Ru/8bD51+L4pqEyS1JVsO0f5j5dMbn5cU5/gv08aywuLK7jv1RX8+fmFAORkpnPg4GIOGVLCIUN6c+yIvvTvkdvi+/UuyOaEUf04YVS/5m3bLv7XNJv5xide327xv3EDe3Lg4F7NHc1j+/XYo4UGJUmSJEmdW2s6lAkhZAGjgBKg+SfcGONjbVxXlzd31UaGlxTs8FbkV9/ewH2vruA7p48jP7tVX35JkpoV5WY2j8KIMbJk3ZbkLObFa3lhSQU3PbOAXzw+n5suOpRPH7EvS9ZV8qfnFvKpw/dhcHF+q+6Vn52xwwiPbRf/a+pknjJ9If/71DuL/+3Xr8c7ncyDixk/sJjCHBf/kyRJkqSurMWJZgjhSODvQDZQBGwCCoFlgKvKvcvclRt2Ou7iR4/MJT8rg88fNTIFVUmS9kYhBIb2LmBo7wI+fGByNn99Q4K5KzcyoLE7efby9Xzv36/y4QOT85rvmr2Uv760pLmT+cDBvVr1i86sjHTGDypm/KBiLmvc1rT4X1PAPGvZeu7fpnv63Yv/NY3MKC108T9JkiRJ6ipa0yL7c+B/Yow/DyGsjzH2CiF8C6hqp9q6rNr6Bhas2czZ4wZvt33x2kpuf3EJVx0zit4FO1+sT5KktpCRnsb4QcXNzz84bjAbf3I+eZnJf/rXbqll+uK1/O2lpQCkhcD+A3pw6JASDhmanMm8X78eZLRgHnOTbRf/awq2mxb/m7VsHS+1YPG/5OdiyorzXfxPkiRJkjqh1gTKI4Eb37Xth8Ai4CdtVtFe4I01m6lPxB06lH/66DzSQuCa48ekqDJJUndWkP3OuIlPH7Evnz5iX1ZvqmbGkrXJcRlL1nLn7KX8/tk3AeiRm0n5D88jMz2Nl1espygnk6G9C1p1z20X/ztjm8X/1m2pSc5kblz8b9bydTww920Sjav/NS3+N3FQMRMHFXPg4F4u/idJkiRJnUBrAuWNJEddbABWhhD2A9YCrfvJshuYu3IDAGP792zetmbzVv7w3Ft85OChDCrOS01hkiS9S9+iXM44YFBz2Btj5K2KSl5YXMHyDVVkNnYoX33ni2ypreeFr5wCwJ+ee4sBPXI5uKz3Hr3rplf+7hf/m7VsPb988p3F//Ky0hk/sLi5m/lAF/+TJEmSpA7XmkD5LuA04DbgT8DjQB1wZzvU1aUN7V3AZ47Yl1F9i5q3/erJ16mpb+CrJ+6XwsokSdq1EAL7lhayb2nhdtt/ce5BbNpaB0BDIsHVd86ksia5AN8+JQUcMqQ3hwxNzmOeOKh4h0VpW2Jni//VNSR4beXG5sX/Zi1bxy0vLOI3Ty8AICMtMLZ/z+ZRGQcO7rXd4n9TZyzi6/fOZun6KsqK87jhrAlccvCwPfraSJIkSZIgxMa3lrb6xBCOItmd/FCMMdGmVbXApEmT4syZMzv6tntkU3UdQ751D8eP7Ms/Pn10qsuRJOl921Rdx4vLGkdlLE5+Xr4huaxCRlpg3MBirjpmFJdOHk6MkUSMbTauYtvF/2YtW8dLy5IdzeWVNUBy8b99SwrplZfJS8vXU9fwzvc6eZnp3HTxoYbK3VAI4cUY46RU1yFJkiR1da1vH2oUY3y6LQvZmyxeW8ng4rzmH5xvemYBG6pr+doH7E6WJO0dinIzOW5kP44b+c7Iirc3VDFjaTJgnr5kbfM85MVrtzDuBw9w66WH88Fxg9lUXcfGrbUM6pm3Rwvv7W7xv1nL1/PSsnXc9+oKGhLb/+K8qq6Bz97xAms2b2VMvx6M6VfE4J75pKW5AKAkSZIktcQuA+UQwtPAbluYY4y23TbaWtfAvt+5l2tPGsuovkVc2/g22+yMNBaUb+aQoSWpLlGSpHYxoGceH+yZxwfHDd5uewhw6aHDGdknOQrqvleX85Epz9KvKIdDhiTHZBwypDcHD+lNz7ysPbr3zhb/S7ty6k6Prayp55q7Xmp+npeVzui+yXB5TNPnfj3Yt7SweYa0JEmSJClplyMvQgiXbvN0H+ATwBRgCVAGXAr8Kcb47fYscmc668iL6tp67nhxCW9vrOL7D82lqq6heZ9vs5UkCRZVVPLA3BXJcRlL1vL66k3N+0b1LWoOmC89dHjzLOQ9MfSbd7NkfdUO28uK85jx1VOZt2pj8mP1psbHm5rHdkBydMe+pYXJTua+Rc0dzaP79iA/e4/f5KUUceSFJEmS1DZaPEM5hPA88MkY49xttu1HMlCe3ILzbwVOAPKBVcD/xBj/EEIYCiwCtmxz+I9ijNfv6nqdNVBu8l4/xA4pzmPx9WenoCJJkjqnDVW1zFy6tjlgnr64gjWba9j4k/MpyM7kpmkLeG3VRn5+7kGtGpExdcYiLr9teqt+ubt5ax3zmwPmd8LmtyoqtxufUVac1xgwbx82lxTk7PkXQu3KQFmSJElqG61prxkDvPWubYuA0S08/wckA+maEMJo4IkQwixgbeP+njHG+lbU0ynNWb4egKU7CZN3tV2SpO6qZ14WJ47uz4mj+wPJecirN2+lIDvZnfxmxWZeWrauOUw+9/dPsWlrXbKTeWhvDhlSQv8euTtctyk0/nrj+Kmy4jxuOGvCLt8pVJiTycGN4ze2VVvfwILyzcxbtX3Y/NSba6jeJrAuKcjeJmB+J2weXLxn86IlSZIkqbNpTYfyvUAV8E1gOTAYuA4ojDGe2aqbhjAKeAK4GniBZDCd2ZpAubN2KH/opid5ffUmqmvr7VCWJKkdfPWel3j09dW8vGI99Y1dw4N65m0TMPdmUlnv9zUuo6USiciSdVuYt3rjO2Fz4+P1VbXNxxVkZzC6KWjeJnDep6SADOc0dwg7lCVJkqS20ZpAuRfwG+AcIB1oAP4BfCHGWNHCa/wGuAzIBWYBRwMlJAPlt0kuAPgI8JWdXTOEcDlwOUBZWdlBS5YsaVHtHWnEd+5lwqBiPjRuEJf95bnmH3TBGcqSJLWl6tp6Zi9f3zwq44Ula3mzfDMAFxw4hDs+cSQA1947m5q6Bs6bWMZhw0s7pLYYI2s2b02GzO8Km1dsqG4+LjM9jRGlhc0LATaFzaP6FpGX5ZzmtmSgLEmSJLWNFgfKzSeEkAaUAuUxxkSrbxhCOnAYcCzwIyCb5NiM2UBv4H9Jdj2fvKvrdMYO5eraevK//Fe+dcoBXHf6OCb+4AHmrtpIfUNs0dtsJUnS+7O2soaZS9fSIzeLycNKuPflZXzwpqcIQE5mOv+8/BgKsjM4dGgJaWmpGUGxqbqO+U0h8zZh81sVlSQavy8LAYb0ymdM3x47hM298rNTUndXZ6AsSZIktY1Wtb6EEHoAo4CCxucAxBgfa+k1YowNwLQQwkeAz8UYfwk0JcOrQwhXAitDCIUxxs2tqS/V5q/eRIwwtn8PANZX13HehDJu+/iRKa5MkqTuoXdBNifvN6D5+dV3vggk3wJVXdfAxTdPo2JLLQN75nLuhDLOm1DG4cNLSE/ruLETRbmZHDK0hEOGlmy3vaauaU7zO4sBzlu1iccXrGbrNnOa+xTmbLcQYDJ07sHAnrnOaZYkSZLU7locKIcQLiPZPVxJcpZykwgM38N777OT7U0t011uoODclRsBGNu/J5uq61iybgufOWLfFFclSVL3ddtlR3DCrx6ltiFBVnoat112JGsqt3LnrKX8btoCfvnE6/QryuGc8YM5b2IZR+/bp0PD5W1lZ6az/4Ce7D+g53bbGxKJ5Jzm5rEZyc93vLiEDdXvzGkuzMlgdN8eO4TNw53TLEmSJKkNtaZD+QbgvBjjg629SQihD3A8cD9QDZwIXARcFEI4FNgALACKgV8CT8QYN7b2Pqk2d+WG5CzEPoXMXLIWYIcfCiVJUsc5bHgpj37hBJ5YsJpjR/RtnqF8ycHD2Ly1jn/NXcGds5fx5+cX8punF1BakM25E8r43w8fnLKRGO+WnpbG8JJChpcUcvr+A5u3xxhZvXlrcydzU9j8n9dXccsLi5qPy8pomtO8fdg8qk8Ruc5pliRJktRKrfkpIgN4eA/vE4HPAb8l2Xm8BPhijPHeEMJFwPeBPsAmkovyXbSH90mpuSs3MrJPIZnpabzy9gYADjBQliQppQ4bXrrTxfgKczK54KChXHDQULbU1PPv197mztlLWbZ+S3OY/LNH53HwkN4ctW+fji57t0II9CvKpV9RLseN7Lfdvo3VtczfZmzGvFUbmb18PXfNXrbdnOahvQq2GZvxTthcnOecZkmSJEk715pA+UfAN0II17d2Mb4YYzlwzHvsux24vTXX66zmrtrIpLJeALy6ciMF2RmUFeenuCpJkrQ7+dkZnDuxjHMnltG0YHF1bT03PPQqlx+xL0ft24e6hgQPvfY2J47uT05meoor3rUeuVkcOrSEQ981p3lrXQML1mzabkbzvNUbefT1VdTUv/PtXd/CnHfNaE6GzQN6OKdZkiRJ6u5aEyh/CegHfDWEsHbbHTHGsjatqguqqq1n0dpKLj00OU761ZUbGNu/R6d5u6wkSWqZpsA0NyuDFTec07wg3uNvrObM3z1JYU4GZ+4/iPMnlnHymP5damxETmY6Bwws5oCBxdttb0gkWLx2yw4LAt42czEbq+uajyvKyWT0DgsCFjG8pCBls6clSZIkdazQ1IWz2wND2GmHMUCM8ck2q6iFJk2aFGfOnNnRt31P9Q0JXlq2jj6FOQzplU+f//cPPjRuEL+/eHKqS5MkSW2gtr6Bx95YzZ2zlnL3nGWsq6olPyuDM/YfyHkTyzh1vwHkZ3edcLklYoys2tQ0p3n7sHnlpurm47Iy0hjZNKe5cVbzfv17MLJP0Xbd3FNnLOLr985m6foqyorzuOGsCVxy8LAOeS0hhBdjjJM65GaSJEnSXqzFgXJn09kC5W2t3lRNv2vv4hfnHsTVx41OdTmSJKmN1TUkeHJBMly+a84yyitryM1M57SxA5jy0cP3umB5ZzZUbTOnefU7s5oXrd3SPKc5LQSG9c5nTL8exBh5ZP4qahveGa2Rl5nOTRcf2iGhsoGyJEmS1DZa/NNOCOG777Uvxvittimn6/r3a2+zsbqWCw4ayqsrNwKwvwvySZK0V8pMT+PE0f05cXR/fv3hg5n2Vjl3zl7Kq29vIC8r2ZH7qydeZ1BxHmePH5ziattHz7wsJg8rYfKwHec0v7Fm+xnN81Ztal6weFtVdQ18/d7ZHdalLEmSJOn9a037zLt/GupHcqG9u9uunK7rN0+9weJ1W7jgoKHNPzAdYKAsSdJeLyM9jWNH9uXYkX2bt8UYuemZBUwq683Z4wcTY+RvLy3hpDH9Kc7LTmG17S8nM51xA4sZ9645zWlXTmVn74tbur6qYwqTJEmS1CZaHCjHGD/+7m0hhFOAi9q0oi7qzk8dRXllDQCvvr2B0oJs+hTmpLgqSZKUCiEE5vy/06msqQeS3xtc+OdnyEgLnDi6H+dNKOOD4wZRUtB9vlcoK85jyU7C47LivBRUI0mSJGlPvd/luB8GPtQGdXRpzy0s56ePzmPpui0AvPL2BruTJUnq5tLSAkW5mUByDNYLXzmFa44fwxtrNvOp26bT79q7+MCvHuV30xawZvPWFFfb/m44awJ52yzQB8kZyjecNSE1BUmSJEnaI62ZoTz8XZvygIuBZW1aURfz3MJyjv/lf6ipT5CdkcZ/vnACc1du5JOH75Pq0iRJUicRQuDgIb05eEhvfvjBCcxevp47Zy3l77OW8tk7XuCKv87g6H37cOulhzOw597Zsds0J/nr985m6foqyorzuOGsCc5PliRJkrqY1sxQfhOIQGh8XgXMAi5t66K6kktufoat9cnVyrfWJ7jwz8+wpbae/fv3TG1hkiSpUwohMHFwLyYO7sX3zhzPq29v4O+zlvLoG6uax2XdNG0B9YnIFUePTHG1beuSg4cZIEuSJEldXItHXsQY02KM6Y2f02KMBTHGo2KML7ZngZ3d1MuOICs9+WXMyUjjC8ckf/Bz5IUkSdqdEAIHDCzmu2eM55lrTiaz8XuKB+a+zX2vLm8+7rYZi1iyrjJVZUqSJElSs9Z0KBNCSAcmAwOAFcD0GGNDexTWVRw2vJRrjh/NDx95jds/fiSvrdoIwH79eqS4MkmS1FX98zPHUFWbXNCvfPNWPnLLs8QIBw/pzXkTBnPuhDL2KS1McZWSJEmSuqPWzFAeB9wD5ADLgUHA1hDC2THGOe1TXtcwqHHW4eHDS/nbS0sY0iu/eREeSZKkPZGXlfw2rbQwhwXfOot/zF7KnbOX8bV/zuZr/5zNxEHFnDexjPMmlDGyb1GKq5UkSZLUXbR45AXwJ+B/gYExxkOAgcCvG7d3azWNM5SzM9J45e0NjruQJEltap/SQr76gbG88JVTWPSdD/KTsw8kOyOdr983h1HX38e47z/AKyvWp7pMSZIkSd1AawLlkcAvYowRoPHzjcCI9iisK6mpT079CMD81ZvYv7/jLiRJUvsY2ruAL58whuf+62SWXv8hfnHuQfTOz6asVz4At76wiG/dP4eGRCLFlUqSJEnaG7UmUP4XcNa7tp0JPNB25XRNTR3KS9ZvoT4R7VCWJEkdYnBxPlcfN5rHrz6RHrlZAMxYupZ/zX2b9LTkt3m3zVjErGXraOwJkCRJkqT3ZZczlEMIfwGafvpIB+4IIbwILAMGAwcB/2zXCruAmvoGMtICc99OLsi3v4GyJElKkRvPm0Rt47unausb+NxfZ7Bpax3DSwo4b0IZ500sY1JZL0IIKa5UkiRJUle0u0X53nzX81e3efwa8FDbltM11TYkyM5I59WVG0hPC4zq48I4kiQpdbIy0ps/v3XdWfzz5eXcOXspP3tsHv/zn9cY0iufcycM5rwJZRw6tIS0NMNlSZIkSS0TuurbHydNmhRnzpyZ6jIASCQitQ0JLvjTNN4s38zcb5yR6pIkSZJ2sL6qhntfXsGds5fy8PyV1NYnGNgzl1s+ejjHj+qX6vLaVQjhxRjjpFTXIUmSJHV1u+tQ3k4IIQsYBZSQXIMOgBjjY21cV5eSlhbISUt2KE8q65XqciRJknaqOC+bSycP59LJw9lYXcv9r67gzllLGda7AIB7X17OQ/Pe5ocfnEhhTmaKq5UkSZLUGbU4UA4hHAn8HcgGioBNQCHJecrD26W6LmLK8wtZUL6ZhRWVXHZot/5SSJKkLqJHbhaXHDyMSw4e1rztjTWbeHj+Kn51fvJbxL++uJheedkcO7IvmemtWctZkiRJ0t6qNR3KPwf+J8b48xDC+hhjrxDCt4Cqdqqty3h2UTnT3loDwAEuyCdJkrqo/zpxP750/GjS0gIxRr71wMu8sWYzvfOz+dC4QZw3sYzjR/ZtntEsSZIkqftp8QzlEMJGoDjGmGgMlIsbR2AsijEObNcqd6IzzVAG+NNzb/HJqc+z4NtnsW9pYarLkSRJet+qa+t5aN5K7py9lHtfWc7mrfX0zM3irAMGct7EMj4wuj85mV0jXHaGsiRJktQ2WtOhvJHkqIsNwMoQwn7AWqCgHerqcl59ewO5mekM7+2XQ5Ik7R1yszL40PjBfGj8YGrqGnhk/krunL2Mf768nFteWERhTgb/d8Eh243NkCRJkrR3a02gfBdwGnAb8CfgcaAOuLMd6upSvnn/HO55eRlj+/cgLS3s/gRJkqQuJjsznTMOGMQZBwyitr6Bx95YzZ2zljKqTxEAT7+5hv996g1+es6BDOyZl+JqJUmSJLWXFgfKMcYvbvP4JyGE50kuyvdQO9TVZUydsYgfP/IaNQ0J1myuYeqMRXbpSJKkvVpWRjqn7DeAU/Yb0Lxt+YYqXliyluK8LADunrOM2voGTt9/IAXZmakqVZIkSVIba02H8nZijNPaspCuaOqMRVx+23RqGhIAbKmt5/LbpgMYKkuSpG7loklDufCgIYSQfLfW/z39Bo/MX0VOZjqnjOnPeRPLOGP/gby2ciNPLFjNsSP6ctjw0hRXLUmSJKm1WrwoX2fTGRblG/rNu1myvmqH7UOK81h8/dkpqEiSJKlzaEgkeG5RBXfOWsqds5eyYkM1GekBIsQYycpI59EvnNBhobKL8kmSJEltIy3VBXRlS3cSJu9quyRJUneRnpbGkfv04RfnTWLpd8/muS+fTF5mOvWJSEOE6roGLrn5mVSXKUmSJKmVDJTfh7LinS84817bJUmSuqO0tMDkYSX8+4rjyc1MJz0tkJuZztTLjkh1aZIkSZJaaY8D5RBCWgjh9BDC39qyoK7khrMmkJeZvt22vMx0bjhrQmoKkiRJ6sQOG17Ko184getPH9eh4y4kSZIktZ1WL8oXQhgPXApcDOQCf2nrorqKpoX3PjrlWSLJzuTvnzXBBfkkSZLew2HDSw2SJUmSpC6sRR3KIYQ+IYRrQghzgJnAeCAfGB9jvLI9C+zsLjl4GBnpgYy0wJLrzzZMliRJkiRJkrTX2m2gHEJ4AFhOsiN5CjAkxngCUAm4+hyQlZ5GVobjqCVJkiRJkiTt3VqSgh4DbAIeBP4VY3y7fUvqes6ZUEbfwtxUlyFJkiRJkiRJ7aolgXJf4BrgcGBuCOGlEMKXgUwgtmdxXUVlTT0F2a0eRy1JkiRJkiRJXcpuA+UY45YY4y2NYy6GA3cBlwO9gL+EEE5r5xo7tcqaOqa9tYa6hkSqS5EkSZIkSZKkdtWqwb8xxiUxxu/FGEcBRwJLgL+0S2VdRG19gi219WSkhVSXIkmSJEmSJEntao9XkosxPhtj/AwwoA3r6XJ65WezT0khI/oUpboUSZIkSZIkSWpXuw2UQwhD3/X8ghDC30MId4YQPhJjrGm36roIZyhLkiRJkiRJ6g5a0qH8ctODEMJngZ8DM4EXgB+GED7fTrV1CW+Vb2bZ+i1sqK5NdSmSJEmSJEmS1K5a0la77XDgzwPnxhifAwghPAHcDPxvm1fWRWzcWkd9IpIenKEsSZIkSZIkae/Wkg7luM3j/sDzzTtifAEY1NZFdSVVtfUAFGRnprgSSZIkSZIkSWpfLelQzgkh3NL4OB3oC6wCCCH0BLr1rIeN1XUA5DtDWZIkSZIkSdJeriUp6A3bPP4F0JPGQBk4Gni4bUvqWjY2zk4uNFCWJEmSJEmStJdrSQr6nxjjMzvbEWO8F7i3bUvqWjZtTXYoF+U48kKSJEmSJEnS3q0lM5QfbPcqurDmQDnXQFmSJEmSJEnS3q0lgXJo9yq6sM01yUC5Z05WiiuRJEmSJEmSpPbVkpEXIYQwjF0EyzHGhW1XUteyeWs9AD3sUJYkSZIkSZK0l2tJoJwHvMl7B8oRSG+zirqY9LTkl6V3vh3KkiRJkiRJkvZuLQmUt8QYC9u9ki5qbP+eAJT1yk9tIZIkSZIkSZLUzloyQzm2xY1CCLeGEFaGEDaFEN4IIXxqm30nhBDmhxCqQgiPhxCGtMU9O8KWmuTIi4IsR15IkiRJkiRJ2ru9r0X5QgjFIYQrWnivHwBDY4xFwFnA90IIB4UQSoC7gG8CvYCZwF9beM2Ue/yNVQDkZXbbqR+SJEmSJEmSuomWBMr7bfskhJAeQjgrhPAPYCXwuZbcKMY4N8ZY0/S08WMf4Bxgbozx7zHGrcB1wPgQwugWvoaUakhEApCTZaAsSZIkSZIkae+220A5xrgMIIRwYAjhRuBt4FbgDOD8GOMBLb1ZCOE3IYQqYD7JMPpfwFhgzjb32wK81bi90xtaUkCP3CxCeM9GbkmSJEmSJEnaK+w2UA4hfCWE8ArwLDAMuBroB6wDprfmZjHGK4BC4CiSYy5qgAJg47sO3dh43LtruTyEMDOEMLO8vLw1t243lTX1FGS3ZG1DSZIkSZIkSeraWjLy4kckA+SPAR+MMd4RY6za0xvGGBtijNOAQSTHZVQCRe86rAjYvJNzb4oxTooxTiotLd3TEtrUM2+tobxya6rLkCRJkiRJkqR215JA+XjgPuAPwPIQwk9DCAeRnIH8fmSQnKE8FxjftDGEkL/N9k6vsrae+H6/EpIkSZIkSZLUBbRkhvITMcZPkOxS/m9gHMlRF32Bz4QQeu/uGiGEPiGEC0MIBY2L+p0MXAQ8CtwN7B9CODeEkAN8C3g5xjh/z19Wx6mtT5Ce5vxkSZIkSZIkSXu/lsxQvgggxlgVY/xLjPEDwFDgm8AlwLIW3CeSHG+xHFgP/AT4Yozx3hhjOXAucEPjvkOBC1v/UlKjriFBhoGyJEmSJEmSpG6gJavJ/Q64fdsNMcblwPeB74cQDt3dBRpD42N2sf8/wOgW1NLp1DUkyMpIT3UZkiRJkiRJktTuWjJDeZfttzHG6W1US5dUl4hkptuhLEmSJEmSJGnv15IO5fQQwnHsIliOMT7WdiV1LQ0Nkax0O5QlSZIkSZIk7f1aEihnA3/kvQPlCAxvs4q6kBgjDTGSldGSRm9JkiRJkiRJ6tpaEihviTF2y8B4d7bWNQCQbaAsSZIkSZIkqRswCX0fKmvqAdind0GKK5EkSZIkSZKk9ve+F+XrzpoC5fMmDklxJZIkSZIkSZLU/nYbKMcYC9+9LYQwKoRwdghhaLtU1UVU1tQBkJ/dkskhkiRJkiRJktS17TZQDiH8LITwkW2efwyYC9wEzAshnNqO9XVqTR3Kd81emuJKJEmSJEmSJKn9tWTkxYeAp7Z5/n3gqhhjKfBZ4NvtUFeX0BQoj+izQxO3JEmSJEmSJO11WhIol8QYlwKEEPYHegN/bNx3KzCynWrr9Cprk4Hy2eMHp7gSSZIkSZIkSWp/LQmUN4YQ+jY+PgqYGWOsaXyeSTdetG/z1loACrIzU1yJJEmSJEmSJLW/lgTKfwPuCCFcBfw3cNs2+w4F3mqPwrqCjdXJRfn+9Fy3/RJIkiRJkiRJ6kZaEij/N/AE8AGSC/H9dpt9E4DftXlVXURToJyflZ7iSiRJkiRJkiSp/WXs7oAYYx3wnffYd2ObV9SFbNqaDJQLHXkhSZIkSZIkqRtoSYey3sPGxkA5J9MOZUmSJEmSJEl7PwPl92FzY6CcnWGgLEmSJEmSJGnvZ6D8PmyuaQqU/TJKkiRJkiRJ2vuZhL4PlTX1AGQ78kKSJEmSJElSN9DiQDmEkB1CuCGEsDCEsLFx20khhCvbr7zOrSlQzko3l5ckSZIkSZK092tNEvpzYH/gEiA2bpsLfK6ti+oqttQ2dig78kKSJEmSJElSN5DRimPPBvaNMW4JISQAYowrQggD26e0zq+uIcHQXvkMLs5PdSmSJEmSJEmS1O5a01pby7sC6BBCKbC2TSvqQuoaIseM6MuovkWpLkWSJEmSJEmS2l1rAuW/A1NCCMMAQgj9gV8Dd7RHYV3B5q115Ge5IJ8kSZIkSZKk7qE1gfK1wCLgFaAnsAB4G/hO25fVNWzaWsdvnl7A66s3pboUSZIkSZIkSWp3LZ6hHGOsBb4EfKlx1EVFjDHu5rS9Vl1DgvpE5NgRfSgtyE51OZIkSZIkSZLU7lrcoRxCuCeEcH4IITvGWN6dw2SALTX1AHxw3GB65RsoS5IkSZIkSdr7tWbkxZPAV4A1IYQpIYSTQwitOX+vUtkYKNcnEiQS3TpblyRJkiRJktRNtDgQjjH+PMZ4CDAJWAj8Ang7hPDLdqqtU6usqQPgK3fPoqquPsXVSJIkSZIkSVL7a3WHcYxxQYzxO8CFwMvA59u8qi6gqUMZIDsjPYWVSJIkSZIkSVLHaFWgHELYJ4TwjRDCXOARYAFwTLtU1sk1BcoByEgLqS1GkiRJkiRJkjpARksPDCHMAEYC/wT+C3gkxthtZz00jbzITE8jBANlSZIkSZIkSXu/FgfKwI+B+2KM1e1VTFfS1KGcldFt1yWUJEmSJEmS1M3sMlAOIYQYY2x8emfjth0S1Bhjoh1q69Qqa5OBcraBsiRJkiRJkqRuYncdyhuBosbH9UB81/7QuK3brUrX1KHsgnySJEmSJEmSuovdBcpjt3k8rD0L6Wq21NihLEmSJEmSJKl72WUaGmNcts3T82OMS979AZzbviV2TpU1dYQAOZl2KEuSJEmSJEnqHlrTXvut99j+jbYopKuprKknLzOdK48elepSJEmSJEmSJKlD7G7kBSGE4xsfpocQjiM5N7nJcGBzexTW2VXW1NM7P5srjh6Z6lIkSZIkSZIkqUPsNlAG/tj4OQf40zbbI7AK+EJbF9UVVNbWk5ORzrotNfTKz051OZIkSZIkSZLU7nY78iLGOCzGOAyY2vS48WN4jPHwGOO9HVBnp1NZU8eKjdVc+OdpqS5FkiRJkiRJkjpEi2coxxg/1p6FdDWVNfUML8nni8eNTnUpkiRJkiRJktQhWjLyAoAQQhFwHXAMUMI2s5RjjGVtXlknV1lTz7DehZw2dmCqS5EkSZIkSZKkDtHiDmXgN8CBwHeBXiRnJy8Fft4OdXV6lTX11DU0sHhtZapLkSRJkiRJkqQO0ZpA+STg3BjjP4GGxs8XAB9tl8o6ucqaOp56s5zvPvhKqkuRJEmSJEmSpA7RmkA5DdjY+LgyhNADWAns2+ZVdQGVNfUkYiQ7Iz3VpUiSJEmSJElSh2jxDGVgDsn5yY8CT5McgVEJvNEOdXVqiURkS209WelpZGe0JpOXJEmSJEmSpK6rNWnop4HFjY+vBqqBnsDH2rakzq+6roEYoSERyTJQliRJkiRJktRNtLhDOca4cJvHa4BPtUtFXUBlTR2QDJQdeSFJkiRJkiSpu9hloBxC+ERLLhJj/FPblNM1VNbUAxDBkReSJEmSJEmSuo3ddSh/tAXXiEC3DJQBO5QlSZIkSZIkdRu7DJRjjMd1VCFdSdPIC7BDWZIkSZIkSVL30ao0NITQO4Tw0RDCVxqfDwghDGrBedkhhD+GEJaEEDaHEGaHEE5t3Dc0hBBDCJXbfHxzz15Ox7BDWZIkSZIkSVJ31OJF+UIIxwD/AGYCRwA/BkYA/wWc2YL7LAOOAZYCpwF/CyEcsM0xPWOM9Ts7ubNpCpSvO+0Ajt63T4qrkSRJkiRJkqSO0ZoO5V8AF8QYTwGagt/pwCG7OzHGuCXGeF2McXGMMRFjvB9YBBzU2oI7g6ZA+WOHDGdMvx4prkaSJEmSJEmSOkZrAuWhMcZHGx/Hxs+1tKLLuUkIoS8wEpi7zeYlIYTlIYQ/hxBKWnvNjtQ0Q/n1NZvYUFWb4mokSZIkSZIkqWO0JlB+LYRw8ru2nQi80pobhhAyganAlBjjfKACOBgYQrJjubBx/87OvTyEMDOEMLO8vLw1t21TW2qTHcqn/uZxpr21JmV1SJIkSZIkSVJHak138ZeB+0MIDwC5IYTfkZyd/MGWXiCEkAb8hWRn85UAMcZKknOZAVaHEK4EVoYQCmOMm7c9P8Z4E3ATwKRJkyIp0jTy4r7PHMPBQ3qnqgxJkiRJkiRJ6lCtCZRfAMYBHwH+RHKRvUNijMtbcnIIIQB/BPoCp8UY697j0KaguDXd0x2qsqaewpwMzjhgUKpLkSRJkiRJkqQO06JAOYSQDlQCPWOM/7OH9/o/YAxwYoyxeptrHwpsABYAxcAvgSdijBv38D7trrKmntyMDO6Zs4xjR/SlZ15WqkuSJEmSJEmSpHbXoi7gGGMD8AawR/MdQghDgM8AE4BVIYTKxo9LgOHAv4HNwKtADXDRntyno1TW1JGeBmf//ikWra1MdTmSJEmSJEmS1CFaM/JiKskZyjcCy3lnNAUxxsd2dWKMcQkQdnHI7a2oI+Uqa+rJzkgHaP4sSZIkSZIkSXu71gTKn2v8fN27tkeSXcbdRmVtPVkZyebu7IxOO+pZkiRJkiRJktpUiwPlGOOw9iykK6msqScrvSlQtkNZkiRJkiRJUvdge+0eqKypIzPdDmVJkiRJkiRJ3Ytp6B6orKknIy05EtoOZUmSJEmSJEndhYHy/2/v7mMsq8/7gH+fndmdBRbMa7BjK4vB+KW4NhaL3NRObZXUjpO6qUL/MMatnMo1SUSqKnUVR8UJdnBqtYoiOUmj0FLjwDoxtiAttYpdFFNVFAObBNvBYBLAgDEsu84Kdni5uzPz6x9zR56s13DPhD1nZ+7nI4323nPO3fNwnj3zx5fffc4azI8WMrPJCmUAAAAAYLpIQ9dgOVBeXqG8RaAMAAAAAEwJaWhHBxYWc3BxKTOblsPkqhq6JAAAAACAXswOXcB6Mz9aSJK89awfyof/0TkDVwMAAAAA0B8rlDtaCZTPOvX4vOuclw9cDQAAAABAfwTKHa0Eyrv3P5sv3fPYwNUAAAAAAPRHoNzR/OhgkuTmex/Pz/3RHQNXAwAAAADQHzOUO1pZofzzP3Z2XvfSlwxcDQAAAABAf6xQ7mglUD7z1ONzzstOHLYYAAAAAIAeCZQ7Whl58ZUH9+b6ux4euBoAAAAAgP4YedHRygrlnXc+mE2bKj9z7o8MXBEAAAAAQD+sUO5oJVBeXGqZm50ZuBoAAAAAgP4IlDt6+sByoLyw1DI36/IBAAAAANNDItrR/GghWzfPZLSwaIUyAAAAADBVBModzY8OZtvcbEYLS1YoAwAAAABTRSLa0fxoYRwoW6EMAAAAAEwXgXJH86OFbNuyvEJ5y4zLBwAAAABMD4loR8srlDcbeQEAAAAATB2JaEfzB5ZnKB9YNPICAAAAAJgus0MXsN7MjxbyQ9u25vYP/UROOnbL0OUAAAAAAPRGoNzRykP5Xv/DJw5dCgAAAABAr4y86Gh+tJBjNs/mt2/5Zu769l8PXQ4AAAAAQG8Eyh3Njw5mbnZT/vXnd+WWv3xi6HIAAAAAAHpj5EUHi0tLeebAYk4+bkv2fuKfZetmD+UDAAAAAKaHQLmDZw4sJklO2Lolp2ybG7gaAAAAAIB+GXnRwfxoIUnSWsuv/Pc/z9ce3TdwRQAAAAAA/REodzA/OpgkWVhayif+9zfyzd1PDVwRAAAAAEB/BModrKxQ3jyzfNnmZs1QBgAAAACmh0C5g+8PlF0+AAAAAGB6SEQ7WBl5MbupklihDAAAAABMF4FyBysrlGfGgfIWK5QBAAAAgCkiEe3g0EDZyAsAAAAAYJpIRCe0884H829v+LMkyS//8V1JjLwAAAAAAKaLQHkCO+98MB/8zO3Z98yBJMlfj//84j3fGbIsAAAAAIBeCZQn8O//x1155uDi923/rT+5Z4BqAAAAAACGIVCewMP7njns9keffK7nSgAAAAAAhiNQnsCPnHTsYbdv/wHbAQAAAAA2IoHyBD7+T87NsZv/5gP4ZjdVPvqP3zBQRQAAAAAA/RMoT+Di81+ZK9/75mw/6dhUkhO3bk5ryfvOf+XQpQEAAAAA9GZ26ALWi4vPf2UuFiADAAAAAFPMCmUAAAAAACYiUF6DT3/lgfzidXcOXQYAAAAAQK8Eymtw6wN78vm7Hh66DAAAAACAXgmU12C0sJi52ZmhywAAAAAA6JVAeQ1GC0vZMuPSAQAAAADTRSq6BgcWlzI369IBAAAAANNFKroGRl4AAAAAANOol0C5quaq6qqqeqiq9lfVXVX1rlX7L6iqe6vqmar6clVt76OutRotLGVusyweAAAAAJgufaWis0keSfK2JC9JclmS66rqjKo6Ncn1ST6S5OQku5J8tqe61sQKZQAAAABgGs32cZLW2tNJLl+16X9W1YNJzktySpK7W2ufS5KqujzJ3qp6bWvt3j7q62q0sJRtc71cOgAAAACAo8Ygcxuq6vQkr05yd5Jzknx1Zd84fL5/vP3Qz32wqnZV1a49e/b0Ve732VTJsZsFygAAAADAdOk9Fa2qzUl2Jvl0a+3eqtqW5NB0+Mkkxx/62dbalUmuTJIdO3a0I13rD/KVD/3EUKcGAAAAABhMryuUq2pTkmuSHEhy6XjzfJITDjn0hCT7eywNAAAAAIAX0FugXFWV5Kokpye5sLV2cLzr7iRvXHXccUnOGm8/Kl163Z25+iv3D10GAAAAAECv+lyh/HtJXpfk3a21Z1dtvyHJ66vqwqramuRXk3ztaH0gX5Lc8dB3c//e+aHLAAAAAADoVS8zlKtqe5JLkoySPL68WDlJcklrbWdVXZjkd5Jcm+T2JO/po661uuPfmaEMAAAAAEyfXgLl1tpDSep59t+c5LV91AIAAAAAwNr0+lC+jWBpqeUffvLmXHvHg0OXAgAAAADQK4FyRwcWl/Ll+3bn4X1PD10KAAAAAECvBModHVhYSpLMzc4MXAkAAAAAQL8Eyh2NFhaTJHOzLh0AAAAAMF2koh2NrFAGAAAAAKaUQLkjK5QBAAAAgGklFe3oeyuUXToAAAAAYLpIRTv63gplIy8AAAAAgOkiUO7ICmUAAAAAYFpJRTua2VQ589RtOWHr5qFLAQAAAADo1ezQBaw3528/Jfdf/tNDlwEAAAAA0DsrlAEAAAAAmIhAuaNb7tudCz55c7713fmhSwEAAAAA6JVAuaPF1jJaWErV0JUAAAAAAPTLDOWOLnjNS3PBa146dBkAAAAAAL2zQhkAAAAAgIkIlDv6g9sfyN+54sY8+eyBoUsBAAAAAOiVQLmj3fufyz2PP5WZTYYoAwAAAADTRaDc0WhhMUkyNzszcCUAAAAAAP0SKHc0WlhKVTJrhTIAAAAAMGUEyh2NFhYzNzuTKoEyAAAAADBdBModjRaWMjfrsgEAAAAA00cy2tHo4KL5yQAAAADAVBIodzRaWMqWGZcNAAAAAJg+ktGODiwaeQEAAAAATKfZoQtYb84+7fh4Hh8AAAAAMI0Eyh1d/lNvGLoEAAAAAIBBmN0AAAAAAMBEBModXXz1rfnZa24bugwAAAAAgN4ZedHRq047PptnDFEGAAAAAKaPQLmjj5qhDAAAAABMKSMvAAAAAACYiEC5ozf8xhdyyR/ePnQZAAAAAAC9Eyh3tO+ZA1lYakOXAQAAAADQO4FyR6OFxczNumwAAAAAwPSRjHY0WljKlhmXDQAAAACYPpLRjpZXKM8MXQYAAAAAQO8Eyh201jJaWDLyAgAAAACYSpLRDlYexmeFMgAAAAAwjQTKHYwWFpMkW6xQBgAAAACmkGS0g9HBpSQx8gIAAAAAmEqS0Q5mNlUuOm97Xnv6S4YuBQAAAACgd7NDF7CenHjslnzmZ986dBkAAAAAAIOwQhkAAAAAgIkIlDv4+qP7su2XPpsbv/7toUsBAAAAAOidQLmDk46dyyVvfVVeecq2oUsBAAAAAOidGcodvOKkY/ObP3Pe0GUAAAAAAAzCCuUODi4uZf9zB7O01IYuBQAAAACgdwLlDr50z2M54UPXZdfD3x26FAAAAACA3gmUOxgtLCZJ5mZnBq4EAAAAAKB/AuUODiwsJUm2zLpsAAAAAMD06S0ZrapLq2pXVY2q6upV28+oqlZV86t+PtJXXV2MxoHynEAZAAAAAJhCsz2e6ztJrkjyziTHHGb/ia21hR7r6czICwAAAABgmvUWKLfWrk+SqtqR5BV9nffFZIUyAAAAADDNjqZk9KGq+nZVfaqqTj3cAVX1wfHYjF179uzpu74cWFwJlK1QBgAAAACmz9EQKO9Ncn6S7UnOS3J8kp2HO7C1dmVrbUdrbcdpp53WY4nLvjfy4mi4bAAAAAAA/Ro8GW2tzbfWdrXWFlpru5NcmuQdVXX80LUd6q/27E+S7Hr4uwNXAgAAAADQv8ED5cNo4z+Pqtpue2BPPrPrW6kkP/7bf5LbHuh/5AYAAAAAwJB6C22raraqtiaZSTJTVVvH295cVa+pqk1VdUqSTya5pbX2ZF+1TeLiq2/NaGEpLcmzBxdz8dW3Dl0SAAAAAECv+lwFfFmSZ5N8OMn7xq8vS3JmkpuS7E/yF0lGSS7qsa6J7Hz/W3LM5pnMbKocs3kmO9//lqFLAgAAAADoVbXWXvioo9COHTvarl27ej3nbQ/syS1/uTtvP/v0/OiZ/T8UEACAtamqP22t7Ri6DgAAWO9mhy5gPfnRM08TJAMAAAAAU+uoevAdAAAAAABHL4EyAAAAAAATESgDAAAAADARgTIAAAAAABMRKAMAAAAAMBGBMgAAAAAAExEoAwAAAAAwEYEyAAAAAAATESgDAAAAADARgTIAAAAAABMRKAMAAAAAMBGBMgAAAAAAExEoAwAAAAAwEYEyAAAAAAATESgDAAAAADARgTIAAAAAABMRKAMAAAAAMJFqrQ1dw5pU1Z4kDw1w6lOT7B3gvAxDv6eLfk8X/Z4u+j1dDtfv7a2104YoBgAANpJ1GygPpap2tdZ2DF0H/dDv6aLf00W/p4t+Txf9BgCAI8fICwAAAAAAJiJQBgAAAABgIgLl7q4cugB6pd/TRb+ni35PF/2eLvoNAABHiBnKAAAAAABMxAplAAAAAAAmIlAGAAAAAGAiAuUJVdXJVXVDVT1dVQ9V1XuHrokXV1XdUlXPVdX8+Oebq/a9d9z3p6vqj6vq5CFrpZuqurSqdlXVqKquPmTfBVV1b1U9U1Vfrqrtq/bNVdV/q6qnqurxqvql3ounsx/U76o6o6raqnt8vqo+smq/fq9D475dNf4dvb+q7qqqd63a7x7fQJ6v3+5xAADox+zQBawjv5vkQJLTk5yb5AtV9dXW2t2DVsWL7dLW2n9dvaGqzkny+0l+KsmfZflBP/85yXv6L481+k6SK5K8M8kxKxur6tQk1yf5QJIbk/x6ks8m+XvjQy5PcnaS7UlemuTLVfWN1tpNvVXOWhy236uc2FpbOMz2y6Pf69FskkeSvC3Jw0l+Msl1VfV3k8zHPb7RPF+/V7jHAQDgCPJQvglU1XFJ9iV5fWvtvvG2a5I82lr78KDF8aKpqluSXHuYQPk3kpzRWnvv+P1ZSe5JckprbX/vhbJmVXVFkle01t4/fv/BJO9vrf398fvjkuxN8qbW2r1V9Z3x/i+N9/96krNba/5nwjpwmH6fkeTBJJsPFzbp98ZRVV9L8tEkp8Q9vuGt6vefxj0OAABHnJEXk3l1koWVMHnsq0nOGagejpz/UFV7q+rWqnr7eNs5We53kqS1dn+WV6u/uv/yeJEd2tunk9yf5JyqOinJy1bvj/t+o3ioqr5dVZ8ar1KPfm8cVXV6ln8/3x33+IZ3SL9XuMcBAOAIEihPZluSpw7Z9mSS4weohSPnl5OcmeTlWR5rceN4NfK2LPd7Nf3fGJ6vt9tWvT90H+vT3iTnZ/nr7udluZc7x/v0ewOoqs1Z7umnW2v3xj2+oR2m3+5xAADogRnKk5lPcsIh205IYtzBBtJau33V209X1UVZns2o/xvX8/V2ftX75w7ZxzrUWptPsmv8dndVXZrksao6Pvq97lXVpiTXZPkbJJeON7vHN6jD9ds9DgAA/bBCeTL3JZmtqrNXbXtj/ubXK9l4WpLKcp/fuLKxqs5MMpflfxesb4f29rgkZyW5u7W2L8ljq/fHfb/RrDxEYJN+r29VVUmuyvKDcy9srR0c73KPb0DP0+9DuccBAOAIEChPYDxz8fokH6uq46rqLUl+OssrY9gAqurEqnpnVW2tqtmqujjJP0hyU5a/LvvuqvqxcRjxsSTXeyDf+jHu6dYkM0lmVvqc5IYkr6+qC8f7fzXJ18ZfnU6SP0hyWVWdVFWvTfKvklw9wH8CHfygflfVm6vqNVW1qapOSfLJJLe01la+Aq/f69fvJXldkne31p5dtd09vjEdtt/ucQAA6IdAeXK/kOSYJE8k+cMkP99as6pl49ic5Ioke7I8g/EXk/zT1tp94z7/XJaD5SeyPG/xF4YqlDW5LMmzST6c5H3j15e11vYkuTDJx5PsS/LmJO9Z9blfy/IDvB5K8n+S/KfW2k091s3aHLbfWZ6RflOWv+L+F0lGSS5a9Tn9XoeqanuSS5Kcm+Txqpof/1zsHt94nq/fcY8DAEAvqrX2wkcBAAAAADD1rFAGAAAAAGAiAmUAAAAAACYiUAYAAAAAYCICZQAAAAAAJiJQBgAAAABgIgJlAAAAAAAmIlAGAAAAAGAiAmWAHlXV3VX19h7Oc3VVHaiqb/0t/o75qjpzwmPvH5/v2rWeDwAAADj6zQ5dAMBGUlXzq94em2SUZHH8/pLW2jk9lvMfW2uXrfXDrbVtHY49q6ouT/KqtZ4PAAAAOPoJlAFeRKtD2PHq4A+01m4eriIAAACAF4+RFwA9qqpvVdWPj19fXlWfq6prq2p/VX29ql5dVb9SVU9U1SNV9Y5Vn31JVV1VVY9V1aNVdUVVzXQ49y3jz/y/8TiLG6vqlKraWVVPVdWdVXXGquNbVb1q/PrqqvrdqvrCuNbbq+qsF/HSAAAAAOuAQBlgWO9Ock2Sk5L8eZIvZvl388uTfCzJ76869uokC1keK/GmJO9I8oGO53tPkn8+/vvPSnJbkk8lOTnJPUl+7QU++9FxrX+V5OMdzw0AAACscwJlgGH939baF1trC0k+l+S0JJ9orR1M8kdJzqiqE6vq9CQ/meTftNaebq09keS3shzydvGp1tr9rbUnk/yvJPe31m5edf43Pc9nb2it3TE+dmeSczueGwAAAFjnzFAGGNbuVa+fTbK3tba46n2SbEvyw0k2J3msqlaO35Tkkb/l+Q59/3wP4nt81etnXuBYAAAAYAMSKAOsD48kGSU5dbxCGAAAAKB3Rl4ArAOttceSfCnJb1bVCVW1qarOqqq3DV0bAAAAMD0EygDrx79IsiXJN5LsS/L5JC8btCIAAABgqlRrbegaAHiRVdV/SXJRkt2ttbN6ON83k7w8yXWttX95pM8HAAAADEOgDAAAAADARIy8AAAAAABgIgJlAAAAAAAmIlAGAAAAAGAiAmUAAAAAACYiUAYAAAAAYCICZQAAAAAAJiJQBgAAAABgIv8fCQPuB2l3rcwAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAB8QAAAXSCAYAAABuKlXJAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3hUZdrH8e/MpLcJpAcSEjqh945UARFBUBDBvqisdd0Vy9pQFPVdCzbWVRSVKooNEVQQkd57TUgIJYUE0kifmfePmJEAgQBJJuX3ua5cZM6cc557DjFyn/s892Ow2Ww2REREREREREREREREREREahijowMQERERERERERERERERERGpCCqIi4iIiIiIiIiIiIiIiIhIjaSCuIiIiIiIiIiIiIiIiIiI1EgqiIuIiIiIiIiIiIiIiIiISI2kgriIiIiIiIiIiIiIiIiIiNRIKoiLiIiIiIiIiIiIiIiIiEiNpIK4iIiIiIiIiIiIiIiIiIjUSCqIi4iIiIiIiIiIiIiIiIhIjaSCuIiIiIiIiIiIiIiIiIiI1EgqiIuIiEiNYTAYeOGFFxwdhoiIiIiIiEiNpvxbRESqExXERUREKll+fj7Tp0+nffv2+Pj44OvrS8uWLbn33nvZv38/UJRYluVr5cqV9vN+8MEHGAwGunbtWmK8iIiIMp1r1qxZF93//vvvL/UzTZ48GYPBwNixY8v9eomIiIiIiIhciZqSf7/wwgsl3jcajYSEhHD99dezfv36Cr2GIiIiNYGTowMQERGpbUaPHs1PP/3EuHHjmDhxIgUFBezfv5/FixfTo0cPmjdvzhdffFHimM8//5xffvnlvO0tWrSwfz9nzhwiIiLYuHEj0dHRNG7cGIC3336brKws+35Llixh3rx5vPXWW/j7+9u39+jRw/59u3bt+Oc//1lirKZNm17w89hsNubNm0dERAQ//PADmZmZeHt7X+ZVERERERERESlfNS3/njFjBl5eXlitVo4ePcpHH31Enz592LhxI+3atbu8iyMiIlKLqCAuIiJSiTZt2sTixYt5+eWXefrpp0u8995775GWlgbAhAkTSry3fv16fvnll/O2F4uNjWXt2rUsWrSI++67jzlz5vD8888DMHLkyBL7JiYmMm/ePEaOHElERMQFz1evXr1SxzrXypUrOXbsGCtWrGDw4MEsWrSIO+64o0zHXozNZiM3Nxd3d/erPpeIiIiIiIjULjUx/77ppptKFNZHjhxJq1atWLhw4VUVxJV/i4hITaeW6SIiIuWkuIXZ/v37GTNmDD4+Pvj5+fHII4+Qm5sLQExMDAA9e/Y873iTyYSfn98VjT1nzhzq1KnDsGHDuOmmm5gzZ86Vf5A/5efnc+bMmTKNHRUVRb9+/Rg4cOAVjx0REcH111/PsmXL6NSpE+7u7nz44YcApKWl8eijjxIWFoarqyuNGzfmtddew2q1XtFYIiIiIiIiUn3V1vz7XMHBwQA4OV3evDfl3yIiUtuoIC4iIlLOxowZQ25uLtOmTeO6667jnXfe4d577wWgQYMGQFECXVhYWG5jzpkzh1GjRuHi4sK4ceM4dOgQmzZtuuLzrVixAg8PD7y8vIiIiGD69OkX3C8vL4+vv/6acePGATBu3DhWrFhBYmLiFY174MABxo0bx6BBg5g+fTrt2rUjOzuba665htmzZ3P77bfzzjvv0LNnT5566ikee+yxK/6MIiIiIiIiUr3Vpvwb4NSpU6SkpJCcnMy2bduYOHEibm5ujBkz5rLHVf4tIiK1iVqmi4iIlLPIyEi+++47AB544AF8fHz44IMP+Ne//kW3bt245ppr+Oijj/j+++/p378/vXr14vrrryc8PPyKxtuyZQv79+/n3XffBaBXr17Ur1+fOXPm0Llz58s+X5s2bejVqxfNmjUjNTWVWbNm8eijj3LixAlee+21EvsuXryYtLQ0brnlFqCoXdu9997L/PnzefTRRy977OjoaJYuXcrgwYPt26ZOnUpMTAzbtm2jSZMmANx3332Ehobyf//3f/zzn/8kLCzssscSERERERGR6q025d8AzZo1K/Ha19eXb7/9lpYtW1722Mq/RUSkNtEMcRERkXL2wAMPlHj90EMPAbBkyRIMBgPLli1j6tSp1KlTh3nz5vHAAw/QoEEDxo4da1/D7HLMmTOHoKAg+vXrB4DBYGDs2LHMnz8fi8Vy2ef7/vvvmTx5MiNGjODuu+/m999/Z/Dgwbz55pscO3bsvLE7depE48aNAfD29mbYsGFX3DIuMjKyRDIOsHDhQnr37k2dOnVISUmxfw0cOBCLxcKqVauuaCwRERERERGp3mpT/g3w9ddf88svv/Dzzz/z6aef0rRpU0aPHs3atWsve2zl3yIiUpuoIC4iIlLOip+iLtaoUSOMRiNxcXEAuLq68u9//5t9+/Zx4sQJ5s2bR7du3fjyyy958MEHL2ssi8XC/Pnz6devH7GxsURHRxMdHU3Xrl1JSkpi+fLlV/15DAYD//jHPygsLGTlypX27WlpaSxZsoRrrrnGPm50dDQ9e/Zk8+bNHDx48LLHioyMPG/boUOHWLp0KQEBASW+Bg4cCEBycvIVfzYRERERERGpvmpL/l2sT58+DBw4kEGDBnHnnXeyfPlyvL297Q8CXA7l3yIiUpuoZbqIiEgFMxgMpb4XEhLCLbfcwujRo2nZsiVffvkls2bNwsmpbP+LXrFiBQkJCcyfP5/58+ef9/6cOXO49tprrzj2YsUt0U6dOmXftnDhQvLy8njjjTd44403Ljj2lClTLmscd3f387ZZrVYGDRrE5MmTL3hM06ZNL2sMERERERERqZlqav5dGi8vL7p27cp3333HmTNn8PT0LPM4yr9FRKQ2UUFcRESknB06dKjEk9bR0dFYrVYiIiJKPcbZ2Zk2bdpw6NAhUlJSCA4OLtNYc+bMITAwkPfff/+89xYtWsQ333zDf//73wsmupfj8OHDAAQEBJQYu1WrVjz//PPn7f/hhx8yd+7cyy6IX0ijRo3IysqyP5EuIiIiIiIiArUn/76YwsJCALKysi6rIH4hyr9FRKSmUkFcRESknL3//vslngp/9913ARg6dCiHDh3C1dWV8PDwEsekpaWxbt066tSpU+akNycnh0WLFnHzzTdz0003nfd+aGgo8+bN4/vvv2fs2LFlOuepU6cwm82YTCb7toKCAl599VVcXFzs66QdPXqUVatWMWXKlAuOnZ+fz/jx49mwYQNdu3Yt09ilGTNmDC+88ALLli07b32ztLQ0vLy8yvxEv4iIiIiIiNQctSH/vtQ51q5dS3BwMIGBgWUa92KUf4uISE2l/3uJiIiUs9jYWG644QaGDBnCunXrmD17Nrfeeitt27blq6++4tZbb2Xo0KH07t2bunXrcvz4cT777DNOnDjB22+/XSIZvpjvv/+ezMxMbrjhhgu+361bNwICApgzZ06ZE/Lvv/+eqVOnctNNNxEZGcmpU6eYO3cuu3fv5pVXXrE/OT937lxsNlupY1933XU4OTkxZ86cqy6IP/7443z//fdcf/313HnnnXTs2JEzZ86wa9cuvvrqK+Li4vD397+qMURERERERKT6qQ3599m++uorvLy8sNlsnDhxgpkzZ3L69Gn++9//XrRdfFkp/xYRkZpKBXEREZFytmDBAp577jmefPJJnJycePDBB/m///s/APr06cNLL73ETz/9xJtvvsnJkyfx9vamffv2vPbaa4wePbrM48yZMwc3NzcGDRp0wfeNRiPDhg1jzpw5pKam4ufnd8lztm7dmqioKGbPns3JkydxcXGhXbt2fPnll9x8880lxg4PD6dt27YXPI+vry+9evViwYIFvPnmm1f1BLmHhwe///47r7zyCgsXLuTzzz/Hx8eHpk2bMmXKFMxm8xWfW0RERERERKqv2pB/n23SpEn27z09PWnTpg0vv/xyqftfLuXfIiJSUxlsNpvN0UGIiIjUBC+88AJTpkzh5MmTemJaREREREREpIIo/xYREZHLYXR0ACIiIiIiIiIiIiIiIiIiIhVBLdNFRESkQp08eRKLxVLq+y4uLtStW7cSIxIRERERERGpeZR/i4iIXJgK4iIiIlKhOnfuzJEjR0p9/5prrmHlypWVF5CIiIiIiIhIDaT8W0RE5MK0hriIiIhUqDVr1pCTk1Pq+3Xq1KFjx46VGJGIiIiIiIhIzaP8W0RE5MJUEBcRERERERERERERERERkRrJ6OgAREREREREREREREREREREKkKNX0PcarVy4sQJvL29MRgMjg5HREREREREagCbzUZmZiahoaEYjXrWHJR/i4iIiIiISPkrj/y7xhfET5w4QVhYmKPDEBERERERkRro6NGj1K9f39FhVAnKv0VERERERKSiXE3+XeML4t7e3kDRRfLx8XFwNCIiIiIiIlITZGRkEBYWZs85Rfm3iIiIiIiIlL/yyL9rfEG8uE2bj4+PEnIREREREREpV2oN/hfl3yIiIiIiIlJRrib/1kJnIiIiIiIiIiIiIiIiIiJSI6kgLiIiIiIiIiIiIiIiIiIiNZIK4iIiIiIiIiIiIiIiIiIiUiPV+DXERURERESk4lgsFgoKChwdhki5c3Z2xmQyOToMERERERERQPm31FyVkX+rIC4iIiIiIpfNZrORmJhIWlqao0MRqTC+vr4EBwdjMBgcHYqIiIiIiNRSyr+lNqjo/FsFcRERERERuWzFyXhgYCAeHh4qGEqNYrPZyM7OJjk5GYCQkBAHRyQiIiIiIrWV8m+pySor/1ZBXERERERELovFYrEn435+fo4OR6RCuLu7A5CcnExgYKDap4uIiIiISKVT/i21QWXk38ZyP6OIiIiIiNRoxWuWeXh4ODgSkYpV/DOudfpERERERMQRlH9LbVHR+bcK4iIiIiIickXUpk1qOv2Mi4iIiIhIVaDcRGq6iv4ZV0FcRERERERERERERERERERqJBXERUREREREarm4uDgMBgPbt2+v8LEMBgPffvttlTmPiIiIiIiISGWrrJw2IiKCt99+u8qcx1FUEBcREREREYewWG2si0nlu+3HWReTisVqc3RIxMbGcuuttxIaGoqbmxv169dnxIgR7N+/n1mzZmEwGC76FRcXB8C6deswmUwMGzbMfu4777zzosdGRESUut+QIUMuGO99992HyWRi4cKFV/W5w8LCSEhIoFWrVld1norwwgsv0K5du/O2JyQkMHTo0MoPSEREREREpBpSDn7lOfjZ7zk5OREeHs5jjz1GXl7eFX/2qprTzpo1C19f3/O2b9q0iXvvvbfyAyonTo4OQEREREREap+luxOY8sNeEtJz7dtCzG48PzyKIa1CHBJTQUEBgwYNolmzZixatIiQkBCOHTvGTz/9RFpaGmPHji2RFI8aNYpWrVrx4osv2rcFBAQAMHPmTB566CFmzpzJiRMnCA0NZfr06bz66qv2fUNCQvj000/t5zSZTPb3hgwZwqeffmp/7erqel682dnZzJ8/n8mTJ/PJJ59w8803X/FnN5lMBAcHX/HxjlDd4hUREREREXEU5eBXn4MXH1tQUMCOHTu466678PT05KWXXrqiz1/dctria11daYa4iIiIiIhUqqW7E5g0e2uJRBwgMT2XSbO3snR3QoWM27dvXx588EEefPBBzGYz/v7+PPvss9hsRU/F79mzh5iYGD744AO6detGgwYN6NmzJ1OnTqVbt264u7sTHBxs/3JxccHDw6PENpPJRFZWFgsWLGDSpEkMGzaMWbNmAWA2m0vsC+Dr62t/fXZy6erqWmLfOnXqnPd5Fi5cSFRUFE8++SSrVq3i6NGjF/38p0+fZvz48QQEBODu7k6TJk3sCf+5LdNXrlyJwWBg2bJltG/fHnd3d/r3709ycjI//fQTLVq0wMfHh1tvvZXs7Gz7GBdqodauXTteeOGFUuN64oknaNq0KR4eHjRs2JBnn32WgoICoOjJ9ClTprBjxw770/jF1/Pc9nK7du2if//+uLu74+fnx7333ktWVpb9/TvvvJORI0fyn//8h5CQEPz8/HjggQfsY4mIiIiIiNREysHLJwcvPjYsLIzrr7+eESNGsHXr1lI/f35+Pg8++CAhISG4ubnRoEEDpk2bZn//7Jy2OCf/8ssv6d27N+7u7nTu3JmDBw+yadMmOnXqhJeXF0OHDuXkyZMlrvGjjz5aYtyRI0dy5513lhrXm2++SevWrfH09CQsLIy///3v9tx55cqV3HXXXaSnp9tz8OJ8/tx8Pz4+nhEjRuDl5YWPjw9jxowhKSnJ/n5xt7cvvviCiIgIzGYzt9xyC5mZmaXGVpFUEBcRERERkatis9nIzi8s01dmbgHPf7+HCzVmK972wvd7ycwtKNP5ihPpsvrss89wcnJi48aNTJ8+nTfffJOPP/4YKHra2Wg08tVXX2GxWK74enz55Zc0b96cZs2aMWHCBD755JPLjnPlypUEBgbSrFkzJk2aRGpq6nn7zJw5kwkTJmA2mxk6dKg96S/Ns88+y969e/npp5/Yt28fM2bMwN/f/6LHvPDCC7z33nusXbuWo0ePMmbMGN5++23mzp3Ljz/+yM8//8y77757WZ/tXN7e3syaNYu9e/cyffp0PvroI9566y0Axo4dyz//+U9atmxJQkICCQkJjB079rxznDlzhsGDB1OnTh02bdrEwoUL+fXXX3nwwQdL7Pfbb78RExPDb7/9xmeffcasWbMued1ERERERESqEuXgJVVWDn62gwcPsmLFCrp27VrqPu+88w7ff/89X375JQcOHGDOnDn2Nu2lef7553nmmWfYunUrTk5O3HrrrUyePJnp06fzxx9/EB0dzXPPPXdZn+1cRqORd955hz179vDZZ5+xYsUKJk+eDECPHj14++238fHxsefg//rXv847h9VqZcSIEZw6dYrff/+dX375hcOHD5+Xr8fExPDtt9+yePFiFi9ezO+//15i1n5lUst0ERERERG5KjkFFqKeW1Yu57IBiRm5tH7h5zLtv/fFwXi4lD2tCQsL46233sJgMNCsWTN27drFW2+9xcSJE6lXrx7vvPMOkydPZsqUKXTq1Il+/foxfvx4GjZsWOYxigvVUNR2LT09nd9//52+ffuW6fghQ4YwatQoIiMjiYmJ4emnn2bo0KH2NdEADh06xPr161m0aBEAEyZM4LHHHuOZZ57BYDBc8Lzx8fG0b9+eTp06AVwyEQeYOnUqPXv2BOCee+7hqaeeIiYmxn49brrpJn777TeeeOKJMn22C3nmmWfs30dERPCvf/3L3gre3d0dLy8vnJycLtpObu7cueTm5vL555/j6ekJwHvvvcfw4cN57bXXCAoKAqBOnTq89957mEwmmjdvzrBhw1i+fDkTJ0684vhFREREREQqk3LwkiojBwcYN24cJpOJwsJC8vLyuP7663nqqadKPW98fDxNmjShV69eGAwGGjRocMlY/vWvfzF48GAAHnnkEcaNG8fy5ctL5OVX+1D32TPKIyIimDp1Kvfffz8ffPABLi4umM1mDAbDRXPw5cuXs2vXLmJjYwkLCwPg888/p2XLlmzatInOnTsDRYXzWbNm4e3tDcBtt93G8uXLefnll6/qM1wJzRAXEREREZFao1u3biUKxt27d+fQoUP2p9EfeOABEhMTmTNnDt27d2fhwoW0bNmSX375pUznP3DgABs3bmTcuHEAODk5MXbsWGbOnFnmGG+55RZuuOEGWrduzciRI1m8eDGbNm1i5cqV9n0++eQTBg8ebJ/hfd1115Gens6KFStKPe+kSZOYP38+7dq1Y/Lkyaxdu/aSsbRp08b+fVBQkL2t+dnbkpOTy/zZLmTBggX07NmT4OBgvLy8eOaZZ4iPj7+sc+zbt4+2bdvai+EAPXv2xGq1cuDAAfu2li1blrihERISctXxi4iIiIiIyIXVlBwc4K233mL79u3s2LGDxYsXc/DgQW677bZSz3vnnXeyfft2mjVrxsMPP8zPP1/6oYNzc3CA1q1bl9h2tTnsr7/+yoABA6hXrx7e3t7cdtttpKamllgO7VL27dtHWFiYvRgOEBUVha+vL/v27bNvi4iIsBfDwbE5uGaIi4iIiIjIVXF3NrH3xcFl2ndj7Cnu/HTTJfebdVdnukTWLdPY5c3b25vhw4czfPhwpk6dyuDBg5k6dSqDBg265LEzZ86ksLCQ0NBQ+zabzYarqyvvvfceZrP5suNp2LAh/v7+REdHM2DAACwWC5999hmJiYk4Of2V0lksFj755BMGDBhwwfMMHTqUI0eOsGTJEn755RcGDBjAAw88wH/+859Sx3Z2drZ/bzAYSrwu3ma1Wu2vjUbjea3pLrZG97p16xg/fjxTpkxh8ODBmM1m5s+fzxtvvFHqMVfjUvGLiIiIiIhUdcrB/1IZOXix4OBgGjduDECzZs3IzMxk3LhxTJ061b79bB06dCA2NpaffvqJX3/9lTFjxjBw4EC++uqrUsc+Nwe/0LarycHj4uK4/vrrmTRpEi+//DJ169Zl9erV3HPPPeTn5+Ph4VHqsVeiKuXgKoiLiIiIiMhVMRgMZW6Z1rtJACFmNxLTcy+4hpkBCDa70btJACbjhVt/X40NGzaUeL1+/XqaNGlSYtZwiXgMBpo3b16m2dSFhYV8/vnnvPHGG1x77bUl3hs5ciTz5s3j/vvvv+yYjx07RmpqKiEhIQAsWbKEzMxMtm3bViLu3bt3c9ddd5GWloavr+8FzxUQEMAdd9zBHXfcQe/evXn88ccvWhC/XAEBASQkJNhfZ2RkEBsbW+r+a9eupUGDBvz73/+2bzty5EiJfVxcXC65nlyLFi2YNWsWZ86csc8SX7NmDUajkWbNml3JRxEREREREamSlIMXqawcvDTFnyEnJ6fUfXx8fBg7dixjx47lpptuYsiQIZw6dYq6dS/98EFZnJuDWywWdu/eTb9+/S64/5YtW7BarbzxxhsYjUVNxL/88ssS+5Q1Bz969ChHjx61zxLfu3cvaWlpREVFXc1HqjBqmS4iIiIiIpXGZDTw/PCi5OjcVLv49fPDoyokEYeiNbwee+wxDhw4wLx583j33Xd55JFHANi+fTsjRozgq6++Yu/evURHRzNz5kw++eQTRowYcclzL168mNOnT3PPPffQqlWrEl+jR48uU8u2rKwsHn/8cdavX09cXBzLly9nxIgRNG7c2L6O2MyZMxk2bBht27YtMcaYMWPw9fVlzpw5Fzz3c889x3fffUd0dDR79uxh8eLFtGjR4jKu3qX179+fL774gj/++INdu3Zxxx13lHqjA6BJkybEx8czf/58YmJieOedd/jmm29K7BMREUFsbCzbt28nJSWFvLy8884zfvx43NzcuOOOO9i9eze//fYbDz30ELfddpu9zZyIiIiIiEhtoxz84sqSgxdLS0sjMTGREydO8Pvvv/Piiy/StGnTUvPqN998k3nz5rF//34OHjzIwoULCQ4OLvUB9ivRv39/fvzxR3788Uf279/PpEmTSEtLK3X/xo0bU1BQwLvvvsvhw4f54osv+O9//1tin4iICLKysli+fDkpKSkXbKU+cOBAWrduzfjx49m6dSsbN27k9ttv55prrqFTp07l9vnKkwriIiIiIiJSqYa0CmHGhA4Em91KbA82uzFjQgeGtLr4U9hX4/bbbycnJ4cuXbrwwAMP8Mgjj3DvvfcCUL9+fSIiIpgyZQpdu3alQ4cOTJ8+nSlTppSYwVyamTNnMnDgwAu2ZBs9ejSbN29m586dFz2HyWRi586d3HDDDTRt2pR77rmHjh078scff+Dq6kpSUhI//vgjo0ePPu9Yo9HIjTfeWGrS7+LiwlNPPUWbNm3o06cPJpOJ+fPnX/JzXY6nnnqKa665huuvv55hw4YxcuRIGjVqVOr+N9xwA//4xz948MEHadeuHWvXruXZZ58tsc/o0aMZMmQI/fr1IyAggHnz5p13Hg8PD5YtW8apU6fo3LkzN910EwMGDOC9994r188nIiIiIiJS3SgHL92lcvCz3XXXXYSEhFC/fn3GjRtHy5Yt+emnn0osZXY2b29vXn/9dTp16kTnzp2Ji4tjyZIl9pnZ5eHuu+/mjjvusBejGzZsWOrscIC2bdvy5ptv8tprr9GqVSvmzJnDtGnTSuzTo0cP7r//fsaOHUtAQACvv/76eecxGAx899131KlThz59+jBw4EAaNmzIggULyu2zlTeD7dzm8jVMRkYGZrOZ9PR0fHx8HB2OiIiIiEi1l5ubS2xsLJGRkbi5uV36gFJYrDY2xp4iOTOXQG83ukTWrbCn0gH69u1Lu3btePvttytsDKlZLvazrlzzfLomIiIiIiLlq7zyb1AOLlVbReffWkNcREREREQcwmQ00L2Rn6PDEBEREREREanxlINLbaaW6SIiIiIiIiIiIiIiIiIiUiNphrhUiIT0HGJTzhDp70mI2d3R4YiIiIiIsHLlSkeHICJSgnJnEREREamplINLVaKCuJS7BZvieWrRLqw2MBpg2qjWjO0c7uiwRERERERERKoM5c4iIiIiIiKVQy3TpVxYrTbyCi0kpOfYE3oAqw2eXrSbhPQcxwYoIiIiIiIiUkUodxYREREREak8miEu5ymtZZvFauNEWg5HUrOJSz3DkdQzxKVmcyT1DPGnsnl0YFPa1DfbE3r7cTYbcSnZav8mIiIiIiIiAsSmnFHuLCIiIiIiUklUEJcSzm7ZZgC6N/LD1cnIkdRsjp7OpsBiK/XYI6nZjGgXitFAicTeaIAIf4+KD15ERERERESkGoj09zwvdzYZDMqdRUREREREKoAK4mJ3bss2G7A2JrXEPi4mI+F+HkT4eRBe15MIfw8a+HkS4edBqK87ziYj00a15ulFu7HYbJgMBl4Z1UpPuIuIiIiIiIj8KcTsXiJ3Nhqw584pWXk8881u/jW4KY0DvR0dqoiIiIiISLWngrjYXahlG8DE3pH0ax5IAz9Pgn3cMBkNFz3P2M7h9GkaQFxKNhH+HoSY3ckvtFJoteLhoh85ERERESmSnV9I1HPLANj74mD9W1FEapUL5c4Ab/x8gKV7Evl1XxJ39ojgkYFN8HZzdnC0IiIiIlLdKQeX2szo6ACk6ihu2XY2k8HA3b0i6dHIn3q+7pcshhcLMbvTvZEfIWZ3jp7K5uYP1/Hk17uw2UpvuS4iIiIiIiJSWxRarPT9v5U8Mn9biZuRk65pzMAWQRRabXy8OpZ+//mdr7Ycw3qhJ9hFRERERETkklQQF7sQszvDWofYi+Ll1e48OTOX3cfT+X7HCeZujC+HSEVEREREKkZsbCy33noroaGhuLm5Ub9+fUaMGMH+/fuZNWsWBoPhol9xcXEArFu3DpPJxLBhw+znvvPOOy96bERERKn7DRky5ILx3nfffZhMJhYuXFjRl0ZEyllGbiF5hVaSM/PwdDHZt4f7efDxHZ2YdVdnGvp7kpKVx78W7mD0f9ey61i6AyMWERERESk/1SX/Pvs9JycnwsPDeeyxx8jLy6usSyXlQAVxscsrtLB0TyJWG7xzSztWP9mPsZ3Dr/q8HRvUZfLgZgBM+WEvu48rgRcRERGRqqegoIBBgwaRnp7OokWLOHDgAAsWLKB169akpaUxduxYEhIS7F/du3dn4sSJJbaFhYUBMHPmTB566CFWrVrFiRMnAJg+fXqJfQE+/fRT++tNmzbZYxkyZEiJfefNm3devNnZ2cyfP5/JkyfzySefVMIVEpHylJ5TAICXqxNOpvNvz/RtFsjSR/vw1NDmeLqY2Bafxg3vr+apRTtJzdLNNxERERGpvqpb/l18bGxsLB988AFffPEFU6dOrYQrJeVFCwSIXXaehZs7hRGXcobhbUMxGMrWHr0sJvZuyMbYUyzfn8yDc7fyw0O9tAbaVUhIzyE25QyR/p5XPYNfREREpCpITM+lYYBXhY/Tt29fWrVqBcAXX3yBs7MzkyZN4sUXX2TPnj3ExMSwfPlyGjRoAECDBg3o2bOn/Xh397/+7eXi4oKHhwfBwcElxsjKymLBggVs3ryZxMREZs2axdNPP43ZbMZsNpfY19fX97zjAVxdXS+4/WwLFy4kKiqKJ598ktDQUI4ePWq/ISAiVV9xQdzsXnpu7OJk5L5rGjGyfT1e/Wk/32w7zryNR/lxZwKPDWrKhG4NLlhMFxERERG5mMrIwWtS/n32sWFhYYwYMYKtW7dextUQR1PWJHZ1PF145cbWzJ3YrVyL4QBGo4H/3NyWULMbcanZPLlI64lfqY9WHabHtBXc+tEGer66ggWb1IZeREREqobs/MLL+pq74a9/xwx883fmbjhCdn4huQWWMp33Sn322Wc4OTmxceNGpk+fzptvvsnHH39MQEAARqORr776CovFcukTleLLL7+kefPmNGvWjAkTJvDJJ59c9r99V65cSWBgIM2aNWPSpEmkpqaet8/MmTOZMGECZrOZoUOHMmvWrCuOWUQqX3FB3OciBfFiQT5uvDW2HV/d352oEB8ycgt54Ye9XP/uajbHnSIhPYe1MSkkpOdUdNgiIiIiUkVUhxy8puTfZzt48CArVqyga9euVxy3VD7NEJdKU8fThXdv7cDYD9fx484EujX047ZuDRwdVrWx61g67/8WzdI9ifZtVhs8vWg3fZoGaKa4iIiIOFzUc8uu+FirDZ75djdPf7ObrpF1WXBfd/t7vV77jVNn8s87Ju7VYedtK4uwsDDeeustDAYDzZo1Y9euXbz11ltMnDiRd955h8mTJzNlyhQ6depEv379GD9+PA0bNizz+YsL1VDUei09PZ3ff/+dvn37lun4IUOGMGrUKCIjI4mJieHpp59m6NCh9nXRAA4dOsT69etZtGgRABMmTOCxxx7jmWeeKfeHW0WkYvw1Q7zst2Y6RdTlh4d6MW9jPP/5+QD7EzP/nDUej9UGRgNMG9W6XJY/ExEREZGqrTrk4DUh/wYYN24cJpOJwsJC8vLyuP7663nqqacu61qIY2mGuNjtS8g470mg8taxQR2eGNIcgJe0nvglFVqsLNmVwM3/Xcvw91aXKIYXs9hsxKVkOyA6ERERkfJlraQGQt26leyI1L17dw4dOoTFYuGBBx4gMTGROXPm0L17dxYuXEjLli355ZdfynTuAwcOsHHjRsaNGweAk5MTY8eOZebMmWWO75ZbbuGGG26gdevWjBw5ksWLF7Np0yZWrlxp3+eTTz5h8ODB+Pv7A3DdddeRnp7OihUryjyO1C4Wi4Vnn32WyMhI3N3dadSoES+99FKJ2RM2m43nnnuOkJAQ3N3dGThwIIcOHXJg1DVbWVqmX4jJaGBCtwb89s++PNy/sb0YDsUPTe/STHERERERuaTKyMFrQv4N8NZbb7F9+3Z27NjB4sWLOXjwILfddluZxxHH0wxxASAn38L1767GAGx4egB+Xq4VNtbfekeyITaVX/cl88Cf64n7aD3xEtJzCliwKZ7P1h7heFrRjQwno4GBLYJYtjeRczt+HEzKoHsjPwdEKiIiIvKXvS8OLvO+iem5DHzz9xIJuNEAvz52DaG+JTvfrH6iX3mFWCbe3t4MHz6c4cOHM3XqVAYPHszUqVMZNGjQJY+dOXMmhYWFhIaG2rfZbDZcXV157733zlvDrCwaNmyIv78/0dHRDBgwAIvFwmeffUZiYiJOTn+ldBaLhU8++YQBAwZc9hhS87322mvMmDGDzz77jJYtW7J582buuusuzGYzDz/8MACvv/4677zzDp999hmRkZE8++yzDB48mL179+Lm5ubgT1DzZFxhQbxYHU8XujXy450V0SW2W2yw/WiauoiJiIiI1HA1IQev6vl3seDgYBo3bgxAs2bNyMzMZNy4cUydOtW+Xao2FcQFgL0J6VisNgK9XSu0GA5gMBStJz7sndUcSc3mya938v6tHdTa8Sz3f7GFdYeL1qmo6+nC+K7hTOjWgCAfNxZsiufpRbux2GwYAF9PZ4a2DnFswCIiIiKAh0vZ04uGAV5MuaElz363B/irzW/DAK+rOm9ZbNiwocTr9evX06RJkxLt0IoZDAaaN2/O2rVrL3newsJCPv/8c9544w2uvfbaEu+NHDmSefPmcf/99192vMeOHSM1NZWQkKJ/8y1ZsoTMzEy2bdtWIubdu3dz1113kZaWhq+v72WPIzXb2rVrGTFiBMOGFbU5jIiIYN68eWzcuBEounH09ttv88wzzzBixAgAPv/8c4KCgvj222+55ZZbHBZ7TXWlM8TPFunvidFw/uyeqBCfqwlNRERERKqB6pCDV/f8uzTF8efkqDNTdaGW6QLAzmNFrcvb1L/8J2auhK+HC+/d2h4no4EluxL5fN2RShm3KrLZbKyJTiE9u8C+bVzXcJoFefPa6NasfbI//7y2GUE+RTMyxnYOZ/WT/Zg3sRtrnuzHisf6Euj912wNa2X1GhURERG5SqM71rd//+tj11Tamrfx8fE89thjHDhwgHnz5vHuu+/yyCOPsH37dkaMGMFXX33F3r17iY6OZubMmXzyySf2AuHFLF68mNOnT3PPPffQqlWrEl+jR48uU9u2rKwsHn/8cdavX09cXBzLly9nxIgRNG7cmMGDi57+nzlzJsOGDaNt27YlxhgzZgy+vr7MmTPnqq+R1Dw9evRg+fLlHDx4EIAdO3awevVqhg4dCkBsbCyJiYkMHDjQfozZbKZr166sW7fOITHXdMU54NUUxEPM7kwb1RrTnw+YGw3w6IAmNPDzBKDAYmXviYyrD1ZEREREqj1H5ODVPf8ulpaWRmJiIidOnOD333/nxRdfpGnTprRo0eKKr41ULs0QFwB2/VkQb13Pt9LGbB9ehyeHNmfqj/tYuOUoE7o1wGSsfbPEH5q3jcU7E3hqaHPuu6YRANe3DmF4m5BSZ82HmN0v2P7u6y3H+GbbcT6Y0EFt6EVERKRaCTZXXjvm22+/nZycHLp06YLJZOKRRx7h3nvvJTU1lYiICKZMmUJcXBwGg8H++h//+Mclzztz5kwGDhx4wbZso0eP5vXXX2fnzp20adOm1HOYTCZ27tzJZ599RlpaGqGhoVx77bW89NJLuLq6kpSUxI8//sjcuXPPO9ZoNHLjjTcyc+ZMHnjggcu7KFLjPfnkk2RkZNC8eXNMJhMWi4WXX36Z8ePHA5CYmAhAUFBQieOCgoLs750rLy+PvLw8++uMDBVeL0d5zBCHooem+zQNIC4lmwh/jxK54v9WHeaNnw9wT69IHhvUDHeX82fiiIiIiEjtU1k5eHXOv8921113AUWz2IODg+nTpw+vvPJKiWXMpGrT35QAsPN45c4QL3ZPr0hcnIzc3DGs1hTDE9Nz8XF3srcd6dM0gBX7kymwWO37GK/gWmTkFvDi4r2k5xTw5aaj/K13w3KLWURERKQmcXZ25u2332bGjBkltvv7+zN9+vQyn2flypUlXv/www+l7tulSxdstpKdfM59DeDu7s6yZctKPU9QUBAFBQWlvv/BBx+U+p7Ubl9++SVz5sxh7ty5tGzZku3bt/Poo48SGhrKHXfccUXnnDZtGlOmTCnnSGuP4oK4z1UWxKH0h6aPpJ7BaoOP/ohl2Z4kXh3Vmh6N/a96PBERERGRsqjO+ffFjpXqRy3Thay8QmJOZgHQql7lFsQNBgO3d4+oFU+p7ziaxiPzt9HrtRUs3HzMvn1Eu1DWPTWAB/s3uarz+7g5M+dvXbmzRwR394y82nBFRERERKQGefzxx3nyySe55ZZbaN26Nbfddhv/+Mc/mDZtGgDBwcEAJCUllTguKSnJ/t65nnrqKdLT0+1fR48erdgPUcOU1wzxi3n9prZ8cmcnQsxuxJ/K5taPN/DEVztLLNklIiIiIiJS02mGuLD7eDo2G4Sa3Qjwdr30ARXEarUx4/cYvN2cuL17hMPiKE+FFivL9iTxyZpYthw5bd++41ia/XtXJxOuTuXzQECreuYSDzXkFliITs6q9AcdRERERMrCw8WJuFeHOToMkVohOzsbo7HkM/EmkwmrtahTVWRkJMHBwSxfvpx27doBRS3QN2zYwKRJky54TldX1/NaCUrZPT64GQnpuTQP9qnQcfo3D+Lnf9Tl9aUH+GL9ERZsPsqKA8m8NKIlQ1qFVOjYIiIiIlJ1KAeX2kwFcflr/fBKbpd+rp/3JvJ/yw7gbDJwTdMAGvh5OjSeq5GeXcC8TfF8vjaOE+m5ADibDAxvE8pdPSMr5VpbrTYe+3I7y/clM/2W9gxpdeFZHSIiIiK1yblt1kRqi+HDh/Pyyy8THh5Oy5Yt2bZtG2+++SZ33303UNS969FHH2Xq1Kk0adKEyMhInn32WUJDQxk5cqRjg6+h+jUPrLSxvN2ceWlkK25oF8oTX+/k8Mkz3D97K0NaBvPiiJYE+lTOGpIiIiIiUnso/5aqRAVxOWv9cF+HxjG4ZTA3tq9Ht4Z1Ca/r4dBYrlR0chaz1sby9Zbj5BRYAPDzdGF8twZM6BpeqTcZ8i1W8gtt5BVamTRnCy8Mb8kdPSIqbXwREREREak63n33XZ599ln+/ve/k5ycTGhoKPfddx/PPfecfZ/Jkydz5swZ7r33XtLS0ujVqxdLly7FzU3F0pqic0Rdljzcm/dWRPPf32NYuieRtTEp/HtYC3o38ScuNZtIf88LrkcuIiIiIiJSXRlsNXw1+IyMDMxmM+np6fj4VGwbsuqq7//9RlxqNl/c04XeTQIcHU61Y7PZ+ONQCp+siWXlgZP27c2Dvbm7VyQ3tA3Fzdkxa6QXWqw89/0e5m6IB2BS30ZMHtwMg8HgkHhERESkZsjNzSU2NpbIyEgVyqRGu9jPunLN8+malF1ugYUV+5MxuzvTs7G/Q2LYeyKDJxftZOefXeOKGQ0wbVRrxnYOd0hcIiIiIvIX5d9SW1R0/q0Z4rVcenYBcanZALSuYutMp2Xn8/OeJOrXda/ST6jnFVr5x4LtpJ7Jx2CAAc2DuLtXBN0b+jm88OxkMvLyyFaEmt34z88HmbEyhqT0XF4d3QYXJ+OlTyAiIiJyEcVrD4vUVPoZl4qSmJ7L3+dsxdPFxJ4XhzgkhqhQHxZN6sH0Xw/x7m/R9u1WGzy9aDd9mgZU2TxcREREpLZRbiI1XUX/jKsgXsvt+rNdenhdD3w9XBwczV+SM3K59q1VpOUUAGAA7uwRwaCWQbg6mXBzNuLmbMLVqejP4u+dTRVX5E1IzyE25QxeLk6siUnlvj4NMRoNuDmb+FvvhiRl5HJnjwgi/KvW2ucGg4EH+zchyMeNJxftYtG24yRn5jFjQge83ZwdHZ6IiIhUQy4uLhiNRk6cOEFAQAAuLi4OfxBQpDzZbDby8/M5efIkRqMRF5eqkytJzWADOkfUwdXJMd3EijmZjHRv7FeiIA5gsdnYfSxdBXERERERB1P+LTVdZeXfKojXcifSc3AxGWldv2rNDi+0Wu3FcCi6WfDp2jg+XRt30eN2vnAtPn8Weaf9tI+f9yRxb5+GjOtS1OrtSOoZpv6476xiutFeYD/3z+J9XJ1NHDuVw/Pf78Z61gIDzYO96dc8EChqRV7V3dwpDH9vVx6Ys5XV0SmM/XA9s+7qXKnrmouIiEjNYDQaiYyMJCEhgRMnTjg6HJEK4+HhQXh4OEajuitJ+Yr092Th/T0cHQZQFIvRQIl812CAyV/v5E2T0Z73ioiIiEjlU/4ttUVF598qiNdyYzqFMbJdPTJzCy69cyUqbuN+rnq+bhiNBvIKrOQWWMgttJJf+FcbBbeznq5PTM8lNuUMZ/IK7dtSsvL5ZW/SZcdz7s0BgLxCy2Wfx9H6NQtk/r3duHvWJvYmZHDjB2v57O4uNA70cnRoIiIiUs24uLgQHh5OYWEhFkv1+3eRyKWYTCacnJw0+0JqvBCzO9NGtebpRbux2GwYDRDq686x0zkcT8txdHgiIiIitZ7yb6npKiP/VkFccHEy4ufl6ugwSrjQE+omg4GvJvU4r2Wb1Woj32Ilr8CKs+mv/1geG9SUCd0aUL/OX/uH1XXnlRtbk1tgIa/Qes6flqJC+zl/ppzJIy7l/AK92b16tk1sU9+Xryf14I5PNhKXms1N/13LzDs60bFBXUeHJiIiItWMwWDA2dkZZ2ctwyIiUp2N7RxOn6YBxKVkE+HvQR0PF77ZdpxbOofZ98kvtOLipG4JIiIiIo6g/Fvk6hhsNpvt0rtVXxkZGZjNZtLT0/Hx8XF0OHIZFmyKtz+hbjIYeGVUK8Z2Dq/0OBLSc+j56orzivOrn+xXrddTS83K4+7PNrPjaBqhZjd+e7yvw9evExERERGpLpRrnk/XpOw+WnWY//1xmDGd6vP44OaODueSMnILGPneGsZ0DmNi74aYjOqcICIiIiIilaM8ck3NEK/F/jh0kleW7GdQVBCPDWrq6HDOc+4T6o4qPp/bPq64OF+di+EAfl6uzJvYlce/2snfekWqGC4iIiIiIlJJUrLyOJmZR26B9dI7VwGLthzjcMoZXv1pPysPJPPGmHbU863eObGIiIiIiNQeKojXYtvi09iXkEGzoKq7fnSI2b1KFJ6rSnG+vHm4OPH+rR1KbIs5mUVDf0+tlSgiIiIiIlJB0nMKADC7V4+Wl3f0iMDDxYkXftjD+sOnGPL2Kl6+sTU3tA11dGgiIiIiIiKXpIJ4LXZLlzCaBnnj71U918KubFWlOF+Rdh1LZ+z/1jG0VQivjm6Ns0nrw4mIiIiIiJS36lYQNxgMjOkcRpfIujy6YDvbj6bx8Lxt/LY/mSkjWuLjVj0+h4iIiIiI1E6qdtVigd5uDGkVTKeIuo4ORaqI6JOZ5BVaScrIxWa79P4iIiIiIiJy+apaQdxitbEuJpXvth9nXUwqFuuFE8IIf08W3t+dRwY0wWiAb7YdZ+jbf7Ax9lQlRywiIiIiIlJ2miEuInY3tq9PkI8breuZcXHS8zIiIiIiIiIVoSoVxJfuTmDKD3tJSM+1bwsxu/H88CiGtAo5b39nk5F/DGpKn6YB/GPBduJPZXPL/9YxqW8jHh3Y9Ko7jVmsNjbGniI5M5dAbze6RNbFZNSSXiIiIiIicuVU8aqlth9N453lh9gUp6e4paQejfzx/rPdnc1m470Vhzh8MsvBUYmIiIiIiNQcxQVxHwcXxJfuTmDS7K0liuEAiem5TJq9laW7E0o9tmODOix5pDc3d6yP1Qbv/xbD6Blrryp/XLo7gV6vrWDcR+t5ZP52xn20nl6vrbhoHCIiIiIiIpeigngttWJ/Mm/+cpD5G486OhSpwuZsiOc/Px9k9Iy1bI0/7ehwREREREREaoSqMEPcYrUx5Ye9XKg5evG2KT/sLbV9OoCXqxP/d3NbPhjfAbO7MzuPpTPsndXsPZFx2fFcTXFeRERERETkYtQyvZbadSwNgLZhZscGIlXakFbBfLn5KDuPpXPrR+t5d1wHBkUFOTosERERERGRastitZGZWwg4tiC+MfbUecXns9mAhPRcHpq7lQb+nriYjLg4GXE2GXAxGXF2MuJsMuL655//HtaCWWviAMjKK2DH0bQ/9zf+uf9fx7n8uc34Zyv0SxXnDRQV5wdFBat9uoiIiIiIXDYVxGshm83GruPpALSup4K4lM7fy5V5E7vxwNytrDxwkvu+2MxLI1sxvmsDR4cmIiIiIiJSLWXmFti/d2RBPDmz9GL42ZbsTrzsc4/5cH2Z9jMZDTibDBiB7AJrqfsVF+c3xp6ieyO/y45HRERERERqNxXEa6GE9FxSsvJxMhpoEeLj6HCkivN0deKj2zvx72928eXmY/z7m90kpefyj0FNMRj0ZL6IiIiIiMjlKG6X7u5swsXJcSvZBXq7lWm/4W1DCPByI99ioaDQRoHFSp7FSkGhlQKLlXyLlYJCW9GfFiv5f24vsNhIzcojt9CKs6kodyywlJwDbrHaLtqS/VxlLeKLiIiIiIicTQXxWmjnn+3SmwZ54+ZscmwwUi04m4y8NroNwWZ33ll+iHdWRJOQnssro1rjbHLcDRwREREREZHqpiqsHw7Qpr4ZN2cjuaXMzDYAwWY33h7b/oralNtsNl5avI9P18byyZ2d6d0kAKvVRoG1qFheXDjPL7SyMe4U//xyxyXPuS0+jWujgnF30b0MEREREREpO1WyaqGdx4rapbepr3bpUnYGg4HHBjXllRtbYzTAwi3HmPj5ZmKSs1gbk0JCeo6jQxQREREREanyqkJBPD27gLtmbbpoMRzg+eFRV7xmt8Fg4LnhUSx/7Bp6NwkAwGg0EJeSjYezibqeLgT5uBFW14OR7eoRYnbjUiPNWhtHr9dW8P5v0fbrKCIiIiIicikqiNdC9vXDVRCXK3Br13D+d1sn3JyNrDxwkgFv/s6tH22g56srWLAp3tHhiYiIiIiIVGmNArx45cbWTOrbyCHjn0jL4eYP17Ix9hTerk48OrAJIeaS7dODzW7MmNCBIa1Crnq8hgFe9u+Pnspm9Iy13Prxek6k/fVQtclo4PnhUQDnFcUNf37d0iWM+nXcST2Tz/8tO0CvV1fw2tL9nMzMu+oYRURERESkZjPYbLayL9ZUDWVkZGA2m0lPT8fHR+tl22w22r34C+k5BSx+qBet6qkoLlfml72JTPx8S4ltJoOB1U/2I8Ts7qCoREREREQqh3LN8+maVH0HEjO545ONJGbkEuTjyqy7utAixAeL1cbG2FMkZ+YS6O1Gl8i6Vzwz/GJ+3ZvEQ/O2kVNgwcfNiZdvbM3wtqH295fuTmDKD3tJSP9rrfAQsxvPD49iSKsQCi1WFu9M4IOV0RxMygLA1cnImE5h3NunIWF1Pco9ZhERERERcazyyDW1hngtc/RUDuk5BbiYjDQN8nZ0OFKNebqe/+vDYrMRl5KtgriIiIiIiEgVs+FwKhM/30xGbiGNA7347O4u1PMtyt1MRgPdG/lVeAwDo4JY8khvHp2/jR3H0nlo3jZ+25/MlBEt8XZzZkirEAZFBZdanHcyGRnZvh43tA1l+f5kPlgZzbb4NL5Yf4S5G+MZ0TaUSX0b0UT3O0RERERE5CxqmV7L7DyeBkCLEG9cnPTXL1cu0t+TcycMmAwGIvw92BR3irxCi2MCExERERERqcIOJGayJjqlRMvwirZkVwK3zdxIRm4hnRrU4av7u9uL4ZUt0t+Tryb14OH+jTEaYNG24wyd/geb404BfxXnR7SrR/dGfhecqW40GhgUFcSiST2YN7EbvZv4Y7HaWLTtOIPeWsW9n29m+9G0Sv5kIiIiIiJSVakiWsvsOqb1w6V8hJjdmTaqNSZD0c0Jk8HAK6NakVtgZfzHGxj2zmpSs7SWm4iIiIiIyNlmrY1j/McbWLj5WOWMtyaWB+ZuJd9i5dqoIGb/rSu+Hi6VMnZpnE1GHru2GV/e1536ddw5djqHMR+u442fD1BgsZb5PAZDUfH8i3u68v2DPRnaKhiDAX7em8TI99dw60frWX0ohRq+WqCIiIiIiFyCWqbXMjuOpQHQpp6vQ+OQmmFs53D6NA0gLiWbCH8PQszurIlOwcfNiRCzG3U9HXuTRUREREREpKoJ8HKhaZAXIb5uFTqO1Wrj9WUH+O/vMQBM6BbOlBtaVcja4FeqU0RdfnqkN89/v4dFW4/z7opoVh08yb+HtaDQaiPS37PMS3K1qe/LjAkdiU7O4r+/x/DttuOsjUllbUwqbeubmdS3MddGBWGsQp9fREREREQqh8FWwx+TLY+F1muSGStjWH84lWeGtdCaWlJh0rLzyS2wEmwuusGTnl3AmpiUP5/W180HEREREan+lGueT9ek6sgvtPLE1zv5ZttxAP51bVMe6Ne4Sudji3ee4OlFu8jILbRvMxpg2qjWjO0cftnnO56Ww0erDjN/Uzy5BUWzzhsHejHpmkbc0C4UZ5OaJoqIiIiIVAflkWuqIC4iFe6pRTuZt/Eo/ZoF8NLIVtSv4+HokEREREREropyzfPpmjiGxWpjY+wpkjNzCfR2IyrUhwfnbuWPQymYjAZeHdWamzuFOTrMMtlx9DQj3l9bYpvJYGD1k/3KPFP8XKlZeXy6Jo7P1sWR+WexvZ6vO/f2acjYzmG4OZuuOm4REREREak45ZFrqmW6iFQom81GiNkdF5OR3w6cZNCbq/jntU25s0cETnoiX0RERERE5Iot3Z3AlB/2kpCea9/mZDRQaLXh4WLi/fEd6Ncs0IERXp4z+ZbztllsNuJSsq+4IO7n5cq/BjfjvmsaMnt9PDNXx3I8LYfnv9/DO8sPcXevSG7r3gAfN+erDV9ERERERKooVaNqkUNJmZzMzHN0GFLLGAwGHh7QhCWP9KZLZF1yCixM/XEfIz9Yw65j6Y4OT0REREREpFINfPN3Br75O8dOZ1/VeZbuTmDS7K0liuEAhdaiRoAP929SrYrhAJH+npy7xLfJYKCOhzNHT13d9fJ2c2ZS30asfqLfn53L3Ek9k8//LTtAz2kreG3p/vPumVisNtbFpPLd9uOsi0nFYq3RTRZFRERERGostUyvRW6asZbNR07z7rj2DG8b6uhwpBayWm0s3HKUl3/cR0ZuIUYD3NUzkscGNcXTVQ0rRERERKT6UK55Pl2TS7NabTT69xJsNtj47wEEertd0XksVhu9XltxXjH8bCFmN1Y/0R/TuRXmKm7BpnieXrQbi82GyWDgxREt+W7HCWKSs/jojk50CK9TLuMUWqz8sPMEM1bGcDApCwBXJyNjO4dxb5+G7D6eft7s+xCzG88Pj2JIq5ByiUFERERERC5NLdOlzGw2GwUWKwYDtAjxdnQ4UksZjQbGdg6nf/MgXlq8l+93nGDm6liW7k7kpZEt6d88yNEhioiIiIiIVJjMvEKKpyWY3a+8RffG2FMXLYYDJKTnsjH2FN0b+V3xOI4wtnM4fZoGEJeSTYS/By4mI/M2xZNXaMXTpfxuYzmZjNzYvj4j2tbj131JfLAyhu1H0/h83RFmrz/ChSaDJ6bnMmn2VmZM6KCiuIiIiIhINaKCeC1hMBj47sFeZOUV4uFscnQ4UssFeLvyzrj2jOpQj2e+3c2x0zncPWszw1qH8PzwKAJ9rmyWhIiIiIiISFWWkVMAgJuzEVenK8/NkzMvXgy/3P2qmhCze4k1w7+8rzuHkrJoFlz+D/gbjQaubRnMoKgg1h1O5f0V0ayJSb3gvjbAAEz5YS+DooKr3ex7EREREZHaSmuI1zJerk4YlbBJFdG3WSA//6MP9/ZpiMlo4MddCQx483diTmY5OjQREREREZFyl/5nQfxqZocDZW61fqUt2asaDxcn2ob52l9vOJzKvxbuILfAUm5jGAwGejTy58H+TS66n42/Zt+LiIiIiEj1oBnitYTNZsNgUCFcqh4PFyeevq4FN7QN5alFu/B0NdHQ39PRYYmIiIiIiJS78iqId4msS4jZrdS26QYg2OxGl8i6VzVOVZSTb+GBudtIycojLuUMH97WET8v13I7f02ffS8iIiIiUhtphngtcetHG7hpxlp2H093dCgiF9SqnplvH+jJB+M72h/eyMwt4IOV0eX61L+IiIiIiIijlFdB3GQ08PzwqAu+V/wo/PPDo2pkS293FxPTb2mHt5sTm4+c5sYP1hKdXH5dxso6q97FSbfURERERESqC/3rvRbIL7SyJf40m4+cxstVTQGk6jIZDdT1dLG//s+yA7y+9AD3z97iwKhERERERETKR3kVxAEaBnhdcHuw2Y0ZEzowpFXIVY9RVfVs7M83f+9BeF0P4k9lc+MHa1h9KKVczl08+/5SjxJMXriDLzcdxWazlcu4IiIiIiJScVQQrwUOJmWSX2jFx82JBn4ejg5HpMy6NfQj0NuVv/Vq6OhQRERERERErlpxQdynHAriczfEAzA4Koh5E7sx/ZZ2zJvYjdVP9K/RxfBijQO9+faBnnRqUIfM3ELu+HQj8zbGX/V5z559f25RvPh1WF13MvMsTP56J+M/3sCR1DNXPa6IiIiIiFQcFcRrgV1/tklvU99X64hLtTK0dQirJvejVxN/+7YvNx/lu+3H9RS+iIiIiIhUO+U1Qzwn38LXW48BML5bA7o38mNEu3p0b+RXI9ukl6aupwtzJnZlZLtQLFYbTy3axStL9mGxXl2+OKRVCDMmdCDYXLJ9erDZjf9O6MBv/+zL09c1x83ZyNqYVAa/vYoPf4+h0GK9qnFFRERERKRiqH92LbDzWFFBvHV9s4MjEbl8bs4m+/cJ6TlM+X4PZ/ItfLXlGC+PbE24uh6IiIiIiEg1UV4F8R92niAzt5Dwuh70aux/6QNqMFcnE2+NbUekvxdv/XqQ/606TGzKGabf0g4Plyu/7TWkVQiDooLZGHuK5MxcAr3d6BJZ1/7Awb19GjG4ZTBPLdrF2phUpv20nx92nuC10W1oGar7LyIiIiIiVYlmiNcCu46nAdCmnhIyqd78PF2Z1LcRLk5G/jiUwrVv/85/f4+hQE/hi4iIiIhINVBeBfHidunjuoRjrEUzwktjMBh4ZGATpt/SDhcnI7/sTeLm/64jMT33qs5rMhouOvu+gZ8nc/7WlddHt8HHzYndxzO44b01vLZ0P7kFlqsaW0REREREyo8K4jVcboGF/QmZgGaIS/Xn4mTkwf5NWPZoH7o39CO3wMqrP+1n+Lur2X40jYT0HNbGpJCQnuPoUEVERERERM6TUQ4F8T0n0tl+NA1nk4GbO9Uvr9BqhBHt6jFvYlf8PF3YcyKDEe+vJinj6oril2IwGBjTOYxf/3kNw1qHYLHamLEyhqHT/2D94dQKHVtERERERMpGLdNruP2JmRRabdT1dKGer7ujwxEpF5H+nsyd2JWvtx7n5R/3sj8xk5Hvr8EA2ACjAaaNas3YzuGODlVERERERMRuQrcG9GjkT5ureGC9eHb4tS2D8fdyLa/QaoyODery7QM9uWvWJtrUMxPoXTnXKNDbjffHd2DEnkSe/W43sSlnuOV/6xnXJZwnhza/6q4AIiIiIiJy5VQQr+F2HUsDoE19MwaD2qhJzWEwGLipY336NQvg39/sZumeRGx/vme1wVOLdtG9kR/hdT0dGqeIiIiIiEixwS2Dr+r4M3mFfLf9BADju+gB4NKE1fVg0d974OpktN8LyS+04mwyVPi9kWtbBtOtkR+v/rSfuRvimbcxnuX7knhpZKur/vsXEREREZEro5bpNdzOY+mA1g+XmsvPy5XbezQ4b7vVBte/s5rjaWqfLiIiIiIiNcP3O06QlVdIQ39Pujfyc3Q4VZqPmzOuTiYALFYbD8zdyr+/3U2BxVopY79yY2vm39uNSH9PkjPzuO+LLUyavYXkzIpt4S4iIiIiIudTQbyG23W8qCDeur6vYwMRqUCR/p4YL/CQv6+7M6FmN/vrNdEppGTlVWJkIiIiIiIiRWw2G2uiU9h1LB2L1XbpAy5gzoYjAIzrEq4ucJdhc9wpft2XxFebj3EoKavSxu3W0I+fHunN3/s2wmQ08NPuRAa+8TsLNsVjs13Zz4CIiIiIiFw+FcRrsJx8CweTMgGuan0yR7FYbayLSeW77cdZF5N6xTcMpOYLMbszbVRrTH/eEDIZDLxyYytm/62b/SZRboGF+2dvodsry9l7IsOR4YqIiIiISC2UlVfI+I83MPy91Vc0S3nnsTR2H8/AxWRkdMf6FRBhzdW1oR//u60T/xnTlqhQn0od283ZxOQhzfnhwV60rmcmI7eQJ77exfiPNxCXcqZSYxERERERqa20hngNtjchHasNAr1dCfJxu/QBVcjS3QlM+WEvCel/tRILMbvx/PAohrQKcWBkUlWN7RxOn6YBxKVkE+HvQYjZvcT7SRm5NAzwIiUzj+bB3vbtS3cnUr+OOy1DfTTDQkREREREKkxugZWmQV7kFFhwczZd9vFzN8QDMLR1MHU9Xco7vBpvUFRQidd7T2SQU1BIxwZ1K2X8qFAfvvl7Dz5ZE8ubvxxkbUwqg99exWODmnJPr0icTJqzIiIiIiJSUQy2Gt6jKSMjA7PZTHp6Oj4+lfsUsKPlFljYfTydU2fyubZlcKWNa7Ha2Bh7iuTMXAK93egSWRfThfpZl2Lp7gQmzd7KuT+YxWeYMaFDpRfFr/YzSdWRnl2A2cMZgAKLlW6vLCf1TD7Ng725qWN9Rravh7+Xq4OjFBEREZGqrjbnmqXRNak4GbkFdHtlOdn5Fr68rztdIiuniFtTJWfmMuK9NaSeyef/bmrDiHb1KnX8I6lnePqbXayJTgWgVT0fXhvdhpah1a+7n4iIiIhIRSuPXFMzxGswN2cTnSIqN0m+2pndFquNF77fc14xHLBve+bb3TQK8KKOpws+bs64OFXsU9SarV6zFBfDAdJzCujWyI9f9iSxPzGTqT/u49Wf9tO3WQA3daxP/+ZBFf7zJSIiIiIicinfbTtOdr6FxoFedI6o4+hwqj0vVyda1zPz894kHpm/ndiUMzwyoEmldQ1r4OfJ7Hu6snDLMaYu3svu4xnc8N4a7u3TkEcGNLmiDgIiIiIiIlI6zRCXcnM5M7ttNhsnM/OIPpnF4ZNniPnzzz0n0knJyr+scd2dTZjdnfFxdyr60835z9d/frk5/fXa/l7RNi9Xp4smvFVxtrqUv7TsfH7YmcBXW46x42iafXsdD2dGtKvHTR3rq6W6iIiIiJSgXPN8uiYVw2azMXT6H+xPzOS566O4u1eko0OqEaxWG68t3c+Hqw4DMLJdKK+OblPpxejkzFymfL+XH3clABDh58G0UW3o3sivUuMQEREREamqyiPXVEG8hsrMLeCNnw/Sup6ZUR3qVXghz2K10eu1FSVmUZ/L29WJgS0COZxyhsMnz5CZV3jF47k5GckttF7x8cWMBi5YKPdxc8bbzYl5G4+SVUqcBiDY7MbqJ/qrfXoNEp2cyVdbjrNo6zGSM/Ps24tbqo9oV48Ab7VUFxEREantamuueTG6Jhf3/Y4TvLP8EAOaB/LUdS3KfNzW+NOM+mAtrk5GNj49sETXK7l68zbG8+y3uym02ujYoA7/u60jfg5YRuvnPYk8+91ukjKK8tBxXcJ4cmgLzO5Ff99ayk1EREREaiu1TJdS7TmRway1cdTzdWd0x/oVPt7G2FMXLYYDZOYV8s32E/bXRgOE1/WgYYAXjQI8aRTgRU6BhSk/7L3keJ/e1YUukXXJzC0gI6eQ9JwCMnILiv7MKTjn9bnvF5KRU0C+xYrVBmnZBaRlF1z2Z7YBCem5fPh7NDe0q0c9X3fNIK4BGgd68+TQ5vzr2qasjk7hqy3H+HnvXy3Vv9t+gh8e6uXoMEVEREREpJpJSMshOjmL1vUub53ouRviAbi+TaiK4RVgXJdwwut6cP/sLWw5cpqRH6zh0zs70zjQu1LjuLZlMN0a+fHqT/uZuyGeeRuPsnxfMi+OaAXYtJSbiIiIiMhVUEG8hvL3cuGeXpF4uFROq6/kzIsXw4td3yaE69uE0CjAi3A/D1ydSsZnsdr436rDJKbnXnAd8eJZ2cVPQvt6uODr4XLZ8dpsNvIKrRctoG+LP81vB05e8lyvLzvI68sO4uliokmQN82CvGka7E3TIC+aBXkT4O2qQnk15GQy0rdZIH2bBZKeXcDiXSf4assxhrcJte+TlVfIf5YdYHSH+rSqp5bqIiIiIiJSuvScogexi2f8lumY7AJ+2FH0YPmtXcMrJC6Bno39+ebvPbh71mbiT2Vz4wdrmTG+I72a+FdqHD5uzrxyY2tGtA3lqUW7OJxyhvtnb7ngvonpuUyavVVLuYmIiIiIlIEK4jVU40Bvnr0+qtLGy8m3lGm/8V0bXHQdLJPRwPPDo5g0eysGKFEULy41Pj886qrbghkMBtycTbg5mwjycbvgPutiUstUEA+r405Cei5n8i1sP5rG9rPWoAbw9XCmadBfBfKmf37V8bz8Qj6oTZojmD2cGd+1AeO7NuDsVSaW7Epg1to4Vh06yfLHrnFghCIiIiIiUtUVF8R9LqMgvmjbMfIKrTQP9qZDuG8FRSZQdB/lm7/34L4vtrD5yGnu+HQjU0e2om+zAGJTzhDp70mI2b1SYuna0I8lj/Rm+vKDzFh5+IL72Ci6TzLlh70MigrWfQERERERkYtQQVyuSlp2Pm/8fJDZ649cdL+zZ3ZfypBWIcyY0OG8dmDBldwOrEtkXULMbpecrb7y8X5YrDbiUs9wMCmTg4mZHEjK5FBSFnGpZ0jLLmBj7Ck2xp4qcXyAt+tZBXKvP2eVe+PlWvp/lkt3J6hNmoOdPQu8SaAXw9uG0ra+2b49t8DCY19u5/o2oQxoEXheFwQREREREamdLneGuM1ms7dLH981XB2pKoGflytzJnblia928u32Ezy1aJf9YX2jAaaNas3YzpUzU9/N2USfJoGlFsThr6XcNsaeuujkAxERERGR2k4F8RroTF4hu46n06qe+aLF1athsdqYvyme/yw7wOk/19/uEO7L1vi0cpnZPaRVCIOigh06E/pyZqubjAb7zG/a/LVfboGF6OSsokJ5UtGfBxIzOZ6Ww8nMPE5m5rE6OqXEuPV83e0F8uKCeeNAL1YeSGbS7K3nFefVJs1x2ofX4d3wOiW2LduTyJJdRV9md2dGtAtldIf6tDmraC4iIiIiIrXP5RbEN8Wd5lByFu7OJka0r1eRoclZXJ1MvDW2Hf5erny8Otaeg1tt8PSi3fRpGlBpM8XLujxdWfcTEREREamtVBCvgbbFpzFh5gYi/DxY+Xi/cj//liOneP77Pew+ngFA0yAvXhjekh6N/S84g/lKZ3abjAaHP+F8tbPV3ZxNtKpnplU9c4ntWXmFHErK/LNAnsWh5KJCeXJmHsfTcjiellOiXbsBMBoNF5yprjZpVUv7sDr8vW8jFm09TmJGLp+vO8Ln647QJNCLmzrW58b29QgspU2/iIiIiIjUXBmXWRCfu6GoE9sNbUPxcSt7m3W5egaDgf4tAvl4dWyJ7Rabjd3H0yutIB7oXbbcsaz7iYiIiIjUViqI10A7j6cBnFeEvVrJGblM+2k/32w7DoC3mxOPDWrKbd0a4GQyAlVjZnd5q4jP5OXqRPvwOrQ/Z3ZxWnY+B5OyOHBW6/WDSZmkZRdgsV6oHF6kuE3a7weS6d8i6IrjkqsX7ufB5CHN+ee1zVgTncJXW46xbE8ih5KzmPbTfl5bup9rmgYwumN9BrYIws1ZLdVFRERERGqDy5khfvpMPkt2JwJwa9fKadEtJUX6e2I0FM0MP9s/FmznjTHtGNwyuMJjuNRSbgBORgN+Xi4VHouIiIiISHWmgngNtOtYOgBt6l9+QdxitZ1X+LVYbXy6JpZ3lh/iTL4FgwHGdAzj8SHN8PdyPe8cVWFmd3mrrM/k6+FCl8i6JdZat9lszN5whGe/3XPJ4+/+bDNNg7xoH1aH9uG+tA+vQ+NAr2r9QEJ1ZTIa6NM0gD5NA8jILeDHnQl8teUYW46c5rcDJ/ntwEl83Jy4oV0oE7o1oHmwj6NDFhERERGRCnQ5BfGvtx4jv9BKq3o+V5Tby9ULMbszbVRrnl60G4vNhtEAgd6uJGfm0SjAq1JiuNhSbsUKrTZGvr+Gl0a0YnTH+pUSl4iIiIhIdaOCeA2088+CeOt6vpd13IXandfxcMHFyUBSRh4AbcN8efGGlrQNu7xzy5UzGAw0DvAu8/5Fa5VnsWDzUaBoNnrbMLO9SN4uzBe/CzzIIBXHx82ZcV3CGdclnMMns/h66zEWbT1OQnous9fH0zLUrIK4iIiIiEgNZrPZyMgtBC5dELfZbMzdEA/ArV0aYDDoAWdHGds5nD5NA4hLySbC34NAbze2Hz1N48C/CuLTfz1E8xBvro0KqpC/q9KWcgsxu/HIgCZ8t/0E6w6n8s+FO1gdncJLI1vh5arbfSIiIiIiZ9O/kGuY1KyiNagBWtUre4Ft6e4EJs3eet7Txqez84Gi9ujPXR/F6A71MWq2caW7VJs0A0Xrmi/6ew92HUtn29E0tsWfZuexdLLyClkTncqa6FT7/g38PGgfVjSDvF2YLy1CfHBxMl52XBfqKKDZ6BfXMMCLxwc357FBzVgXk8qirccY1uavtei/WH+EX/cm8bfekfRuEuDASEVEREREpLycybfYl8Hycb/4rZh1h1M5nHIGTxcTN7QLrYzw5CJCzO4l1gzv2OCvjm6HkjKZvvwgVht0CPflyaEtSnR8Ky8XW8rt5k5hzFgZzVu/HuKbbcfZFn+ad8d1oLU6C4iIiIiI2KkgXsPsPF40O7xhgCfebpduwwZFRc0pP+wtdT0qAE8XE6NUDHeYi7VJK/4beX54lD1Rv/bPtcwKLVYOJWexLb6oQL7taBrRyVkcSc3mSGo2324/AYCLk5HW9cz2Inn7cF9CzG4Xfbr9Qh0FQsxuPD88iiGtQko9ToqYjAZ6NfGnVxP/Etu/3HSUXcfT6dsswF4Qt1iL2vNpZoiIiIiISPVU3C7d2WTA3dl00X2LZ4ePaF9PM32ruCCzG3/v25iPVx9ma3waYz5cx4DmgUwe0pxmwWXv9FYWpS3lZjIaeLB/E7o19OPheduIS81m1Iw1PDGkOff0ilQeKSIiIiKCCuI1TvH64W3r+5b5mI2xp0oUNS8kMSOPjbGnatza4NVJaW3Sgi9ShHYyGWkR4kOLEB9u7RoOFN2I2XE0rahIfvQ02+LTSM8pYMuR02w5chqIBSDIx7XEWuSt65lxdym6cVNaR4HE9Fwmzd7KjAkdVBS/Qu+Ma8/XW45xQ9u/ZoJ8teUoH646zE0d6zOqfX2CzW4OjFBERERERC5XevZf64dfrECZkpXHsj2JANzaJbxSYpMr5+PmzL8GN+O27g2YvvwQCzYdZfn+ZFYcSGZ0h/r8Y1BT6vm6X/pE5aBTRF2WPNKbJ77eybI9SUz9cR9rolP4z81ttWyaiIiIiNR6BpvNdrGJwdVeRkYGZrOZ9PR0fHxq/hq9f/tsM7/uS+K566O4u1dkmY75bvtxHpm//ZL7Tb+lHSPa1bvKCOVqlXebcpvNRmzKGbafVSTfl5Bpb+dXzGQ00CLEmzb1zfy4M9E+w+Fcxe3bVz/RX+3Ty8n4j9fbW94bDdCrSQA3dazPtVFBuF1idomIiIiIVIzalmuWha5J6ZIzclm07Tgmg4GJfRqWut+MlTG8tnQ/bcN8+e6BnpUYoZSHmJNZvPHzAZbsKnqowcXJyB3dG/D3vo2p4+lSKTHYbDZmb4jnpcV7yS+0Eujtytu3tKNHI/9LHywiIiIiUgWVR66pgngN0/WVX0nKyOOr+7vTKaJs61ati0ll3EfrL7nfvIndNEO8lsjJt7DreHpRm/X4NLbGnyY5M++yzqGfl/KTmVvAT7sS+WrLMTbGnbJv93Zz4vo2odzUsT4dwn3VCk9ERESkEtW2XLMsdE2ujtVqo+9/VhJ/KpvXR7dhTOcwR4ckV2hb/Gle/Wk/G2KL8jdvNyfuv6YRd/eMtHdeq2j7EjJ4aN42opOzMBjgwX6NeWRAE5xMxkoZX0RERESkvKggXga1KSFPysil6yvLMRpg95TBeLiUrSO+xWqj52srSCylbbpm/IrNZiMhPZdt8Wl8teUovx04eclj/jmoKZP6NlKyXc7iUs6waOsxvt56nONpOfbtDf09Gd2xPqM61CPEXDkt+URERERqs9qUa5aVrsnV+ePQSW6buRFvVyc2/HtAmXN6qZpsNhsrD57ktZ/2sz8xEyhamuzbB3pWWs6WnV/IlO/3smDzUQA6NajD9HHtK62Nu4iIiIhIeSiPXFOVqhpk5Z9Fygg/z8tKnE1GQ6lrkxWXv58fHqVieC1mMBgI9XVnWJsQ7u3TqEzHvPHLQdq/+At3z9rER6sOs+tY+nlt2OXyRfh78ti1zfhjcj/m/q0ro9rXw93ZxOGUM/zfsgP0eHUFt83cwNFT2QAkpOewNiaFhPScS5xZREREREQqyvG0HHYdS+fkRTpvzVkfD8CoDvVUDK8BDAYD/ZoFsuTh3rw1ti31fN0Jr+tBsI9bpcXg4eLEaze14Z1x7fFydWLzkdNcN/0Plu5OrLQYRERERESqAmVYNcSCTfE8+fUuAA6nnGHBpnjGdr5wkftCNh85DYCHi4nsfIt9e7DZjeeHRzGkVUj5BizVVpfIuoSY3UhMz6W08rarkxFnk4HMvEJW7E9mxf5kAHzcnOgS6Ue3hnXp3siPFsE+GPWgxRUxGg30aOxPj8b+vDiykCW7EopaqseeYlt8Gv5erizYFM9Ti3ZhtRWtPT5tVOvL+r0gIiIiIiLlY96GeN77LZo7ujdgyohW572fnJHLL/uSALi1a4PKDk8qkNFo4Mb29bmudQinzuTbl7pKzyng4Xnb+HvfRnRtWLHLjd3QNpR29X15aP42dhxN4/7ZW7itWwP+PawFbs6V08JdRERERMSRVBCvARLSc3hq0a4SxcmnF+2mT9OAMrXh2nUsnVUHT2IyGljycG8S0nNJzswl0NuNLpF1NTNcSjAZDTw/PIpJs7digBI/d8U/KdNvacegqGD2JWSwLiaVdYdT2Rh7iozcQn7dl8Svf97o8fVwpmtkXbo19KN7Iz+aBnqrQH4FvFydGNMpjDGdwjiSeoYDiZmk5eTbi+EAVhs8tWhXmX8viIiIiIhI+XF1MhLs44a/l+sF3/9y81EsVhsdG9ShWbB3JUcnlcHVyVQiF/vfqhh+P3iShPQclj7Sp8Jz4XA/Dxbe1503fj7Ah6sO88X6I2yKO8V7t7ancaB+5kRERESkZlNBvAaITTnDuZ2oLTYbcSnZZSp8fbAyGoARbUOJ8Pckwt+zIsKUGmRIqxBmTOjAlB/2knDW2vPndhRoVc9Mq3pmJvZpSKHFyp4TGaw/XFQg3xR7irTsApbtSWLZnqICeV1PF7pGFs0e797Qj8aBXvan5y/FYrWxMfZUrX+Yo4GfJw38PFkbk3Le7wWrDfvvBZvNVuZrKyIiIiIiV+ehAU14aECTEtuKc5jEjFxmrYkDYHxXdXSqLe7oHkF6TgH9mwfai+G5BRZSsvKoX8ejQsZ0cTLy1HUt6NHYn39+uZ39iZkMf3cNU25oyc2d6itHFBEREZEaSwXxGiDS3xOjgRLFL5PBQIT/pROo6ORMlu4pWjtqUt+yrQ0tAkVF8UFRwWUuQjuZjLQN86VtmC/3XdOIAouV3cfTWXc4lXUxqWyOO82pM/n8tDuRn/5cz8zfy4WuDYuK490a+tEowPOCCfrS3QnnFedDanm7/4v9XrDZbNzx6SZaBHtzZ88IzRgXEREREalkF8phDIBTLXyot7YK9HFj6sjWJbZ9vi6O/yw7yO3dG/BAv8bU8XSpkLGvaRrAkkd689iCHayOTmHy1zv5IzqFl29shY+bc4WMKSIiIiLiSAabzVbaMsA1QkZGBmazmfT0dHx8fBwdToVZsCmepxftxmKzYTIYeGVUqzKtFfzPL3fw9dZjDG4ZxIe3daqESEUuLL/Qyq7jafYW65vjTpNXaC2xT6C3K93+LI53b+RHhJ8Hy/YkMmn21vPWMy++jTRjQodaWxQv7ffCtvjT3PjBWqDohtvwtqH8rXckLUPNDo5YREREpPqoLbnm5dA1KZuluxMumMNAUR5Tm3OY2u7vc7awZFfRA+Lerk7c37cRd/WMwMOlYuazWK02Plx1mP/8fACL1UZYXXfeHdeBdmG+FTKeiIiIiMiVKI9c06EFcYvFwgsvvMDs2bNJTEwkNDSUO++8k2eeecY+C9Rms/H888/z0UcfkZaWRs+ePZkxYwZNmjS5xNmL1JaE/NSZfG7+71o8XZ2YMb4D9crQXuvoqWz6/mclFquN7x7oSVslPFKF5BVa2HE0nXUxqaw/nMqW+NPkn1MgD/J2JT23gNwC6wXPYaCojfvqJ/rXyvbpAAnpOcSlZBPh72GfCW612lh5MJn/rTrM+sOn7Pv2auzP33pHck3TALXKExEREbmE2pJrXg5dk9Ld9elGMnILeWlEK+75bFOJmeFnUw5Tu9lsNlYdSuHVn/azLyEDKHow/NGBTRnTqT4ns/KITTlDpL9nuXb62hp/mofnbePY6RycjAYeH9yMib0bVvi65iIiIiIiZVEeuaZDW6a/9tprzJgxg88++4yWLVuyefNm7rrrLsxmMw8//DAAr7/+Ou+88w6fffYZkZGRPPvsswwePJi9e/fi5ubmyPCrlOTMXGJOnqGup0uZiuEAH/1xGIvVRq/G/iqGS5Xj6mSiS2RdukTW5RGakFtgYVt8mn0N8u3xaSRl5l30HDYgIT2XjbGn6N7Ir3ICr2JCzO7n3SgxGg30bx5E/+ZB7DyWxkd/xLJkVwKro1NYHZ1CsyBv/tY7khvaheLqZHJQ5CIiIiIiNcfOY+mknsln57G0UovhoBymtjMYDFzTNIDejf35fscJ/vPzAY6dzuHpb3bx5i8HSM3KxwYYDTBtVOsydQYsiw7hdfjx4d48vWgXP+5KYNpP+1kTk8obN7clwNu1XMYQEREREXEkh84Qv/766wkKCmLmzJn2baNHj8bd3Z3Zs2djs9kIDQ3ln//8J//6178ASE9PJygoiFmzZnHLLbdccoza8oR6Vl4hW4+cJqfAwuCWwZfcPzkzl16v/UZ+oZW5E7vSo5F/JUQpUn5yCyy8t+IQ7/0Wc8l9XxrZktu6RVR8UNXYsdPZfLomjvkb4zmTbwEgwNuVO3tEMKFrA8weWkdORERE5Gy1Jde8HLomF2az2Wjy758otNp4YXgUL/yw95LHTL+lHSPa1auE6KQqyyu0MHdDPNN/PURaTkGJ94wGWPNk/3KdKW6z2Zi38ShTfthDXqEVfy9X3h7bjl5NdM9IRERERBynPHJNYznHdFl69OjB8uXLOXjwIAA7duxg9erVDB06FIDY2FgSExMZOHCg/Riz2UzXrl1Zt27dBc+Zl5dHRkZGia/awMvViT5NA8pUDAf4ZHUc+YVW2of70r2hnjqX6sfN2UTPxgFl2vfZb/cw4v01vLv8EPsSMnDgc0BVVv06Hjx7fRRrnxrAk0ObE+zjxsnMPP5v2QG6v7qcxTtPODpEEREREZFqKTvfQqG1KAdp4OdZpmMCvdURT4o6p93VM5I3xrQ97z2rDd5bcahcxzMYDNzaNZwfHupF0yAvUrLyuO2TDby2dD8FlgsvVSYiIiIiUh04tGX6k08+SUZGBs2bN8dkMmGxWHj55ZcZP348AImJiQAEBQWVOC4oKMj+3rmmTZvGlClTKjbwai49p4DZ648A8EDfxlorWKqtLpF1CTG7kZieS2klbmeTgQKLjR1H09hxNI03fjlIPV93BrQIZECLILo1rKu24Gcxuztz/zWNuLtnJIt3nuB/qw5zICmTFiF/PXWVW2DBzVnXTERERESkLNL/nNnrZDTQu4n/RXOY4jXEu0TWrdQYpWqLCvXBaCgqgp8twOuvByfyCi3YbJRLrtY0yJvvHujFSz/uZe6GeGasjGH94VTeuaU9YXU9sFhtbIw9RXJmLoHeRT+vWvNeRERERKoyhxbEv/zyS+bMmcPcuXNp2bIl27dv59FHHyU0NJQ77rjjis751FNP8dhjj9lfZ2RkEBYWVl4hV1lro1M4npZD+/A6NA70uui+X6yLIyuvkObB3vRvHlhJEYqUP5PRwPPDo5g0eysGKHFDqTgVf3dcezqE12HF/mR+3ZfE6j//W/l83RE+X3cETxcTfZoGMKBFEP2aBeDnpfXRAFycjIzqUJ8b29djz4kMGgX89XvlXwt3kJSRy7PXR9Gmvq/jghQRERERqQaKC+Jmd2ecTEZ7DnOu4hzm+eFRKi5KCSFmd6aNas3Ti3ZjsdkwGeDOnpHc1TPSvs9320/w8o/7mNS3Efdf0+iqx3R3MfHKja3p1difJ77eybb4NK575w9u6RzG4p0JJKTnnhWfG88Pj2JIq5CrHldEREREpCI4tCD++OOP8+STT9rXAm/dujVHjhxh2rRp3HHHHQQHF7X/TkpKIiTkr39UJyUl0a5duwue09XVFVfX2lfQWrD5KN9tP8G/r2tx0YJ4dn4hn6yJA2BS30YYlWRLNTekVQgzJnRgyg97SyTkweck5Ld0CeeWLuHk5FtYG5PCr/uSWL4vmeTMPH7anchPuxMxGqBDeB0GtAhiYItAGgd61foOCgaDgVb1zPbX6dkF/LovidwCK05Gh666ISIiIiJSLWScVRCHv3KYyV/tJCO30L7fuTmMyNnGdg6nT9MA4lKyifD3OG/t8F/3JpGeU8DZK4QVWKxYrLarmjV+XesQWtcz88j8bWyNT+OjP2LP2ycxPZdJs7cyY0IH/fyKiIiISJXk0IJ4dnY2xnMKKiaTCau1aF2iyMhIgoODWb58ub0AnpGRwYYNG5g0aVJlh1ulnczMAyDA++IPA8zfeJRTZ/Jp4OfBsNZKUqRmGNIqhEFRwWVq2ebuYmJAiyAGtAjCarWx+0Q6v+5L5te9SexNyGDzkdNsPnKa15bup4GfBwOaFxXHO0fWxdmkArDZw5nfH+/Hiv3JRIX+1UZ92pJ9uDmbuL17A82yFxERERE5S/EMcZ8/C+JQlMOsjUnl83VH6N88kIm9G6rttFxSiNn9vEJ4sRkTOrLq0EnanPVA85JdCbzw/R5Gd6jPuK7hJTp/XY6wuh7MndiNjlN/4Uye5bz3bRR1OJjyw14GRQXr51hEREREqhyHFsSHDx/Oyy+/THh4OC1btmTbtm28+eab3H333UDRzMRHH32UqVOn0qRJEyIjI3n22WcJDQ1l5MiRjgy9yilLQTy/0Mr/Vh0G4P5rGuGk4p7UICajge6N/C7rGKPRQJv6vrSp78tjg5pyIi2H5fuLiuPrYlI5kprNJ2ti+WRNLN5uTvRtFsjAFoH0bRqI2cP50gPUUEE+bozrEm5/nZyZy6dr4si3WPnv7zGM7life3pFXvHNFhERERGRmiT9nBnixWJTzgAwuGXQZecyIucyGQ30a1ZyWbyf9yZxOruAj1fH8vHqWLo1rMutXRswuGUQrk6XN2t8W3zaBYvhxWxAQnouG2NP6edZRERERKochxbE3333XZ599ln+/ve/k5ycTGhoKPfddx/PPfecfZ/Jkydz5swZ7r33XtLS0ujVqxdLly7Fzc3NgZFXPSlZly6If7PtGIkZuQT5uDKqQ73KCk2k2gj1dee2bg24rVsDzuQV8sehFJbvS2LF/mRSz+Tzw44T/LDjBCajgc4RdRj450zzSH9PR4fuUHU9XHhzbFs+WnWYHcfSmbshnnkb4xnQPIh7+zSkc0SdWt96XkRERERqr9IK4odPFhXE9SCpVJR3bmnPqPb1mLshnt8OJLP+8CnWHz5FXU8Xbu5Yn3FdwokoYz6bnJl76Z0uYz8RERERkcpksNnOXl2o5snIyMBsNpOeno6Pj8+lD6iG8gutNH3mJwC2PTuIOp4u5+1jsdoY8MZK4lKzeWZYC/7Wu2FlhylSbVmsNrYfTWP5n+uOH0jKLPF+owBPe3G8Q7hvre2+YLPZ2Bh7io/+iOXXfUn27W3DfJnYO5IhLYNr7bURERGRmqc25JqXS9fkwt78+QDvrIjmtm4NeGlkKwCy8wuJem4ZUHoeL1KejqflsGDTURZsiicpI8++vWdjP27t0oBBUUG4OJWer62LSWXcR+svOc68id00Q1xEREREylV55JoOnSEu5SP1TFEi42Q0nPfEebEluxKIS83G18O5RKtjEbk0k9FAxwZ16NigDpOHNOfoqWx+/bM4vv5wKjEnzxBz8jAfrjpMHQ9n+jULZECLIPo09cfbrfa0VjcYDHRt6EfXhn5EJ2cxc3UsX289xo6jaTw4dxv167hzT69IxnQKw9NV//sRERERkdrhQjPEi2eH1/V0UTFcKkU9X3ceG9SUh/s3ZsX+ZOZujOf3gydZE53KmuhU/L1cuLlTGPf2bnjBn8kukXUJMbuRmJ5LaTNrTEbDRTsXioiIiIg4iqbq1QDF64f7e7liNJ7flthms/H+b9EA3NUjUoUokasUVteDu3pGMvtvXdn63CDeu7U9N7avh9ndmdPZBSzadpwH5m6lw0u/cNvMDcxaE8vRU9mODrtSNQ70Ytqo1qx9sj8PD2hCHQ9njp3OYcoPe+k+bTkLNsU7OkQRERERkUpxoYJ4zMksoKjblEhlcjIZubZlMLPu6sKqx/vxYL/GBHi7kpKVz6drYi94XwmKit3PD48CoLQFsSxWG6M+WMPvB09WUPQiIiIiIldGldEaoLggXtpTuL8dSGZ/YiaeLibu6NGgMkMTqfF83Jy5vk0o17cJpdBiZcuR0yzfn8yve5M4nHKGPw6l8MehFF74YS/Ng70Z0KJo9ni7+r6l3mioSfy9XHlsUFMmXdOIr7ceY+bqWGJTzlDH468ZBzabTWuMi4iIiEiNNbhlMCG+7rQP97Vvi9H64VIFhNX14F+Dm/HIwCYs35fE8bTcEg9u/O2zTTQP9uGeXpHU8XRhSKsQZkzowJQf9pKQ/tda4SFmNx4d2IQvNx9jy5HT3PXpRp4c2pyJvRsq1xMRERGRKkEF8RrgYgXxotnhMQBM6NYAXw+1YhOpKE4mo71l+NPXteDwySyW70vm131JbD5ymv2JmexPzOT932Lw93Khf/Oi4njvJv54uNTsX8fuLiYmdGvArV3C+f3gSa5pGmB/790V0Ww+cppHBzahQ3gdB0YpIiIiIlL+hrYOYWjrkBLb/pohroK4OJ6zyciQViV/RncdS+fXfcmsOpjC3b0i7duHtAphUFQwP+1KYH9iBs2DfRjaOgST0cDI9vV47ts9LNh8lFeW7GdfQibTRrXGzdlU2R9JRERERKSEml2BqSXsBXGv8wviG2NPseXIaVycjNxzVgIjIhWvYYAXDQO8mNinIWnZ+aw8cJJf9yXx+4GTpGTl8+XmY3y5+RguTkZ6NvJjQIsgBrQIJMTs7ujQK4zRaKBf80D7a4vVxuz1R0jOzGN0h3oqiIuIiIhIrRCT/GdBPFAt06Vqahbszfu3diD+VDZ1z1pT/MG5W8kpsPDb/mSsNjAaYFp+IWM7h+PqZOLV0a2JCvXhxcV7+WbbcWJOZvG/2zoRbHZz4KcRERERkdpOBfEa4GRW6TPE319ZNDt8TKf6BPoo+RBxFF8PF0a2r8fI9vXIL7SyKe4Uv+5L4td9SRw9lcNvB07y24GTPPMttKrnw4DmQQxsEUSrej41usWcyWjg60k9mL8pnuvOmjXz5eajnD6Tz7iu4fi4OV/kDCIiIiIiVdveExl4uToR6uuGk8mIxWojNkUt06Vqc3EyMqxNyVnjh5IyWbwzocQ2qw2eXrSbPk0DCDG7YzAYuKNHBE2CvHhgzlZ2Hktn+Hur+e+EjnRsoAegRURERMQxVBCvAVJKKYjvOpbOqoMnMRkN3NenkSNCE5ELcHEy0rOxPz0b+/Pc9VEcSs7i131JLN+XzNb40+w+nsHu4xlMX36IYB83+rcIZGCLQHo08q+RrebC6nrw+ODm9tcFFitv/3KQE+m5vLsimls6h3FXr0jq+dbcmfMiIiIiUjPZbDZGvr+GfIuVNU/2p56vOyfScsgrtOJiMlK/joejQxQps3A/Dx7s35j3VkSX2G6x2Yg9eaZEt7Mejfz5/sFeTPx8M/sTMxn3v/VMHdmKMZ3DKjtsERERERGMjg5Arp6rk4k6Hs7nFcQ/WFmUoIxoG0pYXSXZIlWRwWCgaZA3f+/bmK8n9WDTvwfyfze1YUjLYDxcTCRm5DJ3Qzx3z9pM+xd/YeLnm1mwKZ7kzNxLnttitbEuJpXvth9nXUwqFqutEj5R+Xh0UFOaBHqRlVfIx6tj6fP6bzw8bxu7j6c7OjQRERERkTLLt1ip6+mCu7MJs3tR56PoP9cPj/T3xGSsud2gpOZxdTIxvms4F/qx/c/PB4hPzS6xLayuB19P6sHQVsHkW6xM/nonL3y/hwKLtZIiFhEREREpYrDZbNWnQnIFMjIyMJvNpKen4+Pj4+hwKk10ciaD3lqFzQY//6MPTYO8HR2SiFym3AIL6w+nsnxfMsv3JXEivWQRvF2YLwNbBDKgRRDNg71LtFZfujuBKT/sJeGsY0LMbjw/PIohrUq2vauqbDYbKw+e5OM/DrMmOtW+vXtDPyb2iaRv00CMuoEoIiIiDlJbc82L0TUpm4//OMzUH/dxXetgPhjf0dHhiFy2BZvieXrRbiw2GwZD0VJYhRYb7s4mHh/cjDt6RJR42MNqtfHeb9G8+ctBAHo08uP9WztQ56y1yUVERERESlMeuaYK4jXUP7/cwddbj3FtVBD/u72To8MRkatks9nYm5BhL47vOFZypnQ9X3d7cTw9J5+H523n3F/uxbcjZkzoUG2K4sV2H0/n4z8O88POBPtM98aBXkzsHcmIdvVqZCt5ERERqdpqa655MbomZfPUol3M2xjPQ/0b889rmzk6HJErkpCeQ1xKNhH+HuQXWnny612sO1z0IHPHBnV4bXQbGgd6lThm2Z5EHluwnTP5FsLquvPR7Z1oHqzfFSIiIiJycSqIl0FtTMiPnsqm739WYrHa+PaBnrQL83V0SCJSzpIzclm+v6g4vjo6hdyCv1rOGeC8YvjZ7wWb3Vj9RP9q2Z7xRFoOs9bGMXdDPFl5hQD4e7nw8IAm3N49wrHBiYiISK1SG3PNS9E1KZsxH65jY+wp3h7bjpHt6zk6HJFyYbXamLcpnmlL9pOVV4iLk5FHBzZh0jWNSnQzO5CYycTPNxN/KhsPFxNvjmlb7R7YFhEREZHKVR65ptYQr+aOnspm8Fur+Ntnm+xrBb+0eC8Wq41ejf1VDBepoQJ93BjXJZyP7+jMtmev5ePbOzGuSxi+7s6lFsOhqFCekJ7LxthTlRVquQr1defp61qw9qn+/Pu6FoSY3UjJyiczt9DRoYmIiIiInGddTCqjZ6xl6uK99m2H/1xDvFGAV2mHiVQ7RqOB8V0bsOwffbimaQD5hVb2JWSWKIYDNAv25vsHe9KrsT/Z+Rbun72Vt345iNVao+friIiIiIiDOTk6ALk6yZm5HEjKJDo5i1/3JZd4r1NEHQdFJSKVyd3FxMCoIAZGBdE10o9HF2y/5DGJ6TkVH1gF8nFzZmKfhtzZM4IfdybQt1mA/b1lexL5Zutx7rumIe3D9XtQRERERBznRFoOW46cxsOlaImftOx8UrLyAWgY4OnI0EQqRD1fd2bd1Zlvth3nmqZ/5WnpOQW4O5twcTLi6+HCrLs688qS/XyyJpbpyw+xPzGDN8a0w8tVtypFREREpPxphng1F5+aDYDlAp3vp/96iKW7Eyo7JBFxoCAftzLt98IPe5m2ZB8HkzIrOKKK5WwyMrJ9PXw9XOzb/rfqMEv3JLL8nIeEREREREQqW3pOAQBmd2cAYk6eASDE7IanCn9SQxkMBkZ1qI+flysANpuNyV/t4Ib3VrP3RAYATiYjzw2P4v9uaoOLyciyPUmM/mCt/T6XiIiIiEh5UkG8GrNYbby+7MBF95nyQ1H7dBGpHbpE1iXE7MbFVgc3GIpuzH246jDXvrWKG95bzefr4kjLzq+0OCvSq6Nac0vnMG7v0cC+bcPhVL5YF0dOvgWAhPQc1sakkFDNZ8qLiIiISNV2fkFc7dKl9knKyGNT3Gmik7POe+/mTmHMv68bAd6uHEjK5Ib3V7MmOsUBUYqIiIhITabHkauxjbGnSEjPLfX9s9cK7t7Ir/ICExGHMRkNPD88ikmzt2KAEuuJFxfJ37mlPa5ORr7acowV+5PZeSydncfSmbp4HwOjArmpY336NAnAyVQ9n5lqEuTNq6PblNj27opoVken8OYvB2kfXoeVB5Kx2sBogGmjWjO2c7iDohURERGRmqz0grjapUvtEWx245d/9GFD7CmiQn3s25MycgnycaNDeB1+eLAX983ewo6jadz+yUaeGdaCO3tEnLcGuYiIiIjIlaie1Q4BitYPL8/9RKRmGNIqhBkTOhBsLtk+PdjsxowJHRjeNpRrWwbzv9s7seHpATw/PIqWoT7kW6ws2ZXI3bM2023aCl7+cS8HEqt3S3Uoas93bcsgwut6cDq7gBX7i4rhAFYbPL1ot2aKi4iIiEiFyDi3IJ5c1DK9UaBmiEvt4uflynWtQ+yv95xIp/drvzHlhz1k5xcSbHZjwb3dGNWhHharjSk/7GXyVzvJK7Q4MGoRERERqSk0Q7waC/Qu21rBZd1PRGqOIa1CGBQVzMbYUyRn5hLo7UaXyLqYjCWfrvfzcuWunpHc1TOSvScy+HrrMb7ddpyUrDw++iOWj/6IpXU9Mzd1rM8NbUOp4+lSyohVl8Fg4PbuEYzv2oB3lx/i7eWHSrxvsdmIS8kmxOzuoAhFREREpKY6d4b4YbVMFwFg5YGT5FusfLomjl/3JfHaqDb0aOzPGze3JSrEh1eW7GPhlmNEn8ziwwkdCfTRvS0RERERuXKaIV6NdYmsi7Op9NZRBiDEXFQEE5Hax2Q00L2RHyPa1aN7I7/ziuHnigr14dnro1j/9AA+vr0TQ1oG42wysOt4Os9/v4cur/zK/V9s4de9SRRYrJX0KcqPyWhgbJcwLnQZfNz1fJiIiIiIlL+zC+L5hVaOnMoGVBAXeaBfYz67uwuhZjeOnsrh1o838PQ3u8jKK+RvvRvy2d1dMLs7sy0+jeHvrWbH0TRHhywiIiIi1ZgK4tWYyWjAy/XCRZzies/zw6MuWQQTETmbs8nIwKgg/ntbRzY8PZAXhkfRqp4PBRYbS/ck8rfPN9N92nKmLt7LvoQMR4d7WULM7kwb1RrTOevQPTp/Oycz8xwUlYiIiIjUVGcXxONPncFiteHpYiLIx9XBkYk43jVNA1j2jz5M6BYOwNwN8Vz71ip+O5BM7yYBfPdATxoHepGUkcfNH65j0dZjDo5YRERERKorg81mszk6iIqUkZGB2WwmPT0dHx8fR4dTrmw2G02f+YkCiw0fVycy8grt74WY3Xh+eBRDWoVc5AwiImW3PzGDr7cc45ttx0nJyrdvbxnqw00d6zOiXT3qVpOW6gnpOcSlZGMywsPztpOYkUujAE/mTeymVnwiIiJSJjU517xSuibn6/LyryRn5rH4oV4cO53D/bO30Ka+me8f7OXo0ESqlHUxqTzx9U7i/+yiMKpDPZ67vmiSxz8W7ODXfUkATOwdyRNDmuNk0hwfERERkdqiPHJN/euxGkvPKaDAUvQ8wx09GwBFbdTnTezG6if6qxguIuWqebAP/x4WxbqnBjDzjk4MbVXUUn3PiQym/LCXrq/8yn1fbOaXatBSPcTsTvdGfnSJ9GP+vd0IMbsRc/IMt/xvPYnpuY4OT0RERERqiLNniMdo/XCRUnVv5MfSR3tzT69IDAZYtPU4A99cxZroVP53W0ce6t8YgI/+iOWuWZtIzy5wcMQiIiIiUp2oIF6NpWQVtfc1uztzPK2ogHNN04AyrRUsInKlnE1GBrQIYsaEjmx8eiAvjmhJm/pmCiw2lu1JYuLnm+n2ynJe/GEve09U/ZbqEf6eLLi3O/V83TmccsY+80Dk/9m77+ioyrWNw789JZnUCQkkBAgQQpfee1FUrCgWBAELggI2bEfP8RzrsZzP3kAQUaTZQEVFVEB6b9Jr6EkgpJKemfn+SFEUJUCSnUnua60sk8menTtmLWbe/ezneUVEREQuRHaei5z8ghtFnf6/L4gHmBlLpMLy97Hx76ub88U93YipEUDiqRzumbae+2Zt5LZu9Xl3SDv87FaW7klkwLvL2JOQbnZkEREREfESKoh7seOF+93WCPLlQGIGAPXC/M2MJCJVTLUAH4Z3rc839/Zg/oO9GNWrAdUDfTmZkcuHy2O58q2lXPnmUiYviy2+iaciqhvmz6xRXXj6muYM7VLP7DgiIiIiUgmkFXaHWwwI9LGx70TBul0d4iJ/r329anx3f0/G9InBajGYtyWOo8lZXNUqki9GF9zMfOBkJte/t4Kft+uGZhERERE5O5vZAeT8nSgsiFcP9GF3QsGd5vXDdKe5iJijSc0g/nllMx67vAlL9yTyxfoj/LQ9ge1xaWz/djsvfr+Dvk3DubF9Hfo2CcfHVrHuyYoK9ef27tHFX5/KySc1K4/aIX4mphIRERERb2W3WhjdJ4bcfDeGAfuPF3aIh6sgLnI2DruVx/o35cqWkWw4lEzrqBAALqrl5PN7ujDu082sjk1i5CfreOSyJozpE4NhaFqiiIiIiJyZCuJerKggHuLvQ1JGLlAw+ldExEw2q4W+TcPp2zSclMxc5m4+xhfrj7D5SCo/bU/gp+0JhAb4cG3rWtzYvg4X1QqucBcuTuXkc/uHa4hLzWbmyC7U1fQNERERETlH1QJ8+Ef/pgAcT8smPScfi6HJbiLnokVtJy1qO4u/3p2QzpBJq3n4ssY0jgjkk1WH+L/5u9h+LI3/u6kV/j661CkiIiIif6Z3iV7sROH4YR9rQSGpRpAvgb76k4pIxRHi78OwrvUZ1rU+exLS+WLDEeZsOMrx9Bw+WnGAj1YcoGnNIG5sX4fr2tameqCv2ZEByMzJJykzl/TsPNKy88yOIyIiIiJebm/h/uF1Q/3xtVlNTiPivaYsP0DiqRx+2p7A5Ns60LyWk/98vZXvtsQRm5jBxOHtqVNNN52IiIiIyOlUPfViRR3insKv6+sucxGpwBpFBPHEFc149LImLN1bOFJ9WwI749N5/rsdvDRvJ32a1ODG9nW4uGmEqSPVw4MdzBrZhePpOad1I4iIiIiIlFRKZi5pWflUC7Br/3CRUvLcgItoUD2Aq1tHYhgGgzvVJaqaHw/M2sj2uDSufWc5793aji4NwsyOKiIiIiIViAriXqyoIJ6T5wa0f7iIeAeb1ULfJuH0bRJOamYec38tGKm+6XAKP+84zs87jlPN386ANrVNHakeHuwgPNhR/PXGQ8kEOew01J6PIiIiIlICczYe5Zm527mqVSQ1Cichaf9wkQtjs1oY2avBaY/N2XiMuqEBhAbmsyfhFEM/WM1T117EsC71TEopIiIiIhWNCuJeLNDXRliADxk5+YD2DxcR7+P0tzO0Sz2GdqnH3uPpfLH+KHM2HiEh7beR6k0iCkaqD2hbi/Agx9lPWga2Hk1l+OQ1+NqtzBzZmUYRQabkEBERERHv4XJ78LNbcfrZ2Vc4Mj2mhtbtIqUpLjWLeVvjyMx14bBbuKhWMNuOpfHvr7ayIy6Np6+5yNTpYyIiIiJSMRgej8dz9sO8V1paGk6nk9TUVIKDg82OUyauf285Gw+l8N6t7biyZaTZcURELojL7WFZ4Uj1+dviyc0vmIJhtRj0aVw4Ur1ZeLnuvZiUkcutH6xmR1waYQE+zBjZhSY1VRQXERGpyqrCWvNc6f/JmbndHnr+bxFHU7L44p6udKgfanYkkUrl0MlMHp/9Kyv2nQSgltPBsdRsADrWr8b4oe2pXjilQURERES8T2msNXWLZCVwILFgL7J62kNcRCoBq8Wgd+MavD24LWv/1Y//Xt+CtnVDcLk9LNh5nNHTN9D5hQX85+ut/HokhfK4rys0wIeZIzvTonYwJzNyGTxpFduPpZX5zxURERER75ed7+JoShagPcRFykLdMH+m39WZFwe2JNDXxrHUbGwWAx+rhbUHkrn27WVsPZpqdkwRERERMZEK4l4uNTOP5Mw8QHuIi0jl4/Szc2vneswZ050FD/dmTJ8YagY7SMnMY+rKg1z7znIuf2MJE5fs43hadplmCfH3YfqILrSq4yQpI5chH6zSRRUREREROav9JwpuYg8N8KFagI/JaUQqJ8MwGNypLj+O60XfJjXId3vIdbnxsVo4lprNjRNW8M3mY2bHFBERERGTaGS6l9oVn869MzZQI8iXFftOEh7ky5p/9TM7lohImXO5PSz/3Uj1nN+NVO/VqDo3to/ikmbhOOxnHqnucntYE5vE8fRswoMcdIoOxWoxSvzzU7PyuO3DNWw6nEKww8a0uzrTqk5IafxqIiIi4kUq61rzQuj/yeme/GoLR5OzaFs3hNd+2kPH+tX4/J5uZscSqfQ8Hg9zNh7lmbnbSc3KwwCKLn6O7hPDI5c1Oac1oIiIiIiYqzTWmrZSziTlJC41iz3HT5GZmw9A/erqDheRqsFqMejVuAa9GtcgLTuP736N44v1R1h/MJlFu06waNcJnH52rm1dixvb16FVHSeGUXCx44etcTwzdztxqb91k0c6HTx1TXP6t4gs0c93+tmZOqITt3+4hg2HUrj1g9V8MqIzbaJCyuLXFREREREvtSY2id0JpwjxL+gK17h0kfJhGAYD29WhR6Pq/PurrczfllD8vfG/7GNnXBpvDm5LsMNuYkoRERERKU8ame6l2kSFMP2uznRpEAZAfe0fLiJVULDDzuBOdflydDcWPtybsX1jiHQ6SM3K45NVBxnw7nIufX0JExbvY9aaQ4yetuG0YjhAfGo2o6dt4Ietcef0c6eO6EzH+tVIz85n2AerWX8wubR/PRERERHxYqlZBdubnUjPAVQQFylv4UEOJgxtz7tD2hFWuF2BYcCiXSe47t3l7D9xyuSEIiIiIlJeVBD3UiH+PnRvWB2Xu2DokzrERaSqa1AjkEcvb8qyf1zMtBGdua5NLXxtFvYeP8VL83by+OwtnGmPkKLHnpm7vfjf1JII9LXx0R2d6BQdSnpOPsMnr2btgaRS+V1ERERExPsVFcSPpWQBEBOudbtIeTMMg6taRfLTQ725uUMdJg3rQKTTwf4TGVz7zjIW7TpudkQRERERKQcqiHu52JOZAESHaWEtIgIFI9V7NKrOG7e0Ze2T/XhpYEsaR/x9N44HiEvNZk3suRW0A3xtfHRHR7o2CCMj18VtH65hR1zaBaQXERERkcogJ99Fdp4bgCPJBet2dYiLmCc0wIf/3diafs0j+ObeHnSoV41TOS7umLKWtxfsweMp+c3RIiIiIuJ9VBD3Uj9sjWfWmkPF453UIS4i8mfBDju3dKrL2L4NS3T88fTssx/0B/4+Nj68vSM9GlanR8PqNAzXhU4RERGRqq6oO9wAcl0efKwW6lTTVmciFUGNIF+eve6i4q9f/Wk3D366iew8l4mpRERERKQs2cwOIOfnoxWxrNr/WydjPe0hLiLyl8KDHCU6bt+JU+S73Nis53a/mJ+PlQ9u64DFMLCf43NFREREpPJJKyyI+/lYycx1EV09AKvFMDmViBRpHulk6p0dmbLiAEt2J/L1pmPsP5HBhGHtqB2ia2wiIiIilY2u2nupE+k5xZ9HBPvi76N7G0RE/kqn6FAinQ7OdgnyrQV76fvqL3y0PJaMnPxz+hkOuxUfW8HLqsfj4dm521my+8R5JhYRERERb1bUIe5TeLOk9g8XqXh6NQ5nyu2dmDaiM9X87Ww5mkqvl3/h/cX7zI4mIiIiIqVMBXEv9fuCeH3tHy4i8resFoOnrmkO8KeiuFH4cXWrSEIDfDiclMXTc7fT7aWFvDJ/13mNUf907WE+XB7LqE/WndfzRURERMS7FY9ML3zzqf3DRSqurjFhfHNvD5x+NlweDy/O28n17y0nOSPX7GgiIiIiUkpUEPdC2Xku0rJ/61yM1v7hIiJn1b9FJOOHtqOm8/Tx6TWdDsYPbcc7Q9qx/B8X89x1Lagf5k9qVh7vLNpLj5cW8fiXv7L3+KkS/6yB7erQ/6KaPDegRYnHtYuIiIhI5VFUEHe5PYAK4iIVXVSoPwse6kN04ZaEGw+l0PWlBczdfMzkZCIiIiJSGjRn2wslniroDrcY4PZAPXWIi4iUSP8WkVzavCZrYpM4np5NeJCDTtGhxfs5+vlYGdalHkM61eWn7fG8v2Q/Gw+lMGvtYWatPUy/ZuGM7NmATtGhGMZfD2D3sVkYP7Tdacecz97kIiIiIuKdUjMLCuLZeS5ABXERb1A9yJeFj/Thn7O3MHPtYbLz3Nw3cyNfbzrKiwNbUSPI1+yIIiIiInKedGXeCxWNSy8q4ERX9zczjoiIV7FaDLrGhDGgTW26xoQV/1v6x2P6t4hkzpjufHFPVy5rHoFhwM87jjNo4ique28F3/0aV9zxcya/L4afSM/h6reX8cPW+DL5nURERESkYknNKpjqlusqeL/YoIZuZBfxBoZh8OINrXh3SFvshWvFn3cc55JXf+HrTUfxeP56DSgiIiIiFZcK4l6oqCBeVIipr5HpIiJlpkP9UCYO78DPD/VmSOe6+NgsbD6cwtgZG+j7yi9MXXmAzNz8vz3HRyti2RmfztgZG/ju17hySi4iIiIiZikamQ4Q6XQQ4KsBfSLe5KpWtfjugZ5EFm65lZadzwOzNnHXx+uIT802OZ2IiIiInCsVxL3QicKR6UWNifVCVRAXESlrMTUCeeH6lqx4/GLuv6QR1fztHErK5D9fb6PbSwt57cddxTcs/dFDlzZhYNvauNwe7p+1UfvQiYiIiFRyHepXo3ODUEDj0kW8VeOIIOY90JNuMWHFjy3YeZx+ry3m07WH1C0uIiIi4kVUEPdCiem5xZ9HOh34+VhNTCMiUrVUD/TloUsbs+LxS3huwEXUDfUnJTOPtxbupfvLC3li9hb2nTh12nOsFoP/u6k1N7avg8vt4YFZBfvQiYiIiEjldGXLSNpEhQAQo3HpIl4rxN+HqXd2YkSP6OLHTuXk848vt7DpcIp5wURERETknKgg7oVOnPptNFO9MO0fLiJiBj8fK8O61mfRI31479Z2tI4KITffzcw1h+j32mJGTl3H2gNJxV0DVovB/25oxaAOUbg9MO7TTXy5/ojJv4WIiIiIlJV9xzMAiAlXh7iIN7NZLfz76ua8clPr4n3FnX52QgN8TE4mIiIiIiWlgrgX+v1I3mjtHy4iYiqrxeDKlpF8NaYbn93dlX7NIvB44KftCdw0YSUDx69g3pY4XG4PFovBiwNbMrhTXdweeOSLzXy27rDZv4KIiIiIlLK41Cz2JKQDGpkuUlnc2L4On93TlfAgX1Kz8rj2neUs25PI0ZQs7piyhtjEDOJSs1ixL5G41Cyz44qIiIjI79jMDiDn7vcF8fphKoiLiFQEhmHQKTqUTtGh7D1+isnL9vPlhqNsPJTC6OkbqBfmz109ormxfRT/va4FNovBJ6sO8tgXv+Jyexjcqa7Zv4KIiIiIlJLr311BfFrBdDcVxEUqj7Z1qzH3vh6M+mQ9mw+nMPzD1TSOCGJnfDqHktayPzEDjwcMA164vqXWeSIiIiIVhDrEvVCIvw+2whFN9dUhLiJS4TQMD+TFga1Y/o+Lue/ihjj97Bw8mcm/v95G95cX8uaCPTxwSUNu71YfgCdmb2HaqoPmhhYRERGRUpOd7wLAz24hItjX5DQiUpoigh18OqoLN7Srg9sDO+PTCXbY2HeioBgO4PEUrPNmrtY6T0RERKQiUEHcC02+rQN+PlZAHeIiIhVZjSBfHr6sCSufuJhnrr2IqFA/kjJyeXPBHrq/vIjcfBc3tq8DwJNfbeXjFQfMDSwiIiIipeKlga2AghslDcMwOY2IlDaH3corN7Xi31c3xwDSsvPPeNwTc7byw9a48g0nIiIiIn+igrgXSsrIJb3wjXa9MH+T04iIyNn4+9i4rVt9Fj3ch3eHtKN1HSc5+W5mrDnMF+uPUL/w3/JPVh0kO89lcloRERERuVD7TpwCoGF4kMlJRKSsGIbB7d3qUy3A52+P+9ecrbjcnnJKJSIiIiJnooK4FzpwMgOAWk4HDrvV5DQiIlJSNquFq1pF8tXY7swa1YVLmoYDcOBkJgD+diu/7DqhiyUiIiJSJo4ePcrQoUMJCwvDz8+Pli1bsm7duuLvezwe/vOf/xAZGYmfnx/9+vVjz549Jib2XkUF8ZgamuomUpmtiU0iKSP3b485mZHLqKnrSMvOK6dUIiIiIvJHKoh7mQ2Hkhk9bQOg/cNFRLyVYRh0aRDG5Ns78tO4XgzqEIWP1cKvR1O5Z9p6+r22mNd+2qVucRERESk1ycnJdO/eHbvdzrx589i+fTuvvvoq1apVKz7mf//7H2+99RYTJkxg9erVBAQEcPnll5OdnW1icu+zOyGdn7YnABBTI9DkNCJSlo6nl+zfxwU7j9Pv1cX8sDW+jBOJiIiIyJmoIO5l4lKyOZ6eA0A97R8uIuL1GkUE8fKNrVj2j76M7RtDsMNGbGIGby3YS9tnf+KNn3efteNARERE5GxefvlloqKimDJlCp06dSI6OprLLruMmJgYoKA7/I033uDJJ59kwIABtGrViqlTp3Ls2DG++uorc8N7maPJmcXbnMWEqyAuUpmFBzlKdFzNYAfH03O4Z9p67vlkPQlputFIREREpDypIO5lusWE0aVBKADR1bV/uIhIZREe7ODRy5uy8olL6NukBgBZeS7e+HkP3V5awL+/2sqBxAyTU4qIiIi3+uabb+jQoQM33XQT4eHhtG3blkmTJhV/PzY2lvj4ePr161f8mNPppHPnzqxcudKMyF7rcHJW8ef1wrRuF6nMOkWHEul0YPzNMb42C9/d14OxfWOwWQx+2BZPv9cWM2P1IdzaLktERESkXKgg7mWqBfhwKqfgTvP66hAXEal0AnxtTLmjE5OHd+DNW9rQsraT7Dw3n6w6SN9Xf2H0tPVsOJRsdkwRERHxMvv372f8+PE0atSI+fPnM3r0aO6//34+/vhjAOLjC8b4RkREnPa8iIiI4u/9UU5ODmlpaad9COwv3D/c38eKr81qchoRKUtWi8FT1zQH+MuieE6+mxFT13Fn92jm3teD1nWcpGfn8885W7hl0ir2Ff6bISIiIiJlRwVxL+PxeDiQmAlAtPYQFxGptC5pHsGANrX55t7ufDKiE80ig/B4YN7WeAa+t4KbJqzgx23x6igQERGREnG73bRr144XXniBtm3bMmrUKEaOHMmECRPO+5wvvvgiTqez+CMqKqoUE3uvog7xED+7yUlEpDz0bxHJ+KHtqOk8fXx6pNPBw5c2xulnZ9PhFAaOX4GvzcLsMd3599XN8bNbWRObxBNfbjEpuYiIiEjVYTM7gJybaasOFXeIR4Vq9JqISFUwc80hdsSlc3OHOrjdHr7efIy1B5JZe2A9DWoEMLJnA65vWxuHXR1IIiIicmaRkZE0b978tMeaNWvGl19+CUDNmjUBSEhIIDIysviYhIQE2rRpc8ZzPvHEEzz00EPFX6elpakoDsSnFOwNXD3I1+QkIlJe+reI5NLmNVkTm8Tx9GzCgxx0ig7FajG4omUkd3y0hoMnM7lh/Ao+uK0DI3pEc1nzCJ7+ZhuPXN6k+DwejwfD+LsB7CIiIiJyPtQh7mWmLI8FICzAR4UPEZEqwDAMOtUPBeCzdUcI8fdh6WN9Gd0nhiCHjf0nMnhi9hZ6vLyQtxfsITkj1+TEIiIiUhF1796dXbt2nfbY7t27qVevHgDR0dHUrFmTBQsWFH8/LS2N1atX07Vr1zOe09fXl+Dg4NM+BBIzcgCo9YduURGp3KwWg64xYQxoU5uuMWFYLQWF7Ybhgcwe3Z3WdZwkZ+YxeNJq5m2JIyrUn8m3d6RZ5G//dr76426embuNjMJmGBEREREpHSqIe5nEUwUL6zrV/ExOIiIi5eX27tE8N+AiAD5YFsv7S/bz2OVNWPnEJfz76ubUDvEj8VQur/60m24vLeSpr7dy6GSmyalFRESkIhk3bhyrVq3ihRdeYO/evcyYMYOJEycyduxYoOAmvAcffJDnn3+eb775hi1btjB8+HBq1arFddddZ254L5OalQdoqpuI/KZGkC8zR3WhX7NwcvPdjJmxgQ+W7j/tmGMpWUxYvI8pyw+wav9Jk5KKiIiIVE4qiHsRt9tTPC69QQ3tHy4iUpUM61qfF65vCcCU5Qd46pttBPhYGdEjml8e7cObt7SheWQwWXkuPl55kD6vLGLs9A1sOpxibnARERGpEDp27MicOXOYOXMmLVq04LnnnuONN97g1ltvLT7mscce47777mPUqFF07NiRU6dO8cMPP+BwqNO5pDJz88nOcwMQUyPQ5DQiUpH4+9h4f1gHhnWph8cDz3+3g6e/2YbL7QGgVogfH97ekTu7R3NJs4ji5xV9X0RERETOn+HxeCr1u6q0tDScTiepqaleP74tKSOXds/9BMDj/ZtyT58YkxOJiEh5+3TtIR6fvQWPB27tXJfnBrTAUjiKz+PxsGLfSSYu2c/i3SeKn9MpOpRRPRtwcdPw4mNFRETkwlSmtWZp0f8T2Ho0lavfXgbA1Ds70atxDZMTiUhF4/F4mLR0Py98vxOAyy+K4I1BbfHz+fPWiCfSc7j5/ZXcd3FDrm9bW/uLi4iISJVUGmtNdYh7kRPpOcWfx4TrTnMRkapoUMe6/O+GVhgGTF99iH99tQV3YceAYRh0b1idj+/sxA8P9uSGdnWwWw3WxCZx19R1XPr6YmatOUR2nutP53W5Pazcd5KvNx1l5b6T6kIQEREROQ/7Tpwq/tzpZzcxiYhUVIZhMKpXDG8PbouP1cL8bQkMnrSKk6dy/nTs5GWxxCZm8NBnmxn+4RoOJ2lrLBEREZHzoYK4Fzmenl38eXR17UUmIlJV3dQhitdubo3FgJlrDvOPL3/9UwG7ac1gXr25NUsfu5i7ezcgyNfGvhMZPD57Cz1eXsQ7C/eQkpkLwA9b4+jx8kIGT1rFA7M2MXjSKnq8vJAftsaZ8euJiIiIeK19JzKKP1dBXET+zjWtazHtrs44/exsOpzCwPEriE3MOO2Yhy9rzGP9m+Bjs7B0TyKXvb6ED5buJ9/lNim1iIiIiHdSQdyL7P/dneZRoSqIi4hUZde3rcPrg9pgMeDz9Ud49IvNZ+zqrul08MQVzVjxxMU8eVUzajkdJJ7K4ZUfd9P1xYXcMWUN90zbQFxq9mnPi0/NZvS0DSqKi4iIiJyDPcfTiz9XQVxEzqZTdChfju5GVKgfB09mMvC95aw/mFT8fbvVwpg+DZn/YC+6NAglK8/F89/t4Pr3VrDtWKqJyUVERES8iwriXmTP8YK7RP3sVnxtf95XSEREqpYBbWrz1uC2WC0Gszcc5T9fb/3LY4Mcdu7q2YDFj/XljUFtaBYZTFaei0W7Tpzx+KLS+jNzt2t8uoiIiEgJ7TtecCN7x/rVCHLYTE4jIt6gYXggs0d3p1UdJ8mZeQyZtJp5W06/MTm6egAzR3bh5RtaEuywseVoKte+s5yXf9h5xi2xREREROR0Koh7kUMnCwrioQE+JicREZGK4upWtXhncFtC/O0MbFfnrMfbrRaua1ub7+/vwT+vbPq3x3qAuNRs1sQm/e1xIiIiIgIut4eDJwv2933lptbYrLrkIiIlUyPIl1mjutCvWTg5+W7GzNjA5GWxpx1jGAaDOtbl54d7c1XLSFxuD+N/2Uf/N5awYl+iSclFREREvINWZ16kaJxtRLCvyUlERKQiuaJlJEse60v7etVK/BzDMIgIdpTo2OPp2Wc/SERERKSKO5aSRU6+Gx+rhTrVtM2ZiJwbfx8b7w/rwLAu9fB44Llvt/P0N9v+NLErPMjBu7e2Y+Kw9tQMdnDgZCZDJq3mH1/8SmpmnknpRURERCo2FcS9SFJmLgBRWliLiMgfBDt+26Ny69FUHv18M7n57r99TnhQyQri1fy1/6WIiIjI2ew9UTAuvW6o1uwicn6sFoNnB1xUPM3roxUHGDN9PVm5fx6LftlFNfnpoV4M61IPgE/XHWa5OsVFREREzkgFcS/hcntIyyq4y9PHbmg/VxEROaPsPBcjPl7L5+uP8PbCPX97bKfoUCKdDoyznPPJr7by47Z4PB699oiIiIj8laL9w/eeOMXQD1abnEZEvJVhGIzqFcPbg9viY7Uwf1sCgyet4uSpnD8dG+Sw89x1Lfj8nq7c0b0+V7SoWfy9fNff3yAtIiIiUpWoIO4FftgaR/eXF5LnKihEfL7uKD1eXsgPW+NMTiYiIhWNw27lfze2pmuDMEb1avC3x1otBk9d0xzgT0Xxoq+DHTYOJWUx6pP1DP9wDbsT0ks/tIiIiEglsO9ERvHnwX42E5OISGVwTetaTLurM04/O5sOpzBw/ApiEzPOeGzH+qE8dc1FGEbBSi45I5d+ry3mk1UHcaupRkREREQF8Yruh61xjJ62gfjU0/dvjU/NZvS0DSqKi4jIn/RuXIMZIzsT9Lsx6n/VHdC/RSTjh7ajpvP08ek1nQ4mDG3HyicuYWzfGHysFpbuSeSKN5fy9DfbSCncxkNERERECuwrHJn+yo2tePXmNuaGEZFKoVN0KF+O7kZUqB8HT2Yy8L3lrD+YdNbnTVt1kAMnM/lk5QHyVRAXERERwfBU8vmnaWlpOJ1OUlNTCQ4ONjvOOXG5PfR4eSFxfyiGFzEoKFgs+8fFWC1nG3grIiJV1fhf9rFiXyKThnfAYbee8RiX28Oa2CSOp2cTHuSgU3Toaa8th05m8t/vtzN/WwJQsK/4Q5c1YXDHKGxW3V8nIiJVjzevNctKVf9/0uH5n0g8lcvce3vQso7T7DgiUomcSM9hxMdr+fVIKr42C28MasMVLSP/8niX28O0VQdpWcdJu7rVAMhzufF4wMem9ZuIiIh4l9JYa+odUAW2JjbpL4vhAB4gLjWbNbFnvzNURESqpvjUbN5euIelexK586O1ZOW6znic1WLQNSaMAW1q0zUm7E83WtUN8+f9YR2YfldnmkQEkZyZx7+/2srVby9jxb7E8vhVRERERCqslMxcEk8VTNBpUCPA5DQiUtnUCPJl1qgu9GsWTk6+mzEzNjB5WexfHm+1GNzWrX5xMRxg4pL9XP32UtYfTC6PyCIiIiIVigriFdjx9L8uhp/PcSIiUvXUdDr46I5OBPhYWbHvJHd8tIbM3PzzPl/3htX57v4ePDvgIpx+dnbGpzNk0mru+WQ9h5MySzG5iIiIiPco2j88yNfGv+Zs0Y3rIlLq/H1svD+sA8O61MPjgee+3c4zc7fhKsFI9Jx8FzNWH2J3wilunLCCp77eyqmc818XioiIiHgbFcQrsPAgx9kPOofjRESkauoUHcrUEZ0I9LWxan8St3+49oIuftisFoZ3rc8vj/Thtq71sFoMftgWzyWvLeaV+bvI0IUVERERqWKK9g+3WAy+2nSMuNQskxOJSGVktRg8O+Ai/nllUwCmLD/AmOnr/3ISWBFfm5Xv7u/BTe3r4PHAxysPculri1mwI6E8YouIiIiYTgXxCqxTdCiRzr8vdkc6C/Z5FRER+Tvt64XyyYhOBPnaWHMgids/XEN6dt4FnbNagA/PDGjB9/f3pFtMGLn5bt5ZtJeLX/2FORuP4PGcvVNBREREpDIoLogX7jrj9LObmEZEKjPDMBjVK4a3B7fFx2ph/rYEhnywipOncv72eSH+PvzfTa2ZNqIzdUP9iUvNZsTH67h3xgZOpP/9c0VERES8nQriFZjVYvDUNc3/9pinrmn+p31eRUREzqRt3WpMu6szwQ4b6w4mM/zDNaRdYFEcoEnNIKbf1Zn3h7UnKtSPhLQcxn26mRvGr2Dz4ZQLDy4iIiJSwe07XjAyvWhysQriIlLWrmldi2l3dcbpZ2fjoRQGjl9BbGLGWZ/Xo1F15j/Yi7t7NcBiwLe/xtHvtcV8tu6wbmoWERGRSksF8Qquf4tIJgxth4/19KK308/GhKHt6N8i0qRkIiLijVpHhTBjZJfiiybDPlhNataFF8UNw+Dyi2ry07jePNa/Cf4+VjYcSmHAu8t55PPNHE/LLoX0IiIiIhXT/sIO8Zz8grHFKoiLSHnoFB3Kl6O7ERXqx8GTmQx8bznrDyad9Xl+PlaeuLIZ39zbg4tqBZOalcdjX/zK0MmrOXjy7EV1EREREW+jgrgX6N8ikr5NwwFoEhHIO4PbsuHfl6kYLiIi56VFbSczRnammr+dzUdSGfrBalIyc0vl3A67lTF9GrLokT4MbFcbgC/WH6HvK78w/pd9xReJRURERCqL3Hw3B5MyAcjOcwMqiItI+WkYHsjs0d1pVcdJcmYeQyatZt6WuBI9t0VtJ1+P7c4TVzTF12Zh+d6TXP7GEiYs3ke+y13GyUVERETKjwriXuLgyYLFdZCfnatb19KYdBERuSAX1XIyc1QXwgJ82HI0lSGTVrMzLo0V+xKJS8264PNHBDt47eY2zBnTjdZRIWTkunj5h51c9voSftqeoFF8IiIiUmkcSsrA5fbgZ//tEkuwCuIiUo5qBPkya1QX+jULJyffzZgZG5i8LLZEz7VZLdzdO4Yfx/Wie8MwsvPcfLb2MPlurdlERESk8lBB3EvkuwrehNqt+pOJiEjpaFozmJmjulA90IftcWlc8eZShkxaTfeXFvLp2kOl8jPa1q3GnNHdeO3m1oQH+XLwZCYjp65j+Idr2JOQXio/Q0RERMRMewv3D48K9QcgwMeqtbuIlDt/HxvvD+vAsC718HjguW+388zcbbhKWNiuFxbAtBGd+b8bW/Hyja1w2K0A5LvcZOVq0peIiIh4N63QvES+u2BMkV2d4SIiUooaRwTx9uC2GEDRZRK3B/45e2updIoDWCwGA9vVYeEjfRjTJwYfq4WlexLp/+ZSnv5mG6mZF76HuYiIiIhZ9hXuHx4Z7AA0Ll1EzGO1GDw74CKeuKIpAFOWH2DM9PUlLmgbhsFNHaLoWD+0+LEpyw9w+RtLWLE3sUwyi4iIiJQHFcS9RNGYIh+b/mQiIlK6PPxWDC/i8ng4kJhZqj8n0NfGY/2b8vNDvbmseQQut4ePVhygzyuL+GTVQe1RJyIiIl6pqCBePdAX0Lh0ETGXYRjc3TuGtwe3xcdqYf62BIZ8sIqTp3LO+Vz5Ljcz1x7iUFImh5NLd30oIiIiUp5UXfUSReONfDR2TURESll09QDONIAkLMCnTH5e3TB/Jg7vwLQRnWkcEUhyZh7//morV7+9jBX71HUgIiIi3mXfiYKR6U7/gkK4CuIiUhFc07oW0+7qjNPPzsZDKQwcv4LYxIxzOofNauGbe3vwn6ubc3OHqOLHj6dl4/Foj3ERERHxHqqueomiDnG7OsRFRKSURTr9eHFgS6zGb1XxQF8bNmvZbtPRo1F1vr+/J88OuAinn52d8ekMmbSa0dPWczhJ3QciIiJS8Xk8HvYfL+gQD/C1ARqZLiIVR6foUL4c3Y2oUD8Onsxk4HvLWX8w+ZzOEehr484e0RiF68X07DwGvLucOz9ay9GU0tlmS0RERKSsqbrqJVwamS4iImVoUMe6LHu8LzNHduGTEZ34+t7uNKgRWOY/12a1MLxrfX55pA/Du9bDYsC8rfFc8tpiXpm/i4yc/DLPICIiInK+TqTnkJ6Tj8UAW+HIHRXERaQiaRgeyOzR3WlVx0lyZh5DJq1i3pa48z7f+oPJnDyVy6JdJ7j0tcV8tDy2+LqliIiISEWl6qqXcBe+sfTVyHQRESkjkU4/usaE0bNRDWJ+VwzfeCiZzNyyLUxXC/Dh2QEt+P6BnnSLCSM33807i/Zy8au/MGfjEY3jExERkQppb+H+4VGh/jSpGcTVrSJpV7eayalERE5XI8iXWaO60K9ZODn5bsbM2MDkZbHnda4+TcL5/oEedKhXjcxcF0/P3c4N41ewKz69lFOLiIiIlB5VV72Ey6MOcRERKX9Ldp/glomrGDl1Hdl5rjL/eU1rBjP9rs68P6w9UaF+JKTlMO7TzdwwfgWbD6eU+c8XERERORdF+4fH1Aikf4tI3hnSjiGd65qcSkTkz/x9bLw/rAPDutTD44Hnvt3OM3O3nVd3d8PwID67uyvPXdeCQF8bmw6ncPXbS3ntx13lsm4UEREROVeqrnoJt0ami4iICQJ8bdgsBsv3nmTUJ+vL5eKGYRhcflFNfhrXm0cvb4K/j5UNh1IY8O5yHvl8M8fTs8s8g4iIiEhJ7CvcPzymRoDJSUREzs5qMXh2wEU8cUVTAKYsP8CY6ee3zrNYDIZ1qcdPD/Xi0uYR5Lk8vLVwL1e+tZQ1sUmlHV1ERETkgqi66iWKbtZ02KzmBhERkSqlfb1qTLmjE352K0t2n2Ds9A3k5rvL5Wc77FbG9m3Iokf6MLBdbQC+WH+Evv/3CxMW7yMnX50HIiIiYq59J4oK4oFk5ORrH10RqfAMw+Du3jG8PbgtPlYL87clMHjSKk6eyjmv80U6/Zg4rD3jb21HjSBf9p/I4Ob3V/KvOVtIy84r5fQiIiIi50cFcS/hLhqZbtefTEREylen6FAm394BX5uFBTuPc9/MDeS5yqcoDhAR7OC1m9swe0w3WkeFkJHr4qV5O7ns9SX8tD1B+4uLiIiIafYXjUwPD+Tm91cS88/vWbL7hMmpRETO7prWtZh2V2ecfnY2Hkph4PgVxCZmnNe5DMPgipaR/DyuN7d0jAJg+upDXPraYhbsSCAuNYsV+xKJS80qzV9BREREpMRUXfUShlHwXz+7OsRFRKT8dYupzqThHYo7CB78dBP55VgUB2hXtxpzRnfj1ZtaUyPIl4MnMxk5dR3DP1zDnoT0cs0iIiIikpmbz9GUguJOTI1AUrMKOiEDfG1mxhIRKbFO0aF8ObobUaF+HDyZycD3lrP+YPJ5n8/pb+elG1oxc2QXoqsHkJCWw9zNx+j+0kKGTFpN95cW8unaQ6X4G4iIiIiUjAriXiIi2AFAqzpOk5OIiEhV1atxDSYMa4fdavDdr3E8+sWv5T4W1GIxuKF9HRY90ofRfWLwsVpYuieR/m8u5elvtpGaqZF8IiIiUj6KusOr+dsJDfBh4cN9WPdkP1rW1rpdRLxHw/BAZo/uTqs6TpIz8xgyaRXztsRd0Dm7xoQx74GePHJZY77ZfKx4K0i3B/45e6s6xUVERKTcqSDuJfJdBe8cbRb9yURExDwXN43g3SHtsFkM5mw8yuNf/orbhL0yA31t/KN/U356qBeXNY/A5fbw0YoD9HllEZ+sOlju3esiIiJS9fx+/3AAH5uF6oG++Ni0bhcR71IjyJdZo7rQr1k4OfluxszYwORlsRd0TofdSrt61fjjctHl8XAgMfOCzi0iIiJyrrRK8xK5hRf2bVbD5CQiIlLVXXZRTd4a3BarxeDz9Uf411dbTdvHu15YABOHd2DaiM40jggkOTOPf3+1lavfXsaKfYmmZBIREZHKz+X2sLhwr/AgX1u5T80RESlt/j423h/WgWFd6uHxwHPfbueZudsu6N+36OoBWM5wKbN+df8LSCoiIiJy7lQQ9xLJGbkAGgUrIiIVwpUtI3nt5tZYDJi55hBPf7PNtKI4QI9G1fn+/p48O+AinH52dsanM2TSakZPW8/hJHUfiIiISOn5YWscPV5eyOwNRwFYtPsEXV9cwM0TVvDf77abnE5E5PxZLQbPDriIJ65oCsCU5QcYM3092Xmu8zpfpNOPFwe2xGr8VhW//5KGRDr9SiWviIiISEnZzA4gJZOvu81FRKSCGdCmNnkuD49+sZmMXBduD5g5yMRmtTC8a32uaVWL13/ezbRVB5m3NZ4FO48zqmcDxvSNwd9Hb31ERETk/P2wNY7R0zbwxxX68fQcjqfnsPv4Kf51VXNTsomIlAbDMLi7dwy1Qvx4+LPNzN+WwOBJq/hgeAfCAn3P+XyDOtalV+MaHEjMJCrUjzrV1B0uIiIi5U8d4l7CXlhhqH4ebzxFRETKyo3t6/DpqK7874ZWWM80C88E1QJ8eHZAC75/oCfdYsLIzXfzzqK9XPzKYr7aeNTUTnYRERHxXi63h2fmbv9TMfz3TmXna3y6iFQK17SuxbS7OuP0s7PxUAoDx68gNjHjvM4V6fSja0zYacXw9QeT+Hzd4dKKKyIiIvK3VBD3EkXr6WA/u7lBRERE/qBTdCiWwmJ4vsvND1vjTE5UoGnNYKbf1ZkJQ9sTFepHfFo2D366iRvGr+DXIylmxxMREREvsyY2ibjU7L89Jt/tYU1sUjklEhEpW52iQ/lydDeiQv04eDKTge8tZ/3B5As+756Egi2u/vHlryzYkVAKSUVERET+ngriXsDj8RTfYW43cxatiIjI3/B4PDz46SbumbaBdxftNTsOUDDur3+Lmvw0rjePXt4Efx8rGw6lcO07y3n0880cT//7i9oiIiIiRUr6vkHvL0SkMmkYHsjs0d1pVcdJcmYeQyatuuCboBuGB3Jt61q4PXDvjI1sPpxSOmFFRERE/oIK4l4gI8dV/LlhqCAuIiIVk2EYtKztxG41aBgeaHac0zjsVsb2bcjCh/swsG1tAD5ff4SLX1nMhMX7yMl3neUMIiIiUtWFBzlK9TgREW9RI8iXWaO60K9ZODn5bkZP38DkZbHnfT7DMHhhYEt6Na5BVp6LER+v5dDJzFJMLCIiInI6FcS9QEpmbvHn6hAXEZGK7O7eMfw0rjeXX1TT7ChnVNPp4LVBbZg9phuto0I4lZPPS/N2cvnrS/h5e4L2FxcREZG/1Ck6lEing79blQf4WOkUHVpumUREyou/j433h3VgWJd6eDzw3LfbeWbutuKplufKbrXw3q3taB4ZTOKpXG6fsobkjNyzP1FERETkPKgg7gWy8n7rWnPYrSYmERERObv61QOKPz+clMmX64+YmObM2tWtxpzR3Xj1ptbUCPLlwMlM7pq6juEfrmFPQrrZ8URERKQCsloMnrqm+d8ec3HTcKwW3cguIpWT1WLw7ICLeOKKpgBMWX6AsdM3kJ13fhO3An1tTLmjI7VD/NifmMHIqevO+1wiIiIif0cFcS/w+4K4TQtrERHxEkkZuQx6fyUPf76ZWWsOmR3nTywWgxva12HRI30Y3ScGH6uFpXsS6f/mUp7+ZhupmXlmRxQREZEKpn+LSMYPbUeAz+k3qzvsBZdX2terZkYsEZFyYxgGd/eO4e3BbfGxWvhhWzyDJ63i5Kmc8zpfRLCDKXd0JNhhY93BZMZ9ugn3eXadi4iIiPwVFcS9QFau9hAXERHvU83fzhUtIwF4Ys4WvqiAneJQ0JXwj/5N+emhXlzWPAKX28NHKw7Q55VFTFt18LxHAIqIiEjl1L9FJFe0LNge5qqWNZk5sktxIdzpbzczmohIubmmdS2m3dUZp5+djYdSGDh+BbGJGed1rsYRQUwc3gEfq4V5W+N5/rsdpZxWREREqjoVxL2ARgWJiIg3MgyDJ69qxvCuBXvMPfrFZr7edNTsWH+pXlgAE4d3YNqIzjSOCCQ5M48nv9rKVW8tZeW+k2bHExERkQokLSsfgC4x1ekaE1b8tdNPBXERqTo6RYfy5ehu1Knmx8GTmQx8bznrDyaf17m6NAjjlZtbA/Dh8lgmL4stzagiIiJSxakg7gWKRqarN1xERLyNYRg8fc1FDO4UhccDD322me+3xJkd62/1aFSd7+/vyTPXXoTTz87O+HQGT1rFmOnrOZyUaXY8ERERqQBSCrdWqVbYEZ6aVfC1CuIiUtU0DA9kzpjutKrjJDkzjyGTVvHD1vNb813buhaPF+5P/vx325lXwdeOIiIi4j1UEPcCOfluADQtXUREvJHFYvDf61pyY/s6uNwe7p+5kR+3xZsd62/ZrBZu61afXx7pw/Cu9bAY8P2WeC55bTGv/riLzNx8syOKiIiIiZIzcwGo5u8DqCAuIlVbjSBfZo3qQr9m4eTkuxk9fUNxh7fL7WHlvpN8vekoK/edPOuWVHf3asCwLgVTxhbuPF4e8UVERKQKsJkdQM6uaA9x7R8uIiLeymIxePmGVuS53Hy96RhjZ2xg4rAO9G0abna0v1UtwIdnB7RgSOe6PPPNdlbuP8nbC/fy+bojPHFlU65tXUuvzyIiIlVQyh8K4H2a1CApI5fQAF8zY4mImMbfx8b7wzrw9Dfb+GTVQZ77djvL9p5gx7F04tOyi4+LdDp46prm9G8RecbzGIbB09deRJuoEK5vW7u84ouIiEglpw5xL1DcIW5yDhERkQthtRi8elNrrmoZSZ7Lw93T1rNk9wmzY5VI05rBzBjZmQlD2xMV6kd8WjYPzNrEjRNW8uuRFLPjiYiISDnyeDykFHWIBxR0iL95S1s+GdGZ0MKvRUSqIqvF4NkBF/FE4djzRTtPnFYMB4hPzWb0tA1/O1bdajG4oX0dLJaCq6Fut6d4EoeIiIjI+VBB3AvkFO4hblEHmoiIeDmb1cIbt7ThsuYR5Oa7GTl1HSv2Jpodq0QMw6B/i5r8NK43j17eBH8fK+sPJnPtO8t59PPNHE/PPvtJRERExOtl5LrIcxWM/C3aQ1xERAoYhsFdPRsQ8hdbSBQNTH9m7vazjk8HyM5zcd/MjQybvFpbV4mIiMh5M70gfvToUYYOHUpYWBh+fn60bNmSdevWFX/f4/Hwn//8h8jISPz8/OjXrx979uwxMXH5y8ovKoibHERERKQU2K0W3hnSjoubFuwvN+LjdWw8lGx2rBJz2K2M7duQhQ/3YWDhCL/P1x/h4lcWM2HxPnIKX7dFRESkcirqDvexWvCzW3G5PSUq6oiIVBVrYpOKt5Y4Ew8Ql5rNmtiks57rRHoOK/efZEdcGhsPpZReSBEREalSTC2IJycn0717d+x2O/PmzWP79u28+uqrVKtWrfiY//3vf7z11ltMmDCB1atXExAQwOWXX052dtXpwsrNKxiZblFFXEREKgkfm4X3bm1Hz0bVaRwRSIPqgWZHOmc1nQ5eG9SG2WO60ToqhFM5+bw0byeXv76En7cn4PHowriIiEhllJJZUOQJ8bdjGAar9p8k5p/fc/17y01OJiJSMZR0elZJjosK9eeD2zrw8R2d6N6w+oVGExERkSrKZuYPf/nll4mKimLKlCnFj0VHRxd/7vF4eOONN3jyyScZMGAAAFOnTiUiIoKvvvqKW265pdwzmyHPXVgQ18h0ERGpRBx2K5OGdyDX5SbY4b3jRtvVrcac0d2YvfEoL/+wkwMnM7lr6jp6NqrOf65uTqOIILMjioiISClKLto/3L9gv/CifW1tuoldRASA8CBHqR7Xrm61077OynXh52M951wiIiJSdZnaIf7NN9/QoUMHbrrpJsLDw2nbti2TJk0q/n5sbCzx8fH069ev+DGn00nnzp1ZuXKlGZFN0a5uKACNwgNMTiIiIlK6HHbracXwaasOsu1YqomJzo/FYnBj+zoseqQPo/vE4GO1sHRPIv3fXMozc7eRmvnX4wJFRETEuxR1iDsL9w+/rHkE657sx9uD25kZS0SkwugUHUqk08Hf3Sbk9LPTKTr0nM+9JyGdS19fzJyNR84/oIiIiFQ5phbE9+/fz/jx42nUqBHz589n9OjR3H///Xz88ccAxMfHAxAREXHa8yIiIoq/90c5OTmkpaWd9uHt8gs7xH1suvNRREQqr682HuXJr7Yy9IPVHE/zzq1RAn1t/KN/U356qBeXNo/A5fYwZfkB+ryyiGmrDmp/URERkUogpbhDvKAgbrNaqB7oS01nyTodRUQqO6vF4KlrmgP8ZVE8NSuPtxbsOeetpuZuPsaR5Cwe++JXVuxNvMCkIiIiUlWYWhB3u920a9eOF154gbZt2zJq1ChGjhzJhAkTzvucL774Ik6ns/gjKiqqFBObI99V8MbQbjX1zyUiIlKmLm4WTus6ToZ1qUeNIF+z41yQemEBTBregU9GdKJReCDJmXk8+dVWrnprKSv3nTQ7noiIiFyA5MIO8aKR6SIi8mf9W0Qyfmi7P90sFOl0cGWLmgC8uWAP//jyV/Jc7hKf98F+jbm6VSR5Lg93f7KenfHe3wwlIiIiZc/UCmtkZCTNmzc/7bFmzZpx6NAhAGrWLHhzlJCQcNoxCQkJxd/7oyeeeILU1NTij8OHD5dB8vK14VAyAAle2i0nIiJSEsEOO5/e3ZWHLmuCYVSOPTh7NqrBvAd68vQ1zQl22NgZn87gSasYM309h5MyzY4nIiIi5+GPI9M/W3eY/3y9lRX71KkoIvJ7/VtEsuwfFzNzZBfevKUNM0d2Ydk/Lua9oe357/UtsBjw2bojjJy6joyc/BKd02IxeOWm1nSKDiU9J587pqwlLjWrjH8TERER8XamFsS7d+/Orl27Tnts9+7d1KtXD4Do6Ghq1qzJggULir+flpbG6tWr6dq16xnP6evrS3Bw8Gkf3i4+taAQnpnrMjmJiIhI2XLYf9seJCvXxUOfbuLgyQwTE104m9XC7d2j+eXRvgzrUg+LAd9viaffa4t59cddZOaW7MKPiIiIVAy/jUwv6BBfsvsEU1ceZGdcupmxREQqJKvFoGtMGAPa1KZrTBhWS8HNz7d2rsfEYR1w2C38susEt0xcxYn0nBKd02G3MnFYe2JqBBCXms0dU9aSnp1Xlr+GiIiIeDlTC+Ljxo1j1apVvPDCC+zdu5cZM2YwceJExo4dC4BhGDz44IM8//zzfPPNN2zZsoXhw4dTq1YtrrvuOjOjl6sGNQIAqFNN+5GJiEjV8ey325i98ShDJq3mSLL3d1OHBvjw3HUt+P6BnnRtEEZOvpu3F+7l4lcW8/Wmo+e8d56IiIiYI/kPe4inZhV2jPvZTcskIuKN+jWPYObILoQG+LDlaCo3jF/B/hOnSvTcEH8fPrqjEzWCfNkZn87oaRvIzS/56HURERGpWkwtiHfs2JE5c+Ywc+ZMWrRowXPPPccbb7zBrbfeWnzMY489xn333ceoUaPo2LEjp06d4ocffsDhqDrF4RpBBb9rRLCfyUlERETKz7h+jWlQPYCjKVkMnrSq0ozBa1ozmBkjOzNhaHuiQv2IT8vmgVmbuHHCSn49kmJ2PBERETmLlOICeEGHeJoK4iIi561t3Wp8ObobdUP9OZSUyQ3jVxRvH3k2UaH+TLm9I/4+VpbtTeTx2b/qRmMRERE5I1ML4gBXX301W7ZsITs7mx07djBy5MjTvm8YBs8++yzx8fFkZ2fz888/07hxY5PSmiPPVXB3o81aOfZTFRERKYnwYAczRnahbqg/h5OyGDJpNcfTss2OVSoMw6B/i5r8NK43j17eBH8fK+sPJjPg3eU8+vlmjqdXjt9TRESkMiraQ/xPHeL+KoiLiJyP6OoBfDm6G63qOEnOzGPIpFX8tD2hRM9tUdvJe7e2w2oxmL3hKK/9tLuM04qIiIg3Mr0gLmeXUNgRl6exPyIiUsXUdDqYMbIztUP8iE3MYPCkku8r5w0cditj+zZk4cN9GNi2Nh4PfL7+CBe/spj3F+8jJ99ldkQRERH5g+KR6QEFHeIamS4icuFqBPkyc2QX+japQXaem7s/Wcf01QdL9Nw+TcJ54foWALy9cC8z1xwqy6giIiLihVQQ9wJrDxaMCTqY5P37p4qIiJyrOtX8mTmyC5FOB/tOZDD0g9UkZeSaHatU1XQ6eG1QG74c3Y3WdZycysnnxXk7ufz1Jfy8PUFj/0RERCoIt9tTXAAP8bPj8XhIy84HVBAXEblQAb42Jg3vwKAOUbg98K85W3ll/q4SrYcGdazL/Rc3BODJr7ayYm9iWccVERERL6KCuBfIdxW86bNb9OcSEZGqqW6YPzNGdiE8yJddCekM/WA1KZmVqygO0L5eNeaM6c4rN7WmRpAvB05mctfUddw2ZS17j6ebHU9ERKTKS8vOo6guE+Lvw6mcfFzuggdUEBcRuXA2q4WXbmjJg/0aAfDOor088vmvxVtK/p1xlzbmhnZ16NogjJZ1nGUdVURERLyIKqxeIL9wcW23aQ9xERGpuqKrBzBjZBeqB/qwPS6NYZPXFHdoVSYWi8GN7euw6JE+3NM7Bh+rhSW7T3D5G0t5Zu42UjMr3+8sIiLiLZILX4cDfKz42CzF70V8bBYcdquZ0UREKg3DMHiwX2NevqElVovBlxuOcOdHazmVk3/W5710Q0s+vL0jQQ7dpCQiIiK/UUHcC+QX3gFpt+rPJSIiVVvD8ECm39WF0AAfthxN5fYpa0jPrpwF4kBfG49f0ZQfx/Xi0uYRuNwepiw/QN9Xf2H66oPF3WgiIiJSfoom1IT4a/9wEZGyNqhjXT4Y3gE/u5WlexIZ9P5Kjqdn/+1z7FYLPraCa6gej4dZaw5VyuliIiIicm5UYfUCxR3iKoiLiIjQpGYQ00Z0xulnZ+OhFB7+bLPZkcpU/eoBTBregU9GdKJReCBJGbn8a85WrnprKSv3nTQ7noiISJWSUtghHuJfUABXQVxEpGz1bRrOrFFdCAvwYduxNAa+t4J9J06V6LlvLdjL47O3MHLquhKNXBcREZHKSxVWL1DUAeZj1ch0ERERgOa1gpk2ojMNagTwyOVNzI5TLno2qsG8B3ry9DXNCXbY2BmfzuBJqxgzfT2HkzLNjiciIlIlJBd2GVYr7BBPU0FcRKTMtY4KYfaYbtQP8+dIchY3jF/B+oNJZ31e/xY1cfrZufyimtgsuq4qIiJSlakg7gWKOsR9bNqPTEREpEjLOk5+GtebxhFBZkcpNzarhdu7R/PLo30Z1qUeFgO+3xJPv9cW89qPu8jM/fs99UREROTCFHWIO9UhLiJSruqFBfDl6G60iQohJTOPIZNW88PW+L99TpOaQfzySB/u6tkAw1BBXEREpCpTQdwLuIpHpuuNm4iIyO9Zf3eX/8p9Jxk7fQM5+S4TE5WP0AAfnruuBd8/0JOuDcLIyXfz1sK9XPzKYr7edBSPR/uLi4iIlIWU4g7xggJ49UBfejaqTsvaTjNjiYhUCWGBvswc2YV+zcLJyXczevp6pq488LfPqRbgU/x5WnbeWYvoIiIiUjmpIO4FigrivuoQFxEROaOMnHzGTF/Pd1vimLh4v9lxyk3TmsHMGNmZCUPbUaeaH/Fp2TwwaxM3TljJliOpZscTERGpdJILO8SLRqZf0iyCT0Z0Ztyljc2MJSJSZfj5WJkwtD1DOtfF44H/fL2Nl+btxO3++5uC07PzuHnCSkZPX6+iuIiISBWkgrgXcHuKCuL6c4mIiJxJgK+Ntwe344oWNRnZq4HZccqVYRj0bxHJzw/15tHLm+Bnt7L+YDLXvruMx77YzPH0bLMjioiIVBopGpEuImI6m9XCf69rwSOXFdyMNGHxPh7+fDO5+e6/fE6gr4329arh8cADszay/mByecUVERGRCkAVVi/gKt5DXH8uERGRv9KjUXXGD22Pw14wUcXj8Zy1S6AycditjO3bkEWP9OH6trXxeOCzdUe4+JXFTFyy728vDomIiEjJ/DYyvaBDXNuUiIiYwzAM7r24Ef93YytsFoM5G49y50drSc/O+8vjn7n2Ii5pWjBu/a6P17L/xKlyTi0iIiJmUYXVCxR3iNv15xIRESkJj8fDi/N28sjnm4tvLKsqajodvD6oDV+O7kbrOk5O5eTzwvc7ufyNJSzYkaAL9yIiIhcguaggHlDQIX77lLW0fHo+32+JMzOWiEiVdVOHKCbf3hF/HyvL9iZy8/urSEg785Qsm9XC20Pa0rqOk+TMPG6fspbEUznlnFhERETMoAqrF3AXNnRpD3EREZGS2RGXzuRlsczeeJR/zt5SpTrFi7SvV405Y7rzyk2tqRHkS2xiBiM+XsdtU9ay93i62fFERES8Ukpm0cj0gg7xlKw80rPzsVt1eUVExCy9G9fgs7u7Uj3Qlx1xaQx8bwV7Es685vH3sfHBbR2JCvXjUFImIz5eR2ZufjknFhERkfKmFZsXaF4rGID6YQEmJxEREfEOzWsF88agNlgM+HTdYf7zzdYq2RltsRjc2L4Oix7pwz29Y/CxWliy+wSXv7GUZ+ZuIzXzzOMERURE5MyKCuLV/As6xKfc3pEFD/emS4NQM2OJiFR5LWo7mTOmGw2qB3A0JYsbxq9gTWzSGY+tEeTLR3d0IsTfzubDKdw/c1OVmywmIiJS1agg7gWKLuA7NDJdRESkxK5pXYtXbmqNYcC0VYd49tvtVbIoDhDoa+PxK5ry47heXNo8Apfbw5TlB+j76i9MX31QF39ERERKIDffzamcgi7Coj3EQwN8iKkRSJDDbmY0EREBokL9+WJ0N9rVDSEtO5+hk1cz7y+2tIipEcgHwzvgY7Pw844EnqqiN1GLiIhUFaqweoFcV8GbMY1gExEROTcD29Xh5YGtAJiy/AAvzttZpS9y1K8ewKThHfhkRCcahQeSlJHLv+Zs5eq3l7Fq/0mz44mIiFRoqVkF3eGGAcF+KoCLiFREoQE+zBjZhcuaR5Cb72bMjA18uCz2jMd2qB/Km4PaFN9EPWHx/nJOKyIiIuVFFVYvcDQ5E4CcfJfJSURERLzPzR2j+O/1LQCYuGQ/r/y4q0oXxQF6NqrB9w/05OlrmhPssLEjLo1bJq5i7PQNHCl83yEiIiKnS8nMBSDYYcdqMcjKdfGfr7fy6o+7NG1FRKQCcditjB/anmFd6uHxwLPfbueF73fgPsO/1Ve0jOTJq5oD8PIPO/l609HyjisiIiLlQAXxCs7j8ZCWXTCSzTAMk9OIiIh4p1s71+Ppawoucry7aB9vLdhrciLz2a0Wbu8ezS+P9mVol7pYDPhuSxyXvLqY137cRWZuvtkRRUREKpTkP+wfnpSZy9SVB3l/8X4sWq6LiFQoVovBswMu4rH+TYCCm6Mf+HTTGRuORvSIZkSPaADe/HkPufnucs0qIiIiZU8F8QrO44Fghw2AQB+ryWlERES81+3do/nXlc0AeP3n3bz3i4riUDBS8PnrWvLd/T3p0iCUnHw3by3cyyWvLubrTUerfDe9iIhIkaIOcWfh/uGphQXyYD+7bmAXEamADMNgTJ+GvHZza2wWg7mbj3Hbh2uKt8D4vX9d2Yx7+zZk1t1d8LHpkrmIiEhlo1f3Cs5iMfArLIQHOrRHmYiIyIUY2asBj15e0CHwvx928cFS7RFXpFlkMDNHdmHC0HbUqeZHXGo2D8zaxE0TVrLlSOppx7rcHlbuO8nXm46yct9JjYkVEZEqIeUPHeJFBRWnn820TCIicnYD29Vhyh0dCfS1sWp/EjdPWElcatZpx1gsBo9c3oTwIEfxY1rniIiIVB4qiHuBfFfBmy+7VX8uERGRCzW2b0Me7NcIgJfm7eRAYobJiSoOwzDo3yKSnx/qzaOXN8HPbmXdwWSufXcZj32xmePp2fywNY4eLy9k8KRVPDBrE4MnraLHywv5YWuc2fFFRETKVHJhh3i1og7xrN86xEVEpGLr2agGn97dhfAgX3YlpDPwvRXsik//y+NnbzjCwPeWk579525yERER8T6qsFZwuflusvIK9raxWTWCTUREpDQ8cEkj7r+4IW8Pbkv96gFmx6lwHHYrY/s2ZNEjfbi+bW08Hvhs3RF6vbyIe6ZtIC41+7Tj41OzGT1tg4riIiJSqaUUd4QXFMDT/vC1iIhUbBfVcjJ7TDdiagQQl5rNjRNWsHLfyT8ddyonnxfn7WTzkVSmrTpkQlIREREpbSqIV3AnTuWQmVtQEPdRh7iIiEipMAyDhy5rwhUtI4sfy8l3mZioYqrpdPD6oDZ8ObobrWoHk53vPuNxRYMEn5m7XWMFRUSk0kr5iw5xFcRFRLxHnWr+fDm6Gx3rVyM9O5/bPlzD3M3HTjsm0NfG5Ns6MLZvDHf3amBSUhERESlNqrBWcHm/u/CsDnEREZGycSQ5k/5vLGXOxiNmR6mQ2terxuNXNPvbYzxAXGo2a2KTyieUiIhIOUvOKNxDPOCPe4irIC4i4k1C/H34ZERnrmhRk1yXm/tmbuSDpftPO6ZVnRAevbwpFkvB9ViPRzf+ioiIeDMVxCu43N91q9ks+nOJiIiUhc/WHSE2MYO3F+xVp/hfOHEqp0THHU/PPvtBIiIiXiglq6BDvKgAroK4iIj3ctitvDOkHbd3qw/A89/t4Nm523GfYeJVTr6L+2dt4rO1h8s5pYiIiJQWm9kB5O9l5f3WIa6R6SIiImXjwUsaATC4UxS+NqvJaSqm8CBHqR4nIiLibVIyCzvENTJdRKRSsFoMnrqmObVCHLzw/U4+XB5LQlo2r97cGof9t3Xh7A1Hmbv5GN9viSPC6aB34xomphYREZHzoQprBZed97sOcY1MFxERKRMWi8FDlzYm0ulX/NjJEnZEVxWdokOJdDr4u3cjFgMyc/PLLZOIiEh5Sv6LPcSDVRAXEfFahmEwqlcMb97SBrvV4LstcQz/cA2phTdBAdzSMYqBbWvjcnsYM209W4+mmphYREREzocK4hVclgriIiIi5W7u5mP0eHkRv+w6bnaUCqOoewL4y6K42wMjPl7Hv+ZsISNHhXEREalcijrEQ/w1Ml1EpLIZ0KY2H9/ZiSBfG2tik7hxwgqOpmQBBUXzl25oRfeGYWTkurjzo7UcSc40ObGIiIicCxXEK7is3N8K4nbtIS4iIlLmPB4PP2yLJyvPxahP1rN8b6LZkSqM/i0iGT+0HTWdp49Fj3Q6eOuWNtzRvT4A01cf4sq3lrL+YLIJKUVEREpfVq6LnPyCLc2KCuJpKoiLiFQq3WKq8/nortQMdrDn+CkGvrecHXFpAPjYLIwf2p6mNYM4np7D7VPWntZFLiIiIhWbKqwVXNGCGwrGuYqIiEjZMgyD129uQ79m4eTmuxnx8VpW7T9pdqwKo3+LSJb942JmjuzCm7e0YebILiz7x8Vc26Y2T11zEdPv6kyk08HBk5ncNGEFr8zfRe7v3s+IiIh4o6Jx6TaLQaCvDYDmtYJpXcdJjSBfM6OJiEgpalozmNljutE4IpCEtBxunrCSFYU3SQc77Ey5oyM1gx3sPX6KUZ+sIyffdZYzioiISEWggngFV7SHuErhIiIi5cfHZuHdW9vRu3ENsvPc3PnRWtYdSDI7VoVhtRh0jQljQJvadI0Jw/q7m/a6N6zODw/24vq2tXF74J1Fe7n+veXsTkg3MbGIiMiF+f24dMMoeN17Z0g7vr63BzE1As2MJiIipaxWiB+f39ONztGhpOfkc9uUNXy96SgAkU4/ptzRkSBfG6tjk3jk819xuz0mJxYREZGzUUG8gisuiKsiLiIiUq58bVbeH9aeHg2rk5nr4vYpa9l0OMXsWF7B6Wfn9UFteO/WdoT429l2LI2r317GB0v362KRiIh4pZTCDvEQf5/ix+JSs1ixL5G41CyzYomISBlx+tmZOqITV7WKJM/l4YFZm5iweB8ej4dmkcFMGNYem8Vg7uZjvDx/p9lxRURE5CxUEK/gikamW1QRFxERKXcOu5VJwzvQpUEop3LyGTZ5NVuPppody2tc2TKSHx/sRd8mNcjNd/P8dzsY8sEqjiRnmh1NRETknCQXdohXK9w//NO1h+j+0kKGTFpN95cW8unaQ2bGExGRMuBrs/L2LW25q0c0AC/N28kzc7fjcnvo3rA6L9/QCoD3F+9n6soDJiYVERGRs1FBvILLzlNBXERExEx+PlYm39aRDvWqkZ6dz9DJq9l+LM3sWF4jPNjBh7d35IXrW+LvY2XV/iSueGMpX6w/gsejbnEREfEOKVkFHeJOPx/iUrN4YvYWioaeuD3wz9lb1SkuIlIJWSwGT17dnCevaoZhwEcrDjB2+gay81zc0L4Oj1zWGICnvtnG/G3xJqcVERGRv6KCeAWXk18wMt2ieriIiIhpAnxtTLmjI22iQkjJzGPo5NXaE/scGIbBkM51+f7+nrSrG0J6Tj6PfL6Ze6at5+SpHLPjiYiInFXK7zrEYxMz+OMOIC6PhwOJmoAiIlJZ3dWzAW8PbouP1cIP2+IZ+sFqUjJzGdu3IYM7RRHiZ6d6oK/ZMUVEROQvqCBewXWNCQUgLNDnLEeKiIhIWQpy2Pn4zk60qB1MUkYuQyatZt+JU2bH8ir1qwfw2d1defTyJtitBvO3JXD5G0tZsCPB7GgiIiJ/KzmjoEO8WoAP0dUD/nTTutUwqF/d34RkIiJSXq5uVYupIzoR7LCx7mAyN4xfwZHkLJ4b0IK59/Wgfb1qZkcUERGRv6CCeAVnt1qBgj1MRURExFxOPzvTRnSmWWQwiady+P7XOLMjeR2b1cLYvg35amx3GkcEkngqhxEfr+PxL3/lVE6+2fFERETOKCWroEPc6Wcn0unHiwNbYi3c2sxqGLwwsAWRTj8zI4qISDno0iCML0Z3I9LpYN+JDAaOX8HO+HTqVPvtpqjtx9I0CUtERKSCUUG8gst3Fcxhs1v1pxIREakIQvx9mDaiE09d05x7L25odhyvdVEtJ9/c24ORPaMxDJi19jBXvLmEtQeSzI4mIiLyJymZhR3i/gXT2wZ1rMuyx/syc2QXlj3el0Ed65oZT0REylHjiCDmjOlO05pBnEjPYdD7K1m65wQAK/YmctOEFdw1dR1ZuS6Tk4qIiEgRVVkruE2HkwH0BkpERKQCCQv05Y7u0RiFnWHZeS4S0rJNTuV9HHYr/7qqOTPu6kLtED8OJ2Vx8/sreWneTnLy9d5HREQqjuTf7SEOMH9bPDNWH8IwUGe4iEgVVNPp4LN7utK1QRgZuS7umLKWL9cfITzYgc1qwc9uJd/tNjumiIiIFFJBvILbfiwNgMxcjRAVERGpiLJyXYycuo6b31+povh56hoTxg8P9uTG9nXweGDC4n0MeGc5O+PTzI4mIiIC/NYh7iwsiC/ccZy3F+5lnSabiIhUWcEOOx/d2ZFrW9ci3+3h4c83M39bPJ/f3YWP7uhEkMNudkQREREppIJ4BVevegAATj8fk5OIiIjImaRl53HgZAbH03I4lJRpdhyvFeSw88pNrZkwtD2hAT7sjE/n2reX8/7ifbjcHrPjiYhIFZdS3CFesDZPySoqkGutLiJSlfnarLwxqA1392oAwP/N38XUVQexWoziY7YcSTUrnoiIiBRSQbyCa1ozCIDwYF+Tk4iIiMiZRAQ7mHFXF6bd1YmO9UPNjuP1+reoyfwHe9GvWTi5LjcvztvJ4ImrOKybDURExCQej4eUrNML4n8coS4iIlWXxWLwxJXNePqa5hgGTFt1iHumrSczJ59n5m7jmneWMXfzMbNjioiIVGkqiFdwea6Cjii7VX8qERGRiioq1J/29X4rhu89nk5yRq6JibxbjSBfJg3vwMs3tCTAx8qaA0n0f2MJn609jMejbnERESlf6Tn5xdNKQgoL4EUj1EM0zU1ERArd3j2a94a0w8dm4aftCQz5YBXZeQX7iD/82WZW7z9pckIREZGqy1aSgwYOHHjOJ54wYQLh4eHn/Dw5XWrhIvt3U3ZERESkAtt+LI2hk1dTK8TB9Lu64PRT59j5MAyDQR3r0rVBdR7+fBNrDyTz2Je/8uP2BF66oSXVAzU9R0QqL63BK5aUjIJucIfdgsNuLXissEM8RB3iIiLyO1e0jKR6kC93fbyOTYdTScnMo1ejGizZc4KRU9fx5ehuNIoIMjumiIhIlVOituOvvvoKHx8fnE5niT6+++47Tp06VdbZq4RvCsfpHEvJNjmJiIiIlITdamAAW4+mMfzDNaRn55kdyavVDfNn1qiuPH5FU3ysFn7ekcDlry/hx23xZkcTESkzWoNXLMmFN6oXjUv3eDwqiIuIyF/qWD+UL0d3pXaIHwdOZrLtWArNagaRlp3P7VPWcjxN13lFRETKW4k6xAHeeuutEt9t/sUXX5x3IDldvrtoZLpaxEVERLxBo4ggpo/szOCJq9h8OIXbp6xl6p2dCPAt8dsu+QOrxeCe3jH0blyDcZ9uYmd8OqM+Wc9N7evwn2uaE+RQMUJEKh+twSuOov3Di6a+ZOW5yHUVjMAtKpKLiIj8XsPwIGaP6cbtU9ayIy6NzFwXEcG+HE3J4o6P1vLp3V0J1BpRRESk3JSoQ3zRokWEhoae/cBC8+bNo3bt2ucdSn6TV7jItmkPcREREa/RtGYwn4zoTLDDxvqDydzx0Voyc/PNjuX1mkUG8/W93bm7dwMMAz5ff4T+byxllfbiE5FKRmvwiiXlDx3iyYXd4T5WC/4+VtNyiYhIxRYR7OCzu7vQo2F1svLcnEjPIdDXxrZjaYyZvoGvNx3llfk7+XbzMVyFTVEiIiJSNkpUZe3duzc2W8nvWOvRowe+vtrXsTTku9QhLiIi4o1a1HbyyYjOBPnaWBObxMip68jOc5kdy+v52qw8cUUzPh3VlahQP46mZDF40ipe+H6H/v+KSKWhNXjFkpxRWBAPKOgQLyqQO/3tGIbW6iIi8teCHHY+vL0jA9vWxu2BUzn5WA2DJbtP8MCsTbyzaB/3ztxIu+d+5IetcWbHFRERqbQuqO34u+++49FHH+Whhx7iyy+/LK1M8jv57oIOcbs6xEVERLxO66gQPrqzEwE+VpbvPcndn6wnJ19F29LQKTqUeQ/0YlCHKDwemLhkPwPeWc62Y6lmRxMRKTNag5vjt5HpBR3iRfuHV9P+4SIiUgI+Nguv3tyaMX1iAHB5/twNnpqVzz3TNqgoLiIiUkbOu8r673//m8ceewzDMPB4PIwbN4777ruvNLMJv3WI+6ggLiIi4pXa16vGh7d3xM9uZfHuE4ydvoHcfLfZsSqFQF8bL9/YiknDO1A90IddCelc9+5y3l20VyMHRaTS0RrcPH8sgCcXdoiH+Gn/cBERKRnDMHj4siYEO/5+Aswzc7drLSMiIlIGSlxlXbdu3Wlff/rpp6xbt47//e9/vP7668ydO5dp06aVesCqLt+tkekiIiLernODMCbf1gFfm4WfdxznvpkbyHOpKF5aLm0ewfwHe3FZ8wjyXB7+b/4ubn5/JQdPZpgdTUTkvGkNXnEk/2EP8aICeYg6xEVE5BysiU0iLTv/b4+JS81mTWxSOSUSERGpOkpcEL/nnnt48MEHyczMBKBBgwa8+uqr7Nq1iy1btjB+/HgaN25cZkGrqqI7Au02q8lJRERE5EJ0a1idScM74GO1MH9bAuM+3US+iuKlJizQl/eHteeVm1oT6Gtj/cFkrnhzKTNWH8JzhpGEIiIVndbgFUdRAdxZWAAP9rPTuo6ThuGBZsYSEREvczw9u1SPExERkZIrcUF89erVREZG0q5dO+bOncuHH37Ixo0b6datGz179uTIkSPMmDGjLLNWSUUFcV91iIuIiHi9Xo1rMGFYO+xWg5TMvOJJMFI6DMPgxvZ1mPdATzpHh5KZ6+Kfc7Yw4uN1uqgkIl5Ha/CKI+UPHeLXtq7F1/f24LH+Tc2MJSIiXiY8yFGi4yYvi+V4mtYvIiIipcnwnGPLzP79+xk9ejQBAQG888471KpVq6yylYq0tDScTiepqakEBwebHeectXx6PunZ+QzqEMXLN7YyO46IiIiUgjWxSbSq48Rh1wSYsuJ2e/hweSz/m7+L3Hw31fztvHB9S65oGWl2NBGpJMprrelNa3BvX3//lV7/W8ShpEy+uKcrHeqHmh1HRES8lMvtocfLC4lPzeavLshbDHB74OYOdfjfja3LNZ+IiEhFVRprzRJ3iBdp0KAB8+fP5/rrr6dXr168++675/WDpWSKOsR9bOoQFxERqSw6RYcWF8M9Hg8/b0/QWO9SZrEY3NWzAXPv7UHzyGCSM/MYPX0DD326ibTsPLPjiYiUmNbg5ivqENee4SIiciGsFoOnrmkOwF9d6XV7INTfh3v7Niy/YCIiIlVAiQviKSkpPPbYY1xzzTU8+eSTXH/99axevZq1a9fSpUsXtmzZUpY5qyx34cVxX+0hLiIiUin93/xd3DV1Hc/M3a6ieBloUjOIr8Z2Z2zfGCwGzN54lP6vL2HF3kSzo4mI/C2twSuGfJebtOx8AEIKR6YPm7ya7i8tZLleS0RE5Bz1bxHJ+KHtqOk8fXx6pNPB3b2i8fexkpSZy7AP17A7IR2Px8O7i/YSn6oR6iIiIhfCVtIDb7vtNlJSUhg8eDALFixg9OjRfPLJJ3z00UcsWLCAQYMGcc011/Dyyy+XZd4qx+0u+K+P7Zyb+UVERMQLNKgRiMWAuqH+GIYmwpQFH5uFRy9vysVNwxn36WYOJWUy5IPV3Nk9msf6N9HoehGpkLQGrxhSs36bKhLiV9Ahfiwli6MpWVj0ui0iIuehf4tILm1ekzWxSRxPzyY8yEGn6FCsFoPr2tZh5NR1HDyZyfXvLmdguzp8suogk5fF8trNrenTJNzs+CIiIl6pxHuIBwUFsXHjRho2bIjL5aJhw4bExsYWfz87O5tnn32WF154oczCng9v38PslokrWbU/if9c3Zw7e0SbHUdERETKwN7jp2gYHmh2jCohIyef/36/gxmrDwHQKDyQ1we1oUVtp8nJRMTblPVa0xvX4N6+/j6TfSdOccmriwnytbHlmcsBOHQyk8SMHBqFBxLk0Bh1EREpXUkZuYyZvp5V+5MACA/y5Xh6DgD39I7h4csaY7eqeUpERKqOct1DvFGjRkycOJHdu3czYcIE6tWrd9r3HQ5HhVqIVxb+PgVN/IG+JW7mFxERES/z+2J4amYeM9ccMjFN5Rbga+OF61sy5faO1AjyZc/xU1z37nLeXrCHfJfb7HgiIsW0Bq8YivcPD/it8F03zJ92daupGC4iImUiNMCHT0Z0ZnjXgtf+4+k51AvzB2DC4n3cMnEVx1KyzIwoIiLidUpcEP/www9ZuHAhbdu2ZcaMGYwfP74sc0mhvMILszarRrGJiIhUdjn5LoZ8sIonZm/hnYV7zI5TqfVtGs78B3txRYua5Ls9vPrTbm56fyWxiRlmRxMRAbQGryiSMwpGplcr3D9cRESkPNitFp4d0IIXrm+JzWJw8GQmdUL8CPC1sv5gMle+tZQFOxLMjikiIuI1SlwQb9OmDevWrSMjI4Ply5fTrFmzsswlgMvt4dDJTABKNNdeREREvJqvzco1rWsB8MqPu3l/8T6TE1VuoQE+vHdrO14f1Jogh42Nh1K48s2lfLLqICXcVUhEpMxoDV4xpBTuIe4s3D/85KkcXpm/i6krD5iYSkREqoohnesyY2QXwgJ8OJKShd1iIaZGACmZeYz4eB3Pf7ud3HxNuhIRETkbbTZSgeXmuzmYVFAQ1x9KRESkarindwwPX9oYgBfn7eTDZbFneYZcCMMwuL5tHeY/2ItuMWFk5bn491dbuX3KWhLSss2OJyIiJisamV7UIX40JYt3Fu1l/C+6aU1ERMpHp+hQvrmvB80jg0nJyuPgyQy6xYQB8MGyWG5+fyWHC68hi4iIyJmVqM4aGhpKYmJiiU9at25dDh48eN6hpIBhQDX/grvQ/XysJqcRERGR8nLfJY24/+KGADz77XY+URdamasV4se0EZ35z9XN8bVZWLz7BJe/sYRvfz1mdjQRqYK0Bq84kosL4vbCrws6xkM0Ql1ERMpR7RA/vhjdlataRZLvhhX7TtK7cQ2CHTY2HU7hqreWMn9bvNkxRUREKixbSQ5KSUlh3rx5OJ3OEp305MmTuFyuCwom4LBbqRXiR3JmHg67CuIiIiJVybhLG5PjcvP+4v38++tt2K0WbulU1+xYlZrFYnBnj2h6NqrOQ59tZsvRVO6dsZGftifw7LUtcBYWQ0REyprW4BVHSmEB3FlYAC/qGA/x02uCiIiUL38fG+8MbkvzyGBe+XEXi3efoE2Uk3w3bD2ayj9nb6F7w+oE+pbokr+IiEiVUuJXx9tuu60sc8hfyHMV7AFjt2pouoiISFViGAaP929KXr6HD5fH8sScLditFm5oX8fsaJVeo4ggZo/pxtsL9vDuL/v4etMxVu9P4pWbWtOjUXWz44lIFaE1eMVQVBAv6hAv/jpABXERESl/hmEwtm9DmkQE8cCsjWw6nErtEAcD29VmQJvaKoaLiIj8hRJVWd1u9zl/NGjQoKyzV3put4fcfBXERUREqirDMPj31c0Y1qUeHg88+sVmvt501OxYVYLdauGhy5rwxT1dia4eQHxaNkMnr+bpb7aRlasuTBEpW1qDVxzJf9hDvOhrp59GpouIiHn6NY9gztju1Avz52hKNj9sjScrN7/4+z9ui+f7LXEmJhQREalYVGWtwPYnZnDgZCYANqthchoRERExg2EYPHPtRQzuFIXbAw99tlkXNspR27rV+O7+HgzrUg+Aj1Yc4Kq3l7L5cIq5wUREpFz8NjL9Dx3i2kZDRERM1jgiiK/HdqdHw+pk5rq4Z9oGXv9pN4eTMnn4882Mmb6BH7WvuIiICKCCeIVWNC4dwG7Rn0pERKSqslgM/ntdS25sXweX28P9MzeycGeC2bGqDH8fG89d14KP7+xEeJAv+09kMHD8Cl7/afdp79dERKTySflDh/gfvxYRETFTiL8PH93RkTu7RwPw5oI9PPftdgZ1iKJDvWr0bRpuckIREZGKQVXWCuy0grhNHeIiIiJVmcVi8PINrRjQphY1nQ4ahQeZHanK6d24Bj+O68XVrSJxuT28uWAPN45fwb4Tp8yOJiIiZST5j3uIZ53eMS4iImI2m9XCf65pzv9ubIWP1cKP2xNYtjeR/7uxVfE2nLn5bhbtOm5yUhEREfOoIF6B/b4gblOHuIiISJVntRi8elNrZo/pRlSov9lxqqQQfx/eGdKON29pQ7DDxuYjqVz11lI+XnEAt9tjdjwRESlF2XkusvJcAIT4Fe0hXlQgV4e4iIhULDd3iGLmqC5UD/RlZ3w6A8evYMW+RAD+b/5O7piyln/O2UJ24WubiIhIVaIqawWWm//bRVW79hAXERERCu7+Dw9yFH/947b44oscUn4GtKnN/HG96NmoOtl5bp76ZhvDP1xDXGqW2dFERKSUpBZ2g1sMCHLYgN9GpoeoQ1xERCqg9vWqMfe+7rSs7SQ5M49hk9fw8YpYHHYrhgEzVh/iuneXa8qViIhUOSqIV2CndYhb9acSERGR063af5Ix0zcw4qN17IpPNztOlRPp9OPjOzrxzLUX4bBbWLY3kctfX8LXm46aHU1EREpBSmE3eIi/DxaLcdpj1VQQFxGRCirS6cfn93RlQJtauNwenvpmO4mncvjwto5UD/RhZ3w617y9jK82at0iIiJVR6lVWfv160eDBg1K63TCH/YQV4e4iIiI/EGbqBC6NazO5RdFEFMjwOw4VZLFYnBbt/p8d39PWtdxkpadzwOzNnHvjA3FXYQiImVBa/Cyl1zUDe5XUPx2uT2kZRfuIe6nkekiIlJxOexW3hjUhsevaIphwMw1h3nvl71MG9GZrg3CyMx18eCnm/jHF7+SlasR6iIiUvnZSutE119/PYmJGtdZmnLyflcQ1x7iIiIi8gcOu5WJw9pjt1qwWnTznJliagTyxehuvLtoL28v3Mu3v8axJjaJ/93Yij5Nws2OJyKVkNbgZe+P49Gz8ly0rhNCSmauRqaLiEiFZxgG9/SOoUlEEPfP3MjaA8nc+dFaxg9tz8Kdx3lr4R4+XXeYTYdTePfWtjQMDzI7soiISJkptSrr2LFjeeqpp0rrdELBYruITR3iIiIicgYOu7W4GO5ye3j6m21sO5ZqcqqqyW618GC/xswe3Y0GNQI4np7D7VPW8uRXW8jMzTc7nohUMhe6Bn/ppZcwDIMHH3yw+LHs7GzGjh1LWFgYgYGB3HDDDSQkJJRCWu/023j0gm7wQF8bX43tzi+P9sWubc1ERMRL9G0azpyx3WlQPYBjqdkMmriShuGBTB/RmRpBvuxKSOeat5fzxfojZkcVEREpM+e8gktNTSUpKelPjyclJZGWllYqoaRA9u8K4lpsi4iIyNmM/2UvH604wNAPVmtPcRO1jgrhu/t6cnu3+gBMW3WIq95axoZDyeYGExGvVBZr8LVr1/L+++/TqlWr0x4fN24cc+fO5fPPP2fx4sUcO3aMgQMHntfPqAySCwviTnWDi4iIl2sYHsicsd3p3bgG2Xlu7pu5kRX7TvLtvT3o2ag6WXkuHvl8Mw99tkk384qISKV0zlXWW265hVmzZv3p8c8++4xbbrmlVEJJgex8FcRFRESk5IZ3q0+rOk6SM/O49YNV7D2uorhZ/HysPH3tRUwb0ZlIp4PYxAxuHL+CV3/cRZ7LffYTiIgUKu01+KlTp7j11luZNGkS1apVK348NTWVyZMn89prr3HxxRfTvn17pkyZwooVK1i1atUF/Q7eqmhkelGHuIiIiDdz+tn58PaOjOrVAIB3Fu3lX19t4Z3BbXnkssZYDJi94SgPf7bZ5KQiIiKl75yrrKtXr6Zv375/erxPnz6sXr26VEJJgd/vIa59QUVERORsgh12PrmzM80jg0k8lcvgSavZf+KU2bGqtB6NqvPDA70Y0KYWbg+8vXAv17+3nD0JullBREqmtNfgY8eO5aqrrqJfv36nPb5+/Xry8vJOe7xp06bUrVuXlStXnnvwSuC3kekFHeJzNx+j+0sLefKrLWbGEhEROW9Wi8E/r2zGaze3xsdm4ecdx7lxwkqublWLmSO7EF09gIcubWx2TBERkVJ3zgXxnJwc8vP/PDYlLy+PrKysUgklBbLzCwriqoWLiIhISTn97Uy7qzNNawZxIj2HIZNWc+hkptmxqjSnv503b2nLO0PaEuJvZ+vRNK56exmTl8XidnvMjiciFVxprsFnzZrFhg0bePHFF//0vfj4eHx8fAgJCTnt8YiICOLj4/8yW1pa2mkflUlyYYe4s7BD/Hh6DkdTskjN0ihZERHxbgPb1eGzu7sSEezLnuOnGPDucvJcHn5+qDeNIoKKj1uwI4FTOXrdExER73fOBfFOnToxceLEPz0+YcIE2rdvXyqhpEC3BqEA+GhcuoiIiJyD0AAfpt3VmYbhgcSnZTN40iqOJKsobrarW9Vi/oO96N24Brn5bp77djtDJ6/maIpuKhWRv1Zaa/DDhw/zwAMPMH36dBwOR6lke/HFF3E6ncUfUVFRpXLeiuKPHeLXt63NnDHduO/ihmbGEhERKRVtokKYe28P2kSFkJqVx/APV/PxigN4PAU37a49kMSoT9Zz7dvLSM7INTmtiIjIhbGd6xOef/55+vXrx+bNm7nkkksAWLBgAWvXruXHH38s9YBVWfWggosUvnaryUlERETE21QP9GXGXZ0ZNHEVsYkZDJm0mk/v7kKk08/saFVaRLCDj+7oyPTVh/jvdztYse8k/V9fwjMDLuL6trUxDI0GEpHTldYafP369Rw/fpx27doVP+ZyuViyZAnvvPMO8+fPJzc3l5SUlNO6xBMSEqhZs+YZz/nEE0/w0EMPFX+dlpZWqYriKVmn7yEeGuBDaID2ExcRkcojPNjBrFFd+NecrXy54QjPfrudHXFpPH99CyyGQXiQL63qOAkpvDlMRETEW51z63H37t1ZuXIlUVFRfPbZZ8ydO5eGDRvy66+/0rNnz7LIWGXluQpGptvVIS4iIiLnITzYwYyRnakb6s+hpEyGTFrN8bRss2NVeYZhMLRLPb5/oCdt64aQnpPPQ59tZsz0DSSp80JE/qC01uCXXHIJW7ZsYdOmTcUfHTp04NZbby3+3G63s2DBguLn7Nq1i0OHDtG1a9czntPX15fg4ODTPiqT5MIOcaefigAiIlJ5OexWXrmpFU9e1QyLAZ+vP8LgiauICvXj+/t78vz1LYtv3E3NzCMtO8/kxCIiIufO8BTNQKmk0tLScDqdpKamet3i/Mv1R3j4881UD/Rh3ZOXmh1HREREvNSR5EwGvb+KoylZxNQIYNaortQI8jU7lgD5LjcTFu/jjZ/3kO/2UD3Ql//d2JKLm0aYHU1EzsKb15pF+vTpQ5s2bXjjjTcAGD16NN9//z0fffQRwcHB3HfffQCsWLGiROerDP9Ping8Hho/OY88l4flj19M7RA/Plt3mLSsPC5tHkG9sACzI4qIiJS6JbtPcO+MDaRl51Mz2MHE4e1pVScEKHhtHDl1PXuOp/PO4Ha0rOM0N6yIiFQZpbHWvKDW4+zsbNLS0k77kNKzaNdxAHLy3SYnEREREW9Wp5o/M0d2IdLpYN+JDO76eC1ud6W+J9Jr2KwW7r24EV+N7U6j8EAST+Vw50freGL2FjJy8s2OJyIVTFmvwV9//XWuvvpqbrjhBnr16kXNmjWZPXt2qf4Mb5GZ6yLPVfBaWbSH+NSVB3j+ux3sP5FhZjQREZEy06txDb6+twcNwwOJT8vmpgkr+XrTUQCOp+ewIy6NgyczuWH8itP2GxcREanozrkgnpmZyb333kt4eDgBAQFUq1bttA8pPTWDC/YQd9g0Ml1EREQuTN0wf2aM7EL9MH/+0b8pFov2qq5IWtR2Mve+HozoEQ3AzDWHuPKtpaw/mGRyMhExW1muwX/55Zfi7nAAh8PBu+++S1JSEhkZGcyePfsv9w+v7JIzC7aw8LFa8LNbCx7LKByhrn1URUSkEouuHsCcMd24pGk4OfluHpi1iRfn7aB6oC/f3d+DS5tHkOty89Q32xg9bQOpWRqhLiIiFd85V1offfRRFi5cyPjx4/H19eWDDz7gmWeeoVatWkydOrUsMlZZfZuGAxAaoJGmIiIicuGiqwfw00O96dawutlR5Awcdiv/vro5M0Z2ppbTwcGTmdw0YSX/+2EnuZoYJFJlaQ1ujpTC/cND/O2/7ZtaeMG/mr+PablERETKQ5DDzsThHRjTJwaA9xfvZ8THazEMg4nD2vOfq5tjtxr8sC2eq99eyubDKeYGFhEROYtzLojPnTuX9957jxtuuAGbzUbPnj158skneeGFF5g+fXpZZKyy8lwFFz5tVnVwiYiISOmwW397+7cnIZ27P1nHKY3mrlC6xVTnh3G9GNiuNm4PvPfLPq57dzm74tPNjiYiJtAa3BxFBfGi4nduvrv49TLETx3iIiJS+VktBo/1b8pbg9visFv4ZdcJrn9vObGJGdzZI5ov7ulGVKgfh5OyuHHCCiYvi9UIdRERqbDOuSCelJREgwYNAAgODiYpqWCMY48ePViyZEnppqvi8gv3K7NZNTJdRERESpfL7eGeaeuZvy2B/3633ew48gfBDjuv3dyG8be2o5q/ne1xaVzz9jImLdmPS/u/i1QpWoObo2hketF49KLucMOAYBXERUSkCrm2dS2+uKcbkU4H+09kMODd5fyy6zito0L49r6eXNGiJnkuD899u52RU9eTUvgaKiIiUpGcc6W1QYMGxMbGAtC0aVM+++wzoOCu9ZCQkFINV9VNWLwPgFS9iRAREZFSZrUYvDGoLd1iwnjs8qZmx5G/cEXLSOaP68XFTcPJdbn57/c7GDxpFYeTMs2OJiLlRGtwcxRdzK9WWBAv+jrYYcdq0RQ3ERGpWlrUdvLNvT3oUK8a6dn53PnRWiYu2Ueww8Z7t7bj2QEX4WO18POOBK56axnrDyabHVlEROQ051wQv+OOO9i8eTMAjz/+OO+++y4Oh4Nx48bx6KOPlnrAqiw73wWAxdBiW0REREpfyzpOpt/VmWoBv+2F6lb3cYUTHuRg8m0deHFgS/x9rKyJTeKKN5fy+brDGkkoUgVoDW6OP45MTyneP1zd4SIiUjXVCPJl+sjODOoQhdsDL3y/k4c+20xOvpvhXesze0w36oX5czQli0Hvr2TeljizI4uIiBSznesTxo0bV/x5v3792LlzJ+vXr6dhw4a0atWqVMNVdXn52kNcREREypbxuxvvPll1kEU7jzN+aDt8bVYTU8kfGYbB4E516RYTxsOfbWbdwWQe/eJXftqewAsDW1I90NfsiCJSRrQGN0dyYUG8aGR6ckZBh3iIv89fPkdERKSy87VZeemGljSvFcyz325nzsaj7D9xiveHdaBFbSff3teDJ2ZvYe2BJDpFh5odV0REpNg5dYjn5eVxySWXsGfPnuLH6tWrx8CBA7UQLwN5hR1aPtpDXERERMpYQlo2L3y3g4U7jzN2+kZyC2/Mk4qlXlgAn97dlcf6N8FuNfhxewL931jCT9sTzI4mImVAa3BzuNwe9iSkA5CWlYfL7SnuGA9Rh7iIiFRxhmFwW7f6fHJnJ0L87Ww+ksq17yxjw6Fkghx23h7clm/u7UHY727ajU3MMDGxiIjIORbE7XY7v/76a1llkT/IdxUUxNUhLiIiImUtItjBpOEd8LEV7Pv2wKyN5LtUFK+IrBaDMX0a8tXY7jSJCCLxVC4jp67jsS82cyon3+x4IlKKtAYvfz9sjaPHywtZujcRgJlrDtPj5YWsij0J/DZCXUREpKrr1rA634ztQeOIQI6n53DL+6v4Yv0RDMMgIthRfNycjUfo99piJizeZ2JaERGp6s659Xjo0KFMnjy5LLLIHxRdhLapQ1xERETKQY9G1Xl/WHt8rBbmbY1n3GebcWlP8QrrolpOvr63O6N6NcAw4LN1R+j/xhLWxCaZHU1ESpHW4OXnh61xjJ62gbjU7NMej0/NZvaGowA4/dQhLiIiUqRumD+zx3TnsuYR5LrcPPL5Zp77dvtpN1evPZCMy+0hO89lYlIREanqznkP8fz8fD788EN+/vln2rdvT0BAwGnff+2110otXFWXXzwyXR3iIiIiUj76Ngnn3VvbMXraeuZuPobdavDKja2xWPR+pCJy2K3888pmXNI0nIc+28yR5CwGTVzJqJ4NeOiyxtoLXqQS0Bq8fLjcHp6Zu50z3Qb2+8dCVBAXERE5TaCvjQlD2/PGgj28tWAPk5fFsjshnXcGt8Ppb+e/17Xg4ibh9G0aXvycPJcbu5rARESkHJ1zQXzr1q20a9cOgN27d5/2PcPQhdLS9FtBXBcyRUREpPxc2jyCtwe35d6ZG5m94Sg+VgsvXN9SRfEKrHODMH54sCfPzt3O5+uP8P6S/SzefYLXB7WhWWSw2fFE5AJoDV4+1sQm/akz/Ewyc9XdJiIi8kcWi8FDlzamac0gHv5sM0v3JDLg3WV8cFsHGoYH0a95RPGx2XkubpqwksuaRzCmb0OsWmeKiEg5KFFB/Ndff6VFixZYLBYWLVpU1pmkUNGIUrtNd8uJiIhI+bqiZSSvuz08OGsjs9YexmY1eG5ACxVfKrAgh53/u6k1lzaP4InZW9gZn8617yzjoUubMKpXA11oEvEiWoOXv+PpZy+GA1xUWzcZiYiI/JUrW0ZSPyyAkVPXceBkJte9u4I3b2nDJc1+K4h/vyWOLUdT2XI0ldWxSbw+qA01gnxNTC0iIlVBiSqtbdu2JTExEYAGDRpw8uTJMg0lBVwamS4iIiImurZ1LV65qTWGAdNWHeLZb7fj8WhP8YrusotqMn9cL/o1iyDP5eHlH3Zyy8SVHDqZaXY0ESkhrcHLX3iQo1SPExERqaqa1wrmm3u70zk6lFM5+dw1dR3vLtpbvJYc2K4Or9zUGj+7lWV7E7nyraWs2JtocmoREansSlQQDwkJITY2FoADBw7gdrvLNJQUKC6Ia+9HERERMcnAdnV4eWArAKYsP8BL83aqKO4Fqgf6Mml4e/53YysCfKysPZDMFW8uYdaaQ/r7iXgBrcHLX6foUCKdDv7qdnQDiHQ66BQdWp6xREREvFJYoC/T7urM0C518Xjg/+bv4v5Zm8gq3HrkxvZ1+Obe7jSOCOREeg63Tl7N6z/tLr4eLiIiUtpKVBC/4YYb6N27N9HR0RiGQYcOHWjQoMEZP6T0/FYQV4e4iIiImOfmjlE8f10LAN5fsp81sUkmJ5KSMAyDmztE8cODvehUP5SMXBePz97CyKnrOJGeY3Y8EfkbWoOXP6vF4KlrmgP8qShuAB7AZjE4maF/P0VERErCbrXw/HUtef66FtgsBnM3H+Om91dwLCULgEYRQXw9tgeDOkTh8cCbC/Yw9IPVHE8r2TYmIiIi56JEe4hPnDiRgQMHsnfvXu6//35GjhxJUFBQWWer8tyF3Tu+VnWIi4iIiLmGdqlHnsuNy+2hc4Mw4lKziE3MILp6AJFOP7Pjyd+ICvVn5qguTF62n1fm7+bnHcfZ8MYSXri+Jf1b1DQ7noicgdbg5ujfIpLxQ9vxn6+3cfx3Nw5FBPsSn5bD4eQsHHatz0VERM7F0C71aBQeyOjpG9h6NI1r31nGhKHt6VA/FD8fKy/f2IquMWH8c84WVu4/yZVvLeX1QW3o2aiG2dFFRKQSMTznODPxjjvu4K233vKaxXhaWhpOp5PU1FSCg4PNjnNOBk9axcp9JxnbpyGP9m9idhwRERERAD5de4gnZm/B7QGLAS8ObMmgjnXNjiUlsDM+jXGfbmZHXBoAN7Srw1PXNifYYTc5mYj3Ka+1pjetwb15/f17sScy6PvqL/hYDT6+szPt6oawIz6d5Mxc+jSugWFoipuIiMi5OpyUyahP1rMjLg271eC5AS24pdNv68h9J04xdvoGdsanYxgwtk9DHuzXCJu1RENuRUSkEiuNteY5v5pMmTLFKxbilUFUtYJuK39f3YEuIiIiFUNcalZxMRzA7YEnZm8hLjXL3GBSIk1rBvPV2G7c0zsGw4AvNxzhijeWsnLfSbOjichf0Bq8/OUX7tke4Guja0wYvnYrbaJC6NskXMVwERGR8xQV6s+Xo7tyZcua5Lk8PD57C099vZU8V8HrbkyNQL4a251bOxfsO/7Oor0MmbSak6e0XYmIiFw43V5VgeW7Cq40261acIuIiEjFEJuYUVwML+L2wIHETHMCyTnztVl5/Iqm/8/efYdHVaZvHL/PlEx6QgghoQRCk957laZYsIAVey+AILq2dVfd366sZcWG2LsUURSxoAhI702K9BJKChBIQkKSmcz8/kgyJIpiSXLOJN/PdeXayclk8siwwHue935efXxHDyXGhOrg8ZO6+o3l+veXW5TnLjS7PAAwXb6n6Ma8y8HmdAAAylNokEMTR3TUuMHNJEnvLdun699aqWM5BZKkYKdd/7m0jV66uoPCXQ7luj0Kc/2uU18BAPhNNMQtyl3o1f5jRTeW7exABwAAFpEUGybbz/5pYjcMNYwNNacg/GldGsbo6zF9dHXX+pKkNxfv0UUvL9amg5kmVwYA5sr3FG0OcjmLbplsS83WGwt3a/7WdDPLAgCgSjAMQ/cMbKrXruuksCC7lu0+qosmLtbW1Cz/c4a2q6MvR/fWKyM6KdhZtEGt0Ovzp8kBAPijaIhbVHaeR6v2HpMkORy8TQAAwBoSokI0flgb/4Y9u2HoyWGtlRAVoq83pujNRbvl8/nO8CqwinCXQ+OHtdVbN3RWbLhL29NO6NJXlmji/J3ycLMJQDWV7y5JiBetxdfsO6b/fP2TPlqxz8yyAACoUs5tFa8Zd/dS/ZgQ7c84qWGvLNW3m1P9X28YG6bEmqc2Xr/w/XZd9fpyHTzOcV0AgD+OTquFRQYXjYNx2XmbAACAdVzZJVGLH+qvKbd11+KH+uvKLok6dPyk7p++Qf/+6ifdM3W9cgs8ZpeJP2Bgi9r6dmwfDWlVdJ7fM99u0xWvLdPeIzlmlwYAle7nI9OPnywa4xodGmRaTQAAVEVnxUfoi5G91bNxTeUWFOqOD9bohe93yPuzc7qO5xbovWX7tGbfMa3Zd8ykagEAgYxOq0XFhAWpfWINSZKDhjgAALCYhKgQ9WhcUwlRIcWfB+vBIc3lsBmateGQLp24lGZqgKkZ7tKkazvqf5e3U4TLobXJx3XeC4v00Yp9pP4BVCv+kenFCfHjuW5JUnSI07SaAACoqmqEBem9m7vqxp4NJUkTvt+ukZPXltlkHR0apFmjeuuh85rronZ1TKoUABDI6LRaWMmYSqedM8QBgI4I5gABAABJREFUAIC1GYahG3o21JTbu6tWhEvb0rI19OXFmrc1zezS8AcYhqHhnerpm7F91L1RjE66C/X3zzbppndXKT0rz+zyAKBS+BPizpKGeFFCvEYYCXEAACqC027T4xe10lPD28hpN/TNplQNe2Wp9mfk+p+TWDNUd/Zr7P/8cHa+bnt/dZnnAADwa2iIW5insCiJ4yQhDgAAAkSXhjH6cnRvdWpQQ9l5Ht387mo9//32X4y8g7XVqxGqybd216MXtFCQw6Yfth3WOc8v1Fc/pphdGgBUuFNniBeNTD9WnBCPIiEOAECFurJLoqbc1l2x4UHampqtiycu0fLdR0/73Me/2Kw5W9J0wYuLypw9DgDA6dBptaitqVlat7/oPBSHjYQ4AAAIHLUjgzXltu66rnsDSdLz3+/Qbe+vVuZJt8mV4Y+w2Qzd2qeRvhzdW63qROp4rlsjJ6/V2KnreC8BVGk/H5meWdwQr8EZ4gAAVLjODWP0xajeal03Uhk5Bbr2zRX6cPm+Xzzv4fObq0NitLLyPLrjgzV6/IvN/r/DAQD4ORriFpVbUCh3SULcwdsEAAACS5DDpv+7pLWevbydXA6b5m5N10UvL9bW1CyzS8Mf1Kx2hD67u5dG9W8imyF9vv6Qhjy/UEt2HjG7NACoEHnFCfFgZ0lCvHhkeigJcQAAKkOd6BBNv6OnhrarI4/Xp0c/36S/f7ZRBcXHmkhFU60+vqOHbu/bSJL07tK9umzSMu07mmNW2QAAC6PTalHuUn+5O228TQAAIDBd1qmePr2rp+pGh2jf0VxdOnGpvthwyOyy8AcFOWy6/9yzNP3OnmpYM1QpmXm65s0VevyLzcpzk8IAULX8PCF+vHgqRhQNcQAAKk1IkF0vXtVeDww5S4YhfbQiWde+tUJHT+T7n+O02/TI+S309o2dFR3q1MaDmbrwxcUc9QQA+AU6rRZVkg6XJIedkekAACBwta4bpS9H91afprE66S7UPVPWadPBTLPLwp/QqUENfT2mj67pliipKIVxwYuL9OOB4+YWBgDlKN9Tcoa4TT6fT8f9CXFGpgMAUJkMw9DdZzfRm9d3VrjLoZV7MnTRy0u05VDZyWMDmtfW1/f0UecGNZSd79HIyWv1j883sXkXAOBHQ9yi3IWlEuI0xAEAQICrERakd2/qqrvObqxbeiepdd0os0vCnxQa5NB/Lm2jd27qoloRLu06nKNhryzVC9/vkKfUv2EBIFD5G+JOu3JKHWcWTUIcAABTDGxRW5+PLJpWdfD4SQ2ftFRfbyybAq8THaKpt3fX3Wc3liR9sHyfhr2yVHuOMEIdAGChhvh///tfGYahsWPH+q/l5eVp5MiRqlmzpsLDwzV8+HClpaWZV2QlKijTELfM2wQAAPCn2W2GHhzSXI9e0MJ/LT07T+v3HzevKPxp/c+K03dj++qCNgnyeH2a8P12DX91mXYfPmF2aQDwl+S7T41ML0mHBzlsCik+UxwAAFS+JnERmjny1OSxuz9aq+e+2yavt/SkVZseGNJc793cVTFhQdqSkqULX1zEsV0AAGs0xFetWqXXXntNbdu2LXP93nvv1axZszR9+nQtWLBAhw4d0rBhw0yqsnKVTog7OEMcAABUIYZRNP3GXejVqI/W6YpXl3HGW4CqERakl0d00PNXtldEsEMb9h/X+S8u0vvL9srnK7oxVej1admuo5q5/qCW7TqqwlI3rADAikqPTD+eW3R+eHSI0//3FwAAMEdUqFPv3NhFt/ZOkiS9OG+n7vhwjU7ke8o8r1+zWvr6nj7qmhSjnIJCfbnhkH99AgConhxmF3DixAldc801euONN/Tvf//bfz0zM1NvvfWWJk+erAEDBkiS3nnnHbVo0ULLly9X9+7dzSq5UjAyHQAAVHUFHq+iQ51yOWxqnhBhdjn4kwzD0CUd6qprUoz+9skGLdl5VP+cuVlztqTp/DYJenHuDqVk5vmfnxAVrMeGttSQ1gkmVg0Av+5UQ9wuj9enRrFhig13mVwVAACQilLgj17YUi0SIvXwjI2asyVNw15Zojeu76wGNcP8z4uPCtbkW7vprcV7dFWXRDa2AUA1Z3r0eOTIkbrgggs0aNCgMtfXrFkjt9td5nrz5s2VmJioZcuW/err5efnKysrq8xHIHJ7Tu1YY2Q6AACoisJcDr16bSd9PqqXGtcK91/PKx5Vi8BSJzpEH9zcTY8NbSmXw6ZFO47o4RkbyzTDJSk1M093fbhWszcxFQCANeV7ikemO21qXz9a8+4/Wx/f2cPkqgAAQGnDO9XTtDu6Ky7Cpe1pJ3TxxCVasvNImec47Dbd0a+xokKdkiSfz6cHP/lRM9YeMKNkAICJTO20Tp06VWvXrtX48eN/8bXU1FQFBQUpOjq6zPXatWsrNTX1V19z/PjxioqK8n/Ur1+/vMuuFKXPEHeQEAcAAFWUzWaUaYYv3XlEfZ6er6W7jvzGd8GqbDZDN/VK0hejestpO/2/YUu2fT4xawvj0wFYUr771Mh0AABgXR0Sa2jW6N5qVy9Kx3Pduv7tlXp3yZ5fHY8+Z0uapq3erwc++VF7j+RUcrUAADOZtrrbv3+/xowZo48++kjBwcHl9roPP/ywMjMz/R/79+8vt9euTGVHprMIBwAA1cOkBbt0ODtf1721Um8s3M05bwEqI6dA7t9odvskpWTmaeWejMorCgB+p5KR6cFOu8mVAACAM6kdGaxpd/TQsA51Vej16fFZW/TQpxv9E19KG9iitsYOaqoHhzRXw9iw07waAKCqMq3TumbNGqWnp6tjx45yOBxyOBxasGCBXnzxRTkcDtWuXVsFBQU6fvx4me9LS0tTfHz8r76uy+VSZGRkmY9AVOChIQ4AAKqf16/r7L+R8Z+vf9KoKeuUk+8xuyz8QenZeWd+0h94HgBUppKjO1wOm16cu0PnvbBIk1ckm1wVAAD4NcFOu/53RTv9/fwWshnStNX7NeKNFTqcnV/meXabobGDmum2vo3817alZmv66sAM1QEAfj/TOq0DBw7Uxo0btX79ev9H586ddc011/gfO51OzZ071/8927ZtU3Jysnr0qPpnd5U+O5OR6QAAoLoICSq6kfGvi1vJYTP01Y8pGvbKUu1hnF1AiYv4fROgfu/zAKAylSTEXQ679h7N0U8pWcrKc5tcFQAA+C2GYei2vo309o1dFBHs0Jp9x3TRy4u18UDmr35PboFHIyev1d8++VHjPl7PZmwAqMJMa4hHRESodevWZT7CwsJUs2ZNtW7dWlFRUbrllls0btw4zZ8/X2vWrNFNN92kHj16qHv37maVXWm6NIzxP3baSIgDAIDqwzAMXd+joabe3l21Ilzalpati15erLk/pZldGn6nrkkxSogK1pm2dX68KlmZuTSZAFhLyYhVl8OmUf2b6L2bu+q81r8+qQ4AAFjH2WfFaebIXmpUK0wpmXm67NWlmrn+4GmfG+yw65L2dWQzpBlrD+qilxdra2pWJVcMAKgMlu60TpgwQRdeeKGGDx+uvn37Kj4+XjNmzDC7rErRss6pUe8kxAEAQHXUuWGMvhrdW50b1FB2nke3vLdaE+Zsl/c3zqaGNdhthh4b2lKSftEUL/35Z+sPafCEBfp+C5sdAFiHPyHutKlRrXD1a1ZLDWpyzigAAIGiUa1wfT6yl/qfVUv5Hq/GTF2vp2ZvVeHP1pI2m6FRA5pqym3dVTvSpV2Hc3Txy0s0ZWWyfD7WnQBQlViqIf7DDz/o+eef938eHBysiRMnKiMjQzk5OZoxY8Zvnh9elbgLT/2F67DREAcAANVTXGSwJt/WXTf0aCBJemHuDt3y3ipSxQFgSOsETbq2o+Kjyo5Fj48K1qvXdtSnd/VUo1phSs/O163vr9a4aet1PLfApGoB4JR896mR6QAAIDBFBjv15g1ddGe/xpKkST/s0m3vrz7tMSjdGtXU1/f0Ub9mRQ30h2ds1Jip63WCEeoAUGUYviq+1SkrK0tRUVHKzMxUZGTkmb/BIlbtParLX10uh03a+eQFZpcDAABguk/XHNAjn21UvserBjVD9dp1ndQ8PnD+fVddFXp9WrknQ+nZeYqLCFbXpBjZizd85rkLNWHOdr2xaLe8PqlWhEtPXtpGg1vWNrlq4MwCda1ZkarKr0mHf32nY7luzbm3r5buOqoQp13nt01QuMthdmkAAOBPmLn+oB745Efle7xqXCtMb97QRUmxv5z+4vX69NrC3Xr2u20q9PqUFBuml0d0UKs6USZUDQAoUR5rTUslxHHK+0uTix+RDgcAAJCk4Z3q6dO7eqpejRDtO5qr5buOml0Sfge7zVCPxjV1cfu66tG4pr8ZLknBTrsePr+FPilOix/Oztdt76/WvaTFAZioZGS6027TE7M264FPf1QuCTEAAALWxe3ravqdPRQfGVw8Fn2xFm4//Ivn2WyG7jq7sabd3l0JUcHacyRHl76yVB8s38cIdQAIcDTELSo8uGg0G+PSAQAATmldN0qzRvXW389voRt6NjS7HJSTjok19PU9fXRHv0ayGdJn6w5q8ISFmsPZ4gBMUNIQdxd6VXLUaFSo08SKAADAX9W2XrS+GN1LHROjlZXn0Y3vrNSbi3afttHduWGMvr6njwY2j1OBx6t/fL5JoyavO+24dQBAYKAhblE39kySJIUxkg0AAKCMGmFBuq1vIxlG0cbBrDy3/jZ9gw5n55tcGf6KYKddD59XlBZvXCotPnbqOtLiACqNp9CrwuIueJ67UJIUGmTnPHEAAKqAuIhgTbm9u67oXE9en/Tvr37SfdM3+P/OL61GWJDevKGz/n5+Czlshr7amKIPlu0zoWoAQHmgIW5R7sKiHekOOwlxAACA3/LPzzdp+poDuuOD1YyxqwI6JtbQV6XS4p+vP6RBzy3Ud5tTzS4NQDWQV5wOl6STxTfHo0NIhwMAUFW4HHY9NbytHhvaUnaboRlrD+qq15crLSvvF881DEO39W2kj+/soaHt6uj2vo1MqBgAUB5oiFtUSUPcaectAgAA+C2jBjRVy4RIPTa0lT81jsBWkhb/tDgtfuREvm7/YI3GTF2nYzmkxQFUnPxSCbGc/OKGeGiQWeUAAIAKYBiGbuqVpPdu6qqoEKfW7z+uoS8t1vr9x0/7/I6JNfTS1R389+oLPF49++02ZZ5khDoABAq6rRb16oJdkk41xgEAAHB6TeLC9eXo3mpXP9p/bdXejNOOvUNg6VCcFr+zX2PZDGnm+kMaPGGhviUtDqCClJwfHmS3+W9y1wgjIQ4AQFXUu2msvhjVS03jwpWena8rXlumGWsPnPH7/vfdNr08f6eueXO5vF6mlAFAIKAhblEHjp2UJJFxAgAAODOb7dS/mjYdzNQ1b67QFa8t08HjJ02sCuUh2GnXQ+c114y7e6lJXLiOnMjXHR+s0T1TSIsDKH8lDXGXw6bjuUV/xkSHkBAHAKCqalAzTDPu7qlBLWqrwOPVuI836D9fbVHhbzS6z2+ToMSYUI0e0LTMWhQAYF00xC3Kf4a4jbcIAADgj8jO8yg0yK4fD2Rq6EuLtXTnEbNLQjloXz9aX47urbvOLkqLf7HhkAZPWKDZm0iLAyg/+Z6i6SIup03HcosS4tGhJMQBAKjKIoKdev26Tho9oIkk6Y1Fe3TTu6uUmXv6kejt6kdrzri+OrdVvP/a+v3H/ZvpAADWQ7fVotyFRTvQHHZ2mAEAAPwRPRrX1KxRvdWqTqQycgp07Vsr9PrCXfL5GGUX6IKddj04pCgt3jQuXEdOFOjOD4vS4hmkxQGUg3x3SULcfiohTkMcAIAqz2YzdN85Z+nlER0U7LRp4fbDuuSVJdqZfuK0z3c57P7HKZknddM7K3XBi4u1NvlYZZUMAPgDaIhblKckIW7nLQIAAPij6seE6tO7emp4x3ry+qQnv96qUZPXKSffY3ZpKAft60dr1s/S4ueQFgdQDsqMTC85QzyUkekAAFQXF7ato0/v6qm60SHacyRHl05covlb03/ze7LzPIoMcerg8ZO64tVlem3BLs4WBwCLodtqUf6EOGeQAAAA/CnBTruevbyt/u+S1nLaDX21MUWXTFyi3YdPv8MfgaUkLf7Zz9Lio0mLA/gLSkamBzlOjUyPCiEhDgBAddKqTpRmjuqlrg1jlJ3v0c3vrdKkH3596liz2hH6cnRvXdg2QR6vT+O/2apb31/NugQALISGuEV5vKd2pQMAAODPMQxD13VvoKm3d1dchEs70k/o4peXaM6WNLNLQzlpVz9aX97TWyP7N5bdZmiWPy2eYnZpAAKQf2S6067M4pHpJMQBAKh+YsNd+vDWbrq6a6J8Pump2Vs1dtp65bkLT/v8iGCnXrq6g568tI2CHDbN25quC15cpFV7Myq5cgDA6dBttSiPlzPEAQAAykunBjH68p7e6tKwhrLzPbrt/dV67rttKmSMXZXgctj1t3Ob67O7e6pZ7ZK0+FqNmryWVAaAP6T0yPTIEKdiwoJUI4yGOAAA1VGQw6bxw9ro/y5pLYfN0Mz1h3T5q8uUknnytM83DEMjuiVq5sheahQbppTMPF31+nK98sNORqgDgMloiFtUYfHIdCdniAMAAJSLuIhgTb6tu27s2VCS9OK8nbr1vVU0xauQtvWKzhYvSYt/+WOKBj+3QN9sJC0O4PcpSX0FO+364JZuWvuPwerUoIbJVQEAADNd172BPrilm2qEOrXxYKaGvrREa/b9evK7RUKkZo3urUs71FWh16enZ2/TTe+u0tET+ZVYNQCgNLqtFlWSEHfZ7SZXAgAAUHU47TY9flErTbiynYKdNrWqEyW7jYk8VcnP0+JHcwp010drNXLyWm5AATij0glxAACAEj0a19QXo3qreXyEjpzI19Wvr9DHq/b/6vPDXA49d0U7PT28rYKdNi3Yfljnv7hIy3cfrcSqAQAlWOFZVElSyengBi0AAEB5u7RDPX19Tx/dO7iZ/9qvnQWHwFSSFh/Vv4nsNkNf/ZiicyYs1NekxQH8hnxP0d8FNMQBAMDP1Y8J1ad39dSQVvEqKPTqgU9/1BOzNstT6D3t8w3D0BVd6mvmyN5qEheutKx8jXhjuTYfyqzkygEArPAsyt8QZ2Q6AABAhWhUK9yfDs9zF+qK15bpiVmb5f6VmxkIPC6HXfefe5Y+u7unzqodoaM5BbqbtDiA31CSEHcX+jTk+YW69b3VJlcEAACsJMzl0CvXdNTYQU0lSe8s2asb3lmpYzkFv/o9Z8VH6ItRvXRZp3q6qF0dtUyIrKxyAQDF6LZakM/nU6GvqCEe7OQtAgAAqGgLth/Wjwcy9dm6gzqcTaO0qmlbL1pfjO6l0QNIiwP4bfnuooa41+fT1tRsbU/LNrkiAABgNTabobGDmunVazsqNMiuJTuP6uKJS37z3w2hQQ49e3k7PXN5OxlG0cbs47kFWraLEeoAUBnotlqQzyd1blBDkhTs4AxxAACAinZuq3i9fl0nvXx1R9WJDjG7HFQAl8Ou+845S5/f3UvN40ulxT9aqyOkxQEUKxmZXisiSO/f3FX/d0lrkysCAABWNaR1gmbc3VP1aoQoOSNXl05cou82p/7m95RMhPX5fLp/+o8a8eZyvb9sbyVUCwDVGw1xC7LZDHVNipEkBQfREAcAAKgM57SKV++msf7P5/6Upg+X75OveHIPqoY29aL0xajep9LiG4vS4l/9SFocwKmR6ZHBQerbrJb6NatlckUAAMDKmsdH6otRvdW9UYxyCgp1+wdr9PK8HWdcR7oLfYoND5LTZlPHxBqVVC0AVF80xC2q5OxKzhAHAACofKmZeRo7bb0e/XyTHvjkR+W5C80uCeUoyGHTfeecpZkji9LiGTkFGjl5re7+aA1pcaCaK0mIuxysxQEAwO8TExakD27pput7NJAkPfvddo2avE65BZ5f/Z4gh03/Hd5W393bV63rRvmvp2bmVXi9AFAdscKzIE+hV0dPFEiSnHbD5GoAAACqn9qRLo3s30Q2Q5q+5oAuf3WZDhzLNbsslLPWdYvS4vcUp8W/3piqcyYs1Jc/HjK7NAAmKTlDPD07T9NWJWvLoSyTKwIAAIHAabfpXxe31vhhbeS0F02iumzSmdeRDWPD/I83HshU32fm6+nZW+UpDswBAMoHDXELSsvO14x1ByVJDhtvEQAAQGUzDEN39mus92/uphqhTm08mKmhLy3W4h1HzC4N5SzIYdO4n6XFR01eR1ocqKZKRqZvTzuhBz/dqNlnOAcUAACgtKu7Jmrybd1VMyxIW1KydPHLS7RyT8bv+t7529JV4PHqlR926eo3lisl82QFVwsA1QfdVgvyen3+ZDgJcQAAAPP0bhqrWaN7q3XdSB3Ldev6t1fo1QW7OFe8CvKnxQc2laM4LT74uQWateEQ7zdQjZQckVFQPDq9RqjTzHIAAEAA6tIwRl+M7q1WdSJ1NKdAI95Yrskrks/4ffcMbKqXru6gcJdDq/Ye0/kvLNL8remVUDEAVH00xC2ofkyohrarI4kzxAEAAMxWr0aoPrmzpy7rVE9en/Tfb7Zq5OS1OpH/6+fBITAFOWwaN7iZPi9Oix/LdWv0lHW668O1OpxNWhyoDkoS4nnFo9OjaYgDAIA/oW50iD65s6cubJsgj9enRz7bqH98vknuM4xCH9qujr4stSn7pndXafzXPyk5I0dLdx0hNQ4AfxLdVovyFBalUBw0xAEAAEwX7LTrmcva6t+XtJbTXpQevmTiEu06fMLs0lABStLiY4rT4rM3p+qcCQv0BWlxoMrLL06GZ+cVbXry8n95AADwJ4UE2fXS1R30t3PPkmFIHyzfp+veWqGMnILf/L6GsWH69K6euqFHA0nSawt3q+/TP2jEGyvU67/zNG3VmdPmAICy6LZalMdbtFOMkekAAADWYBiGru3eQFNv76HakS7tTD+hi19eom85X7ZKCnLYdO/gZpo5qpdaJBSlM+4hLQ5UeSUJ8dSsPEnS/dM3cNMZAAD8aYZhaGT/Jnrjus4Kdzm0fHeGLnp5sX5KyfrN73M57Hri4tZ68tLWZa57fdLDMzaSFAeAP4iGuAVtTc3S8t0ZkhiZDgAAYDWdGtTQrNG91bVhjE7ke3THB2u08UCm2WWhgrSqE6WZI3tp7CDS4kB1cCKv7HEYPp/0yIxN3HQGAAB/yaCWtfXZ3T3VoGaoDhw7qeGTlmr2ppQzfl/D2LBfXPP6pEc/36T07LyKKBUAqiS6rRaUcaLAPzbFYSMhDgAAYDVxEcH66LZuurFnQ13dNVFt6kWZXRIqUJDDprGDfpkWv/PDNaTFgSomJ9/zi2uFPp/2Hsk1oRoAAFCVNK0doZkje6l3k1jlFhTqzg/XasKc7fL+xhktSbFhOl2LYOG2w/5jVwEAZ0ZD3IIKCr3+xyTEAQAArMlpt+nxi1rpP5ecGmF3LKdAWw799ug7BK6fp8W/3ZymwRMWaOb6g6TFgSrCe5prdsNQw9jQSq8FAABUPdGhQXr3pi66uVeSJOmFuTt010drTrspT5ISokI0flgb2Y2irrjdMHRnv0b659CWqhMd4n/e1JXJJMYB4Dc4zC4Av+QutbPLwRniAAAAlmYr3q5f6PXpnqnrtGpvhl64qoPObRVvcmWoCCVp8XNaxuv+6Ru0JSVLY6au11c/pujfl7ZWXESw2SUC+AsKf5bQshvSk8NaKyEq5Fe+AwAA4I9x2G3659CWap4QoUc/26RvN6dp+KSleuP6zqof88tNeFd2SVTfZrW090iuGsaG/uLfJRsPZOqhGRsVFmTXkocGKDo0qLL+UwAgYBA/tiA3CXEAAICAc9JdKJthyJChBjVJElZ1LetEauaoXrp3UDM5bIa+25KmcyYsJC0OBLh8d6H/cbDTpsUPDdCVXRJNrAgAAFRVV3Surym3d1etCJe2pmbropcXa+muI6d9bkJUiHo0rnnaTXo++dQhMVrntIov0wzPK/XvGgCo7ui2WlDZhjgJcQAAgEAQ7nLo7Ru76NO7eqp5fKT/eoHndAN4URU47TaNGdRUX4zqrVZ1InU8160xU9frjg/WMK4QCFD5pf7Mjgx2kgwHAAAVqlODGvpiVC+1rRelY7luXffWSr2/bO8f2mTbtl60ZtzVU09e2sZ/bdfhE+r6n+/1v++2KTPXXRGlA0BAoSFuQaVvmjpsvEUAAACBwm4z1LLOqWb4mn0Z6v/sD1qz75iJVaGitawTqc9H9tK4wc3ktBelxQc/t1CfryMtDgQSn89XpiEe5uKUOQAAUPESokL08R09dEn7Oir0+vTPmZv1yGcb/X2CQq9Py3Yd1cz1B7Vs19FfHPEiSYZhKCTI7v/80zUHlJXn0Uvzdqr3U/P0/PfblZVHYxxA9cXqzoIKGJkOAABQJTz//Q4dPH5SV72+TP8c2krXdkuUYTABqCpy2m26Z2BTDW5ZW/dP36DNh7I0dtp6fbUxRf+5pLXiIjlbHLC60s3wGqFO1Qh1mlgNAACoToKddk24sr1aJETqv7O3asrK/dqZfkKXd66vCXO2KyXz1ASqhKhgPTa0pYa0TvjV1/vbuWepbb1oPf/9dm1Nzdbz3+/QO0v26va+jXRDz4YKZ+MfgGqGbqsFuT2MTAcAAKgKXr22ky5okyB3oU//+HyT/vbJj5zjVsW1SCibFp+zJU2DJ5AWBwJB6Yb4ikcGacbdvUysBgAAVDeGYeiOfo319g1dFOFyaNXeY3rgkx/LNMMlKTUzT3d9uFazN6X85msNaR2vr+/po4kjOqpJXLgyT7r1zLfb1OepeXp1wS7lFngq+j8JACyDhrgFuQtP3ShzkBAHAAAIWGEuh14e0UGPnN9cNkP6ZM0BXfbqUh04lmt2aahAJWnxL0b1Vuu6kco86dbYaet12/trlJ7F2eKAVeV7ijYsGQab0wEAgHn6N4/TJ3f1lN12+n+PlHQPnpi15bTj00uz2Qxd0DZB347tqxeuaq9GsWE6luvWf7/Zqr5Pz9ebi3brZAGbtgFUfXRbLajsyHQW4QAAAIHMMAzd3rexPrylm2LCgrTpYJaGvrRYi3YcNrs0VLAWCZH67O5euv+corT49z8VpcU/W3eAtDhgQfnuorW4y2HjeAsAAGCqjJyC32x2+ySlZOZp5Z6M3/V6dpuhi9vX1Xf39tX/Lm+nxJhQHTlRoH9/9ZP6PjNf7yzZc8bmOgAEMhriFuTmDHEAAIAqp2eTWM0a3Vtt60XpWK5bN7y9UpN+2EVjtIpz2m0aNaCpZo0+lRa/d9oG3fb+atLigMWUjEw3ZOiq15fpnSV7TK4IAABUV+nZv2+t8HufV8Jht2l4p3qae18/PT28rerVCNHh7HzN2nBIvxJIB4AqgW6rBZVuiDv4WwgAAKDKqBsdoo/v6KErOteT1yc9NXur7v5orU7kc3ZbVdc8/udp8XQNem6BZqwlLQ5YRemR6ct3Zyg5g+MtAACAOeIigsv1eT/ntNt0RZf6mnff2Xry0jZ66LwW/gk5mSfdmrIyWQUe7xleBQACBw1xC2pTN0olk9JJiAMAAFQtwU67nhreVk9e2kZOu6FvNqXq4pcXa2f6CbNLQwUrSYt/ObqP2tSNUlaeR+M+3qBb31utNNLigOlKEuKRwQ69dHUHXdqhrskVAQCA6qprUowSooJ1prjcjweOy1P45xvXQQ6bRnRLVNekGP+1txbv0cMzNurOD9f86dcFAKuh22pBQ1on+Hdj0RAHAACoegzD0IhuiZp2Rw/VjnRp1+Eczf0pzeyyUEnOio/QjLt76m/nniWn3dDcreka/NwCfbqGtDhgppIzxCOCnRraro7a1os2tyAAAFBt2W2GHhvaUpJ+syk+/putGvryEq1LPlZuPzshKlix4S5d3qme/1qBx8sZ4wACGt1WC/L5fPIU/+XisDMyHQAAoKrqmFhDX47uo3sHNdPtfRuZXQ4qkdNu08j+TfTl6D5qW68oLX7fdNLigJnyikemu5zcKgEAAOYb0jpBk67tqPiosmPRE6KC9cqIjnp6eFtFhzr1U0qWhk1aqn/O3KSsPPdf/rlXd03Uogf669xW8f5r7y/bq8ETFuiLDYdojAMISIavikcQsrKyFBUVpczMTEVGRppdzu9yPLdA7f81R5K04Z/nKCrUaXJFAAAAqCy5BR7995utundQM9UICzK7HFQCT6FXry3crRe+36GCQq8igx3659BWGt6xrn9yFKwnENeaFS3Qf01mb0rVnR+uUdO4cI0b3EwdEmv84gY0AABAZSv0+rRyT4bSs/MUFxGsrkkxstuK1glHT+TrP1//pBlrD0qS4iJcemxoK53fJr7c1hI+n0+DJyz0H/PVrHa4xg5qpiGt4mWzsV4BUPHKY63JtmcL+sfMTf7HTgd/oQAAAFQn/5y5We8v26db3lvF+OxqwlGcFp81urc/LX7/9A265b3VSs0kLQ5UlvzihHhaVp7u+mhtuY4eBQAA+LPsNkM9GtfUxe3rqkfjmv5muCTVDHfpuSvaa/Kt3ZQUG6b07HyNnLxWN7+7Svszcsvl5xuGoc/u7qn7BjdTZLBD29NO6O6P1ur8Fxfp282prFsBBAQa4haU7/H6HztsvEUAAADVyS29k9S4VpgePr8F6eBq5qz4CM24q+hs8SC7TfO2pmvwhAX6hLPFgUpRshYvmQIa6nKYWA0AAMDv17NJrL4Z00djBjZVkN2m+dsOa/CEBXp1wS65C71nfoEziAh2avTAplr04ACNGdhUES6HtqZm644P1mjoy4s196c01iwALI1uqwX9++LW/sdOzhAHAACoVlokROrbsX3VpWGM/9qPB46rwPPXb2LA+krS4l/e01vt6kUpuzgtfvO7q0iLAxXsVEO86GZuWJDdzHIAAAD+kGCnXfcObqavx/RRt6QY5bm9+u83WzX0pcVas698Jt9EhTh17+BmWvRgf43q30RhQXZtOpilW95brUsmLtEP29JpjAOwJBriFlSyG91hM0gFAQAAVEMO+6l/pm9LzdZVry/XiDeWKz2Lhmh10ax2hD69q6ceGHJWmYTH9NX7ucEEVJB8d9HI9MLiRXloEAlxAAAQeJrEhWvq7d317OXtVCPUqa2p2brs1aV69PONyjzpLpefER0apPvPPUuLHhygO/o1UojTrg0HMnXjO6s0fNJSLd99tFx+DgCUFxriFlQywsRBOhwAAKDaS8/Ok91maPW+Y7rgpcVavTfD7JJQSRx2m+4+u4m+KpUW/9snP5IWBypISUK8pCEezsh0AAAQoAzD0GWd6mnufWfrsk715PNJHy5P1qDnFmjWhkPltsk2JixID5/XQgsf6K9beyfJ5bBpbfJxrd9/vFxeHwDKCw1xC3pz0W5Jkk00xAEAAKq7Pk1r6YtRvdWsdrgOZ+frqteX6/1le0kJVyNNi9PiDw5pXiYt/jFpcaBclTTEPSUJcRcj0wEAQGCLCQvSs5e305TbuqtRrTAdzs7X6CnrdMM7q5R8NLfcfk6tCJcevbClFj3QX3f0a6TrezTwf23V3gw2dgMwHQ1xC1pZ/JeDzUZDHAAAAFJSbJg+u7uXLmybII/Xp3/O3Kz7pm9QXvF4X1R9DrtNd53duCgtXj9a2XkePfDJj7rp3VVKyTxpdnlAlZDvKftnahgj0wEAQBXRo3FNfTOmj+4d1ExBdpsWbi/aZPvKDzv9E2vLQ1xksB4+r4X/6Blv8fr1sleXadqq5HL7OQDwR9EQt6CC4l3pdt4dAAAAFAtzOfTS1R306AUtZLcZmrH2oIZPWqr9GeW3qx/W17R2hD69s4ceOq+5ghw2/bDtsM55bqE+XkVaHPir8t2nbgYbhhTsZFEOAACqDpfDrjGDmmr22D7q2bim8j1ePT17my58cbHW7KuYBHeep1Dt60erRqhT57SMP3Wdzd0AKhmrOwvyFBbdyHLYeHsAAABwimEYurVPI31wS1fVDAvS5kNZGvryYi3cftjs0lCJHHab7uzXWF+XpMXzPXrg0x914zukxYG/onRCPCzIIcNgahsAAKh6GtUK10e3dtNzV7RTTFiQtqVla/ikZXp4xkZl5rrL9WeFBjk0flgbLX5wgGqEBUmSfD6frn97pW57f7U2H8os158HAL+GjqsFlYwocdhZfAMAAOCXejaO1azRvdWuXpSO57p1wzsrNXH+ThLC1UyTuKK0+MPFafEF20mLA39F6YR4aBDnhwMAgKrLMAwN61hPc8f105Wd60uSpqxM1sDnftDM9QfLfT0R5jp1FM3O9BNavTdDc7ak6YIXF+uuD9doW2p2uf48APg5GuIW5C5OiDuZmQ4AAIBfUSc6RNPu6KGrutSXzyc98+023fnhGnnK8fw3WJ/DbtMdxWnx9qXS4je8s0qHjpMWB/6IfM+pPz/DXZwfDgAAqr4aYUF66rK2mnZ7dzWJC9eREwUaM3W9rn97pfYdzamQn9m0doS+u7efLmpXR4YhfbMpVUNeWKhRk9dqZzqNcQAVg46rBXm8xQlxGwlxAAAA/Lpgp13/Hd5W44e1UZDdpvo1QuVgU2W11CQuQp/e1dOfFl+4/bDOnbBQ01YlkxYHfqfSI9NDXSTEAQBA9dGtUU19fU8f3X9OMwU5bFq044jOmbBQE+fvVIGn/DddN4kL14tXd9C3Y/vq/Dbx8vmkL39M0eAJCzV26jrtOVIxzXgA1Rd3yyyIhDgAAAD+iKu7JmrmqF566Lzm/mtukuLVjt1mFKfF+6hDYlFa/MFPN+r6t1fqIGlx4IxKEuI2o+i8SwAAgOokyGHTqAFN9d3YvurdJFb5Hq+e+XabLnhxkVbuyaiQn9msdoReuaaTvr6nj85pWVs+n/T5+kMa9NwC3T99g5KP5lbIzwVQ/dBxtaCShLiTM8QBAADwO7VIiPSnw92FXl3zxgo9NXurCr2kg6ubJnHh+uTOnnrk/Ob+dMe5ExZq6krS4sBvKTlD/OURHTX51m4mVwMAAGCOhrFh+uCWrnr+yvaKDQ/SjvQTuuK1ZXro0x91PLegQn5myzqRev36zpo1qrcGNo9TodenT9Yc0ID//aCHPv1RqZl5FfJzAVQfNMQtqOSmpdPB2wMAAIA/bt7WdK3cm6EPl+3jHOlqym4zdHvforR4x8Roncj36KEZpMWB31IyMt3lsHH8BAAAqNYMw9AlHerq+3H9dHXX+pKkqav2a+D/FuizdQcqbKNtm3pReuvGLvp8ZC/1a1ZLHq9P01bvV3aeu0J+HoDqgxWeBXmKG+JBLMABAADwJ5zbKl4vXt1BE65sr/oxoWaXAxM1iQvX9Dt76u/nt5CrVFp8Cmlx4BdKRqa7HJwfDgAAIEnRoUEaP6ytpt/ZQ03jwnU0p0D3Ttuga99aUaHnfLevH633bu6qT+/qoYeGNFfT2hH+r81cf1BpWSTGAfwxdFwtptDrU8l9qSAS4gAAAPiTLmpXR4Na1vZ/vmTnEX2y5oCJFcEsdpuh2/o20tdjTqXFHyYtDvxCSUP8hbnbNWMtf14CAACU6NIwRl/d00d/O/csuRw2Ldl5VOc+v1Avzt3hn7JTETo1iNEd/Rr7P99zJEfjPt6gvk/PV0omaxkAvx8dV4txF3r9j50kxAEAAFAO0rPyNHrKOt0/fYP+8fkmFXi8Z/4mVDmNaxWlxR+9oGxafPIK0uKAJOW7i27mrtp7TLsOnzC5GgAAAGsJctg0sn8TfXdvX/VpGqsCj1fPzdmu819YpBW7j1ZKDXnuQrWvH61eTWKVEBXiv16RTXkAVQMdV4vx+aSWCUXjP1wkxAEAAFAOYsNdur5HA0nSB8v36arXlzFirpqy2wzd2qcoLd6pQQ2dyPfokc826rq3VurAsVyzywNMlVe8WeiegU00qEXtMzwbAACgempQM0zv39xVL17dQbHhLu06nKMrX1+uv03foGM5BRX6s1skROqTO3voxas7+K+lZeWpx/h5enr21gr/+QACFx1XiwkJsmt4p/qSpCDOLQMAAEA5sNkMjR3UTG/d0FkRwQ6tTT6uC19arJV7MswuDSZpXCtcH9/Rw58WX7zziIY8v4i0OKq1koT48I711CGxhsnVAAAAWJdhGLqoXR3NHddPI7olSpKmrzmggc8t0KdrDlTomsIwDIW7HP7PP117QBk5BXrlh13q8/R8PTdnuzJPuivs5wMITDTELchTPDbdaTdMrgQAAABVycAWtTVrVG+dVTtCh7PzNeKN5Xp3yR4aoNVUSVr8G9LigKRTZ4i72JwOAADwu0SFOvXkpW306V09dFbtCGXkFOi+6Rs04o0V2l1JR9Dc1a+x3ri+s1okROpEvkcvzt2h3k/N04tzdyg7j8Y4gCI0xC3I4y26Iem08fYAAACgfDWMDdNnI3tqaLs68nh9enzWFo37eINOFnDmWnXV6DRp8XMnLNRHK/axWQLVhqfQ61+Lr99/jHGbAAAAf0CnBjH68p7eenBIcwU7bVq2+6iGPL9Iz3+/vcLP9zYMQ4Nb1tZXo3tr0jUd1ax2uLLzPHpuznb1eXq+Js7fqZx8T4XWAMD66LhazM70E3r2222SJAcJcQAAAFSA0CCHXryqvR69oIXsNkOfrTuoYZOWKvkoqeDqqiQtPntsX3VuUEM5BYX6+2ebdO1bK7Q/g98XqPoKiie1SdKdH67VhgPHzSsGAAAgADntNt11dmPNubef+jWrpYJCr57/fofOe36Rlu06WuE/32YzdF6bBM0e01cvXd1BjWuF6XiuW898u019np6v1xfuYiM4UI3RELcYd6FXJRkMp523BwAAABXDMIoaoB/e0k01w4L0U0qWhr68WD9sSze7NJgoKTZM0+7ooX9c2FLBTpuW7DyqIc8v1IfLSYujast3e8t8HlbqXEoAAAD8fvVjQvXuTV308ogOqhXh0u4jObr6jeW67+MNyqiEKTw2m6Gh7erou3v76fkr2yspNkwZOQV68uut6vP0fL21eI/chd4zvxCAKoWOq8U0iQvXtd0SJXGGOAAAACpej8Y19eU9vdWufrQyT7p107ur9CPJyGrNbjN0S+8kfTOmr7o0LEqLP/r5Jl3zJmlxVF0l54eXCAuiIQ4AAPBnGYahC9vW0ffj+um67g1kGNKnaw9o4P9+0Mer91fKZlu7zdAlHepqzr199cxlbVU/JkRHTuRr6spk2Qx6L0B1Q0PcYpx2m4IcdkmSg4Q4AAAAKkFCVIg+vqO7ru6aqEva11WbulFmlwQLSIoN07Tbe+ifxWnxpbuO6tznF+qD5fvk9ZIWR9Xy87Mtw1x2kyoBAACoOqJCnPq/S1rr07t6qnl8hI7luvXAJz/qqteXa2f6iUqpwWG36fLO9TXvvrP132Ft9Mj5RUeHSVKeu1BTVyarwENiHKjq6LhaUMm4DkamAwAAoLK4HHaNH9ZGz1zWVkbxbvnMk27tTM82uTKYyWYzdHOptHhuQaH+8Tlni6Pq+XlCPJSEOAAAQLnpmFhDs0b31iPnN1eI064VezJ03gsL9dyc7cpzV8653k67TVd1TVT/5nH+ax+tSNZDMzbq2rdWVEoNAMxDx9VidqRla8Weo5Ikp42xHQAAAKhcJVOKvF6f7vt4vS5+eYnm/pRmclUwG2lxVHW/PEOchDgAAEB5ctptur1vY313b1/1P6uW3IU+vTh3h857YZGW7DxiSk1RIU7FRbg0rENd/7VCr08ezhgHqhwa4haTnJGr7WlFo0IYmQ4AAACz5LoLlZNfKLfXp1oRLrPLgQWUpMVnj+mrrg1j/GlxzhZHVZBXamS6YUjBDhriAAAAFaF+TKjevrGLXrmmo+IiXNpzJEfXvLlC46at19ET+ZVay2Wd6mnhA/01vFM9/7UZaw9o8ISF+nzdQRWy+ReoMui4Woy71M4jp52EOAAAAMwR7nLog1u6atrt3dW2XrT/OjcE0DA2TFNv767Hh7ZUiNOuZbuL0+LL9pIWR8AqnRAPddplY2IbAABAhTEMQ+e3SdD39/XTDT0ayDCkGesOasD/FmjaquRKXVcEO+1ljq/9cEWy9hzJ0dhp63XOhAWateEQ6xygCqAhbjEFhaf+YOUMcQAAAJjJYbepQ2IN/+cbD2Rq8IQF2ngg08SqYAU2m6EbeyVp9tg+6ppUnBafuVkj3lxOWhwBKb9UQjzMxfnhAAAAlSEy2KknLm6tz+7upRYJkco86daDn27UVa8v1460bFNq+ujWbvrbuWcpKsSpXYdzNHrKOp33wiJ9szGFxjgQwOi4Wozbc2pXuoOEOAAAACzkqdlbtftwjoa/ulTTV+83uxxYQIOaYZp626m0+PLdGTr3+YV6n7Q4Akx+qbU4DXEAAIDK1b5+tGaN6qVHL2ihEKddK/dm6PwXF+nZb7cpz1145hcoR+Euh0b2b6LFD/bXuMHNFBHs0La0bN310Vpd+NJizdmSJp+PtQ4QaGiIW0yZkek23h4AAABYx8RrOmpQizgVeLz62yc/6tHPN6qgVBMJ1dPp0uL/LE6LJx8lLY7AUDohHhrE+eEAAACVzWG36dY+jTRnXF8NahEnd6FPL8/fqXOfX6hFOw5Xej0RwU7dM7CpFj8wQPcMaKJwl0NbUrJ02/urddHLSzR/azqNcSCA0HG1mILSDXEHCXEAAABYR1SIU69f11njBjeTYUgfLk/WVa8vU2pmntmlwQJK0uJPXNSqTFr8vaWkxWF9pc8QDwsiIQ4AAGCWejVC9cb1nfXqtZ0UHxmsfUdzdd1bKzVm6jodzs6v9HqiQp0ad85ZWvRAf919dmOFBtm18WCmbnp3lS59ZamW7DxS6TUB+ONoiFtM6YSNg4Q4AAAALMZmM3TPwKZ6+4Yuigx2aG3ycV340mKt3JNhdmmwAJvN0A09G+rbsX3VLSlGJ92FeuyLzbr6jeXadzTH7PKAX1V6ZHqoi4Q4AACAmQzD0JDW8Zozrq9u7NlQNkOauf6QBv7vB01ZmWzKhtsaYUF6YEhzLXqgv+7o20jBTpvW7z+uRTtoiAOBgI6rxbgLT/1B7uQMcQAAAFhU/+ZxmjW6t5rHR+jIiXyNeGO53lmyh5FxkCQl1gzVlNu6618XF6XFV+zJ0JDnF+ndJXtIi8OSSkamX9yujl66uoPJ1QAAAEAqGlv++EWt9PnIXmpdN1JZeR49PGOjrnhtmbalZptSU81wlx4+v4UWPtBft/dtpNv7NvJ/bdPBTK3YfdSUugD8NhriFlPmDHE7bw8AAACsq0HNMM24u6cualdHHq9PT8zaonEfb9DJgsIzfzOqPJvN0PU9itLi3RsVpcUfn7VFV5EWhwWVjEwPdTkUEew0uRoAAACU1rZetD6/u5f+cWFLhQbZtXrfMV3w4iI9PXuraevPuIhgPXJ+C8WEBUmSfD6f/u/LLbry9eV6a/EeU2oC8OvouFpM6Ya4g4Y4AAAALC40yKEXrmqvf1zYUnaboc/WHdSwSUuVfDTX7NJgEYk1QzX51qK0eGiQXStJi8OC8ooT4i4H63AAAAArcthtuqV3kr4f10/ntKwtj9enV37YpXOfX6gF2w+bXZ7chT41iQtXWJBd57WO918vfUwuAPOw0rOYgtIJcRsj0wEAAGB9hmHolt5J+ujWbooND9JPKVmauf6g2WXBQkrS4rPH/DItvvfIqbR4odenZbuOaub6g1q266gKaZijkpQkxJfuOqLvt6SZXA0AAAB+TZ3oEL1+fWe9dl0nJUQFKzkjVze8vVKjp6xTenaeaXUFOWz6z6VttOyRgaoTHeK/PnLyWt3y7iptOphpWm0AJIfZBaAst+fUDR8S4gAAAAgk3RvV1KzRvfXu0r26u38T//WUzJPacyRHSbFhSogK+Y1XQFVXkhb/aMU+jf9ma1Fa/IWFenBIc9WOCNb/fbVFKZmnbmIlRAXrsaEtNaR1golVozrIL07ubE87oW1p2RrUsrbJFQEAAOC3nNsqXr2axOq577br3aV7NGvDIf2wLV0PDmmuEV0TZTMpcBhZ6vidg8dPat7WdBV6fZq7NV3ntKytewc3U4uESFNqA6ozOq4WU69GiIKKG+FOOwlxAAAABJaEqBA9fF4L2YtvPny4fJ96jp+nEW+sUK//ztO0VckmVwiz2WyGris+W7xHo5rKc3v1xKwtunvy2jLNcElKzczTXR+u1exNKSZVi+oiv3hket9mserRuKbJ1QAAAOD3CHc59M+hLfXFqN5qUzdK2XkePfr5Jl326lJtTc0yuzzVjQ7RnHv76pL2dWQY0ndb0nTeC4s08qO12p6WbXZ5QLVCQ9xibu6dpJiwIEmSk4Q4AAAAAlhK5kk9+vkmlcxA8vqkR2ZsUkrmSVPrgjXUjwnVR7d20xMXt9KvbQUu+b3zxKwtjE9HhSpJiPdtWksdE2uYXA0AAAD+iNZ1o/T5yF56fGhLhQXZtTb5uC58cbHGf/OTcgs8ptbWqFa4nr+qg+bc21cXti2afPXVxhSd+/xC3TNlnXamnzC1PqC6oONqQR5v0ULcQUIcAAAAAWxPqbOhSxT6fNp8KItFPyQVpcWbxUXot1rdPkkpmXlauSejsspCNVRyhrjLaTe5EgAAAPwZdpuhG3sl6fv7+mlIq3h5vD69tmC3zpmwUPO3pZtdnprERejlER01e2wfDWkVL59P+mLDIZ0zYYHGTVuvvadZPwMoPzTELaigeGc6CXEAAAAEsqTYMP382Da7YWjNvgwNem6BbnxnpRbtOCyfj+RvdZaenXfmJ/2B5wF/RsnI9PSsPOXkm5siAgAAwJ+XEBWiV6/rpDev76y60SE6cOykbnpnlUZOXqv0LPPXFM3jI/XqdZ305ejeGtSitrw+aca6gxr43AL9bfoGHTiWa3aJQJVEx9Vi7p++Qdl5RYtvp423BwAAAIErISpE44e1kd0o6orbDUNPDmutrJMeGYb0w7bDuu6tlTr3+YWaujJZee5CkyuGGeIigsv1ecCfUTIy/aV5O7UlxfzzJgEAAPDXDGpZW9/d21e39UmS3Wboqx9TNPB/C/TBsr2WOI6pdd0ovXlDZ30xqpf6n1VLhV6fpq85oLSsfLNLA6okh9kFoKxjOQX+cYGMTAcAAECgu7JLovo2q6W9R3LVMDZUCVEhurKLdFufRnp36V59vHq/tqed0EMzNurpb7fp2m6JurZHA5qf1UjXpBglRAUrNTPvtKPTDUnxUcHqmhRT2aWhGilpiEtSWBC3SgAAAKqCMJdDf7+gpS5uX1d//2yjNhzI1D9mbtanaw/qyUvbqGWdSLNLVNt60Xrnpq5am3xMP2xNV6cGNfxfm70pVe3rRys+ivUx8FcRQbaYJy5u5X/MyHQAAABUBQlRIerRuKYSokL81xrGhunxi1pp2cMD9ffzW6hudIgycgr04ryd6vXfeRr38XptPpRpYtWoLHaboceGtpRU1PwureTzx4a2lP3n8/eBclQyMl2SwlycIw4AAFCVtK4bpRl399ITF7VSuMuh9fuPa+jLi/Xk1z8pt8Aax+V0TKyhceec5f88PStPY6auU99n5mvX4RMmVgZUDXRcLSY+8tROHycJcQAAAFRxUSFO3da3kRb87Wy9ck1HdWpQQ+5Cn2asPagLXlysK19bpu82p8prgZF2qDhDWido0rUdf5F8iI8K1qRrO2pI6wSTKkN1cbLgVEM8lIQ4AABAlWO3GbqhZ0PNva+fzm8Tr0KvT68v3K3Bzy3U3J/SzC7vF7LyPGpXL1pt6kapUWyY/3pBqclGAH4/VnkW4yl1o89BQhwAAADVhMNu0/ltEnR+mwSt339cby/eo682pmjFngztz8jVgOZxsv0iP4yqZEjrBA1uGa+VezKUnp2nuIiiMekkw1EZ8kiIAwAAVAu1I4P1yjWdNG9rmv7x+WYdPH5St7y3Wue1jtdjQ1tZZjx5k7hwTbuju7LyPDKMojVR5km3zp2wUJd0qKvb+zZSTFiQyVUCgYOOq8V8tGKf/zEJcQAAAFRH7etH68WrO2jxg/11Z7/Guqt/E/9mUXehV8/N2a79GbkmV4mKYLcZ6tG4pi5uX1c9GtekGY5Kk19QlLQxJAU7aIgDAABUdQOa19accX11R99GstsMfbMpVYOeW6B3l+xRoUUmlBmGoagQp//zmesPKjUrT68u2KU+T83Ts99u0/HcAhMrBAIHDXGLmbJyv/+x08bbAwAAgOorISpED53XXNd1b+C/NntTql6cu0OXvbrUMjcpgEAwfvx4denSRREREYqLi9Mll1yibdu2lXlOXl6eRo4cqZo1ayo8PFzDhw9XWpr1xkdWhLzi0ZPBTrtsbMQAAACoFkKDHHr4/BaaNaq32teP1ol8jx6ftUWXvrJEmw5mml3eL1zXvYHevL6zWiZEKqegUC/P36k+T83XhDnblXnSbXZ5gKXRcbUYt+fUrnQW4QAAAEBZCVHB6t0kViO6NvCnh71en77ZmCJ3IWepAb9mwYIFGjlypJYvX645c+bI7XbrnHPOUU5Ojv859957r2bNmqXp06drwYIFOnTokIYNG2Zi1ZWnoLBoZHpoEOlwAACA6qZlnUh9eldP/d8lrRXhcujHA5m66OXF+veXW5ST7zG7PD/DMDSoZW19dU9vvXptJzWPj1B2vkcvzN2hPk/N08vzdmhn+gkt3XVEKZknzS4XsBTD5/NV6VhFVlaWoqKilJmZqcjISLPLOaOe4+fqUGaeHHZDO/9zvtnlAAAAAJbk9fr8G0jnbEnTbe+vVnxksK7v2UAjuiYqOpSz1FCxAm2t+XOHDx9WXFycFixYoL59+yozM1O1atXS5MmTddlll0mStm7dqhYtWmjZsmXq3r37GV8zUH9NfD6fkh7+WpJUPyZEix4YYHJFAAAAMEt6Vp6e+HKLvvoxRZJUJypYT1zcWoNb1ja5sl/yen36ZlOqJny/XTvTT5T5ms2Qxg9royu7JJpUHVB+ymOtSULcYgqKUy2MSwcAAAB+XelpSjn5HsWGu5SalaenZ29Tj/Hz9OjnG7Xr8InfeAWgesvMLBoBGRMTI0las2aN3G63Bg0a5H9O8+bNlZiYqGXLlp32NfLz85WVlVXmIxC5C0/lBMKCHCZWAgAAALPFRQZr4oiOeuemLqpXI0SHMvN02/urdccHqy2XurbZDF3QNkHfju2rJy5qWeZrXp/00Kcbtedwzq98N1C90HW1GE/xQtxhZ1w6AAAA8Htc0qGuljzUX89e3k4tEiJ10l2oD5cna+D/Fuimd1Zq8Y4jquKDsYA/xOv1auzYserVq5dat24tSUpNTVVQUJCio6PLPLd27dpKTU097euMHz9eUVFR/o/69etXdOkVIt9T6H8c7qIhDgAAAKn/WXGac28/3dmvsRw2Q99uTtOg/y3QO0v2qNBrrfWl3Waoae2IX1z3STpwLLfyCwIsiIa4xZSce+jg/HAAAADgd3M57LqsUz19fU9vTbmtuwa1qC3DkOZvO6xr31qhIc8v0rRVycpzF575xYAqbuTIkdq0aZOmTp36l17n4YcfVmZmpv9j//795VRh5cr3eP2PaYgDAACgREiQXQ+d11xf3tNbHROjlVNQqCdmbdElE5do44FMs8srIyk2TD9vK9kMqUntcElFvadnvt1KgxzVFg1xi3EX7yxykhAHAAAA/jDDMNSjcU29eUNnzb/vbN3Ys6FCg+zalpatBz/dqF7/nafnvtum47kFZpcKmGLUqFH68ssvNX/+fNWrV89/PT4+XgUFBTp+/HiZ56elpSk+Pv60r+VyuRQZGVnmIxCVboiH0RAHAADAzzSPj9Qnd/bUfy5trYhghzYezNTFExfriVmbdSLfY3Z5kqSEqBCNH9ZGdqOot2Q3DI0f1kYJUSGSpFkbDmni/F26bNIyeQq9v/VSQJVEQ9xiSv4gcth5awAAAIC/omFsmB6/qJWWPTxQfz+/hepGh+hoToFeXbBbBdwAQDXj8/k0atQoffbZZ5o3b56SkpLKfL1Tp05yOp2aO3eu/9q2bduUnJysHj16VHa5lapkckS4y67HL2plcjUAAACwIpvN0DXdGmjuff10Ubs68vqkd5bs1eDnFujbzac/YqiyXdklUYsf6q8pt3XX4of668ouif6vNYwNU+8msbq+ZwN//8nr9WlbarZZ5QKViq3PFlLo9ank6AknDXEAAACgXESFOHVb30a6qVdDfbclTXuP5iguItj/9fHf/KTODWI0oHmc7BxdhCpq5MiRmjx5smbOnKmIiAj/ueBRUVEKCQlRVFSUbrnlFo0bN04xMTGKjIzU6NGj1aNHD3Xv3t3k6itWvrtog0xIkEO1IlwmVwMAAAAri4sI1otXd9DwTvX0j883KTkjV3d8sEaDW9bWExe1Up3oEFPrS4gK8afCS+uYWEMf3tpN3lLnn3+3JU13frhG/c+qpVEDmqhTg5jKLBWoVHRdLcRdKqUSREMcAAAAKFcOu03nt0nQ3Wc38V/bmpql1xbs1h0frFZqVp6J1QEVa9KkScrMzNTZZ5+thIQE/8e0adP8z5kwYYIuvPBCDR8+XH379lV8fLxmzJhhYtWVI99TlBB3OViHAwAA4Pfp16yWvru3r0b2byyHzdCcLWka9NwCvblot6VHkttKbQLfmpolmyHN33ZYwyct01WvL9PiHUfk8/l+4xWAwMRqz0JKN8SdDpIpAAAAQEWLCQvSnf0a68ouiapbaif/tFXJ2p+Ra2JlQPny+Xyn/bjxxhv9zwkODtbEiROVkZGhnJwczZgx41fPD69KSs4Qz85za/nuoyZXAwAAgEAR7LTrb+c219dj+qhzgxrKLSjUv7/6SRdPXKIfDxw3u7wzGjuomebed7au7FxfTruh5bszdO1bK3TJK0v13ebUMmlyINDRELcQd+GpP1ycNt4aAAAAoKLFRQTrofOaa/ywNv5re47k6KEZG9Xvmfm6+6M1WrMvgx3yQBVW0hDPPOnR1pQsk6sBAABAoGlWO0If39FD44e1UWSwQ5sPZemSiUv0+BeblZ3nNru835QUG6anLmurBX/rrxt7NlSw06YN+4/r9g/W6LwXFmnm+oOWTrwDvxddVwvx+XxKiCo6yzCIUW0AAACAKfI9herVOFZen/T1xlQNn7RMl0xcopnrD5aZ6gSgash3F41Mrx3pUtv60eYWAwAAgIBksxm6umui5t53ti5pX0den/Tu0r0a9NwCzd6UYvlN1nWiQ/T4Ra20+MEBuvvsxopwObQtLVtjpq7XwOcWaMrKZP9RQ0AgoutqITXDXXrovOaSJCdniAMAAACmaB4fqQ9v7abZY/voys71FeSwacOBTI2Zul59npqvV37YqeO5BWaXCaCclCTEk2LD1DGxhsnVAAAAIJDVinDp+as66INbuqpBzVClZeXrzg/X6tb3VuvAMesfyxUb7tIDQ5pr8UMDdN/gZqoR6tS+o7l6eMZGnTNhoQo8bBJHYKLrajGe4rHpDhriAAAAgKmax0fqqcvaaulDA3TvoGaKDXcpNStPT8/eph7j5+nRzzdq1+ETZpcJ4C8qaYi7HHaTKwEAAEBV0adpLX07tq9GD2gip93Q3K3pGvzcQr2xcHdAjCCPCnFq9MCmWvLQAD16QQvVjnSpZ+PYMtONTxaQGEfgoOtqMR5v0R+ETpthciUAAAAApKId8mMGNdWSh/rr2cvbqUVCpE66C/Xh8mQN/N8C3fTOSm06mGl2mQD+pJLRj4VeL2MgAQAAUG6CnXbdd85Z+mZMH3VtGKOT7kL95+ufNPTlJVqXfMzs8n6X0CCHbu3TSAsf6K+HhjT3X990MFNdn/xez83Zbvlx8IBEQ9xStqdl69nvtktiZDoAAABgNS6HXZd1qqev7+mtKbd116AWtWUY0vxth3XSTRMNCFT57qKN6Yt3HtXOdKY+AAAAoHw1iYvQ1Nu76+nhbRUV4tRPKVkaNmmp/jlzk7Ly3GaX97u4HHZFhTr9n89Ye1DZeR7tO5ojwyDgCetzmF0ATjmR79Hh7HxJksPOHyAAAACAFRmGoR6Na6pH45racyRHszelqnODU+cOP//9dnl90nXdG6hWhMvESgH8HnmlUuFhQdwmAQAAQPmz2Qxd0aW+BrSI05Nf/aQZ6w7q/WX7NHtTqh4b2krnt4kPqMbyoxe0UNekGDWJC/df23X4hN5ctFt39musBjXDTKwO+CViyBbSJC5c13ZLlERCHAAAAAgESbFhuuvsxv4bF1l5br2xcLdenLtDW1OzTK4OwO+RV+rsw1AX54gDAACg4sSGu/Tcle01+dZuSooNU3p2vkZOXqub312l/Rm5Zpf3u9lshoa0ji/TEH/1h12asnK/+j/7g8ZOXaftadkmVgiURdfVQiKDnUqIDpEkOUmIAwAAAAEn1GnX05e107AOddW7Saz/+ser9mvOljR5vZytBlhNTgEJcQAAAFSunk1i9c2YPrpnYFM57YbmbzuswRMW6NUFu+Qu9Jpd3p9yZZf6OvusWvL6pM/XH9I5Exbq9vdX68cDx80uDTC3IT5+/Hh16dJFERERiouL0yWXXKJt27aVeU5eXp5GjhypmjVrKjw8XMOHD1daWppJFVc8T2HRDTIHCXEAAAAg4DjsNl3QNkHPXdnenxrPLfDoP1//pNveX60B//tB7y3dq5x8j8mVAihR+v+PIU4S4gAAAKgcwU67xg1upm/G9FW3pBjlub367zdbNfSlxVqz75jZ5f1hnRvG6N2buurL0b2LR8BL321J00UvL9F1b63Q8t1H5fOxSRzmMLXrumDBAo0cOVLLly/XnDlz5Ha7dc455ygnJ8f/nHvvvVezZs3S9OnTtWDBAh06dEjDhg0zseqKs/dIjtYmZ0iSnDYS4gAAAEBV4C706aqu9RUZ7NDeo7l67IvN6j5+rp78+icdPH7S7PKAai+noKgh7rQbsrEWBwAAQCVrEheuqbd31zOXtVWNUKe2pmbrsleX6tHPNyrzpNvs8v6w1nWj9Mo1nTTn3r4a1rGu7DZDi3Yc0VWvL9flry7T/K3pNMZR6QyfhX7XHT58WHFxcVqwYIH69u2rzMxM1apVS5MnT9Zll10mSdq6datatGihZcuWqXv37md8zaysLEVFRSkzM1ORkZEV/Z/wl3z54yGNmrxOknRL7yT948KWJlcEAAAAoLzk5Hv06doDemfJXu05UrQJ2F587trNvZLUqUENkyvEHxFIa83KEqi/Jre8u0pzt6YrzGXX5ieGmF0OAAAAqrGMnAI9+fVP+mTNAUlSrQiX/nlhS13YNsE/hSzQ7M/I1WsLd+nj1QdU4CkaB9+qTqRG9m+i81rHB+x/FypPeaw1LTWXOzMzU5IUExMjSVqzZo3cbrcGDRrkf07z5s2VmJioZcuWmVJjRSp9LoSTkekAAABAlRLmcuj6Hg01d1w/vXVDZ/VsXFOFXp+++jFFwyct1SUTl2jWhkMBe14cEKhOuovOEHc5GJcOAAAAc8WEBenZy9tp8m3d1Cg2TIez8zV6yjrd8M4qJR/NNbu8P6V+TKj+fUkbLX6gv27rk6TQILs2H8rSW4v3mF0aqhHLdF29Xq/Gjh2rXr16qXXr1pKk1NRUBQUFKTo6usxza9eurdTU1NO+Tn5+vrKyssp8BAq351RY32lnRwwAAABQFdlshga2qK3Jt3XXN2P66PJO9RRkt2n9/uMaPWWd+j49X58WpwEAVLxTDXHL3CIBAABANdezcay+GdtH9w5qpiC7TQu3H9bgCQv0yg87A3YTdVxksP5+QUsteXCA7hnYVGMHNfWnwzNz3fpg+T7lFf/bHChvllntjRw5Ups2bdLUqVP/0uuMHz9eUVFR/o/69euXU4UVr6DUH2IOm2XeGgAAAAAVpEVCpJ65vJ2WPDRAYwc1VWx4kFIy85TvCcwbHEAgynMX/f8t2ElCHAAAANbhctg1ZlBTfTO2j3o0qql8j1dPz96mC19crDX7Mswu70+rERakcYObqU/TWv5r7y3bq398vkm3vb/axMpQlVmi6zpq1Ch9+eWXmj9/vurVq+e/Hh8fr4KCAh0/frzM89PS0hQfH3/a13r44YeVmZnp/9i/f39Fll6uCkrd9HI6SIgDAAAA1UWtCJfGDmqmxQ8O0LOXt9OlHer6vzZlZbJufneVVu8N3BsegJWVpFBCaIgDAADAghrXCtfk27rpuSvaKSYsSNvSsjV80jI9PGOjMnPd/ucVen1atuuoZq4/qGW7jqrQ6/uNV7WWhKhg1YkK1hWdT4VcTxYU6nhugYlVoSpxmPnDfT6fRo8erc8++0w//PCDkpKSyny9U6dOcjqdmjt3roYPHy5J2rZtm5KTk9WjR4/TvqbL5ZLL5arw2itCmTPESYgDAAAA1U6w067LOp3aJOzz+fT24j3akX5CvZvEqnPDGBOrA6qmks3poUE0xAEAAGBNhmFoWMd66n9WnMZ/85M+Xn1AU1Yma86WVP3jwpYKstv0ry+3KCUzz/89CVHBemxoSw1pnWBi5b/P5Z3r6+L2dWW3nQqLfrRinybM2a5ruzfQLX2SFBcRbGKFCHSmNsRHjhypyZMna+bMmYqIiPCfCx4VFaWQkBBFRUXplltu0bhx4xQTE6PIyEiNHj1aPXr0UPfu3c0svUKUbog7OEMcAAAAqPYMw9Br13XSh8uTdXnnU43y2ZtS9FNKtq7t3kC1IgJzQzBgFQWeooQ4DXEAAABYXY2wID19WTsN71hPj3y2UbsO52jM1PWnfW5qZp7u+nCtJl3bMSCa4kGOskHRxTuPKKegUK8t3K13lu7VlZ3r645+jVSvRqhJFSKQmRpDnjRpkjIzM3X22WcrISHB/zFt2jT/cyZMmKALL7xQw4cPV9++fRUfH68ZM2aYWHXFKSg8Nb7CaSchDgAAAEBqVCtc/xzaUhHBTklFqfGX5u3UC3N3qNd/5+n+6Ru05VCWyVUCgSs0qCgrcFWXRJMrAQAAAH6fbo1q6usxfXTvoKa/+pySjtMTs7YE1Pj0Eu/c2EVv3dBZHRKjVeDx6oPl+3T2Mz/o/ukbtOvwCbPLQ4AxfWT6mQQHB2vixImaOHFiJVRkrjIj00mIAwAAADgNn0+66+zGemvxHq1LPq5P1hzQJ2sOqEejmrqld5IGNI+TzcZ6Avi9PMU3B+vWCDG5EgAAAOD3czns6ppUU9KOX32OT1JKZp5W7slQj8Y1K6228mAYhga2qK0BzeO0bPdRTZy/U0t2HtUnaw7o07UHdH7rBN3dv7Fa1Ykyu1QEAFMb4ijL7Sk1Mp0zxAEAAACchs1m6MK2dXRh2zpam3xMby/eo282pWrZ7qNatvuoGtYM1U29knRZp3oKc7HkA84kv3hkusvJOhwAAACBJT0778xP+gPPsyLDMNSzcax6No7VuuRjmjh/l77/KU1fbUzRVxtT1P+sWho1oIk6NYgxu1RYGKs9C+EMcQAAAAB/RMfEGnp5REctfKC/7ujXSJHBDu09mqvHvtisHuPnavzXP+ng8ZNmlwlY2ok8jyRp39FckysBAAAA/pi4iODf9bzXFuzWlz8eUkGpYGYg6pBYQ2/e0FnfjOmjoe3qyGZI87cd1vBJyzRy8lqzy4OF0RC3kNJniAdxhjgAAACA36ludIgePq+Flj08UP+6uJWSYsOUlefRawt3q+/T8/XgJz+aXSJgWfnFNwX3Hc0xuRIAAADgj+maFKOEqGCdKWK5JSVLoyavU8//ztVTs7cqOcA3g7ZIiNRLV3fQ3PvO1pWd68tpN9SqTqT/616vT94APDcdFYeuq4UEO22yF5/156AhDgAAAOAPCnM5dH2Phpo7rp/euqGzejauqUKvTyFBdv9zfD6fPIWBnQoAyovX61PJbbLm8ZG/+VwAAADAauw2Q48NbSlJv2iKG8Uf/7mktUYPaKK4CJeOnCjQpB92qd+z83X92yv17ebUgF4fJsWG6anL2mrB3/rr+h4N/de/25Km815YpNmbUswrDpbCgXIW8tjQVlq1N0ObDmYxMh0AAADAn2azGRrYorYGtqitn1KyFB3q9H9t9b5jGjNlnW7r20g39UoysUrAfAWlbv51alDDxEoAAACAP2dI6wRNurajnpi1RSmZp84Kj48K1mNDW2pI6wRJ0j0Dm2ruT2n6aEWyFu04ooXbD2vh9sOqHenSlV0SdVWX+qoTHWLWf8Zf8vO631u6V9vSsrXpYJb/vx/VGw1xi3F7ivamMzIdAAAAQHlokVA29Tpt1X4dyszTttRskyoCrCPPXeh/7HKwDgcAAEBgGtI6QYNbxmvlngylZ+cpLiJYXZNi/FOJJclpt2lI6wQNaZ2gfUdzNGXlfk1fvV9pWfl6ce4OvTxvhwY0j9OIbonq1yyuzPcGmlev66QPlu3V1V0T/ddW7D6qzYeydHXXxDJT1FA90BC3GLe3aHe6I4D/oAEAAABgXf++pLW6JsWoY+KpNOymg5l6bs523dI7ST0b15RhsB5B9VByfrjNEL/vAQAAENDsNkM9Gtf8Xc9tUDNMD53XXPcObqrvNqfpoxX7tHx3hr7/KV3f/5SuutEhuqpLfV3Zpb7iIoMruPLyFxXi1KgBTctce27Odq3Yk6GX5+/ULb2TdF2PBooMdv7KK6CqoSFuIf/5aosOHjspiTPEAQAAAFSMYKddV3SuX+baW4v3aN7WdM3bmq7m8RG6uXeSLmpXR8FOds2jast3FzXEvT5pf0auGsaGmVwRAAAAUHlcDruGtqujoe3qaGf6CU1ZmaxP1hzQweMn9b852/X83B0a3KK2rumeqF6NY2UL0DCnz+fTxe3r6lDmSe3POKlnvt2mVxfs0g09Gurm3kmKCQsyu0RUMMPn8/nMLqIiZWVlKSoqSpmZmYqMjDzzN5hoxBvLtXTXUUnSrFG91aZelMkVAQAAAKgOdh8+oXeW7NUnaw7oZPEI6djwIF3TrYGu7d5AtSJcJldoPYG01qwsgfhrsj01S+c8v0iStPLvAxUXEXjpFwAAAKA85bkL9fXGFE1ekazV+475ryfGhGpEt0Rd1qmeYsMDc43oKfRq1o+H9Mr8XdqRfkKSFOK06+quibq9byPFR7EesKLyWGvSELeQFbuP6tb3Vis736NvxvT5xVl/AAAAAFCRjucWaOqq/Xpv6V6lZOZJkoLsNl3Uvo5u7pWklnVYo5QIpLVmZQnEX5PVezN02avLJEmbnzhXYS4G6QEAAAAltqVma/KKfZqx9qCy8z2SJKfd0JDWCRrRNVHdG8UE5NFDXq9P321J08T5O7XxYKakov+uyzrV0539GqtBTSZHWQkN8d8h0Bbk7f/1nY7nuvX9uL5qEhdhdjkAAAAAqiF3oVffbErVW4v3aMP+4/7rPRvX1M29kjSgeVzAjsorL4G21qwMgfhrMu+nNN383mpJ0u4nz6/2v68BAACA08kt8OjLDSn6aMU+bTiQ6b/eqFaYRnQtSo1Hhwbe2HGfz6dFO47o5fk7tXJPhiTJZkgXtauju/s3UbPa9OmsoDzWmmx9thi3p+j8MidniAMAAAAwidNu00Xt6uiidnW0Zt8xvb14j77ZlKKlu45q6a6jahQbppmjeiki2Gl2qcBfknnSLUkyDNEMBwAAAH5FaJBDV3Spryu61Nemg5n6aEWyZq4/qN2Hc/Tvr37S099u04VtEnRN90R1TKwRMKlxwzDUt1kt9W1WS6v2ZujleTu1YPthfb7+kHySXriqg9klopzQELeQeVvTlF/cEHfQEAcAAABgAZ0a1FCnBjV04Fiu3l+2T1NWJishOrhMMzwrz61ImuMIQFl5RWMf7QFyww4AAAAwW+u6URo/rI0eOb+5Zq4/pI9WJOunlCzNWHdQM9Yd1Fm1I3RN90Rd0qFuQK0TuzSM0Xs3d9Wmg5maOH+n7j67if9ryUdzdfD4yYAdEQ8a4pbyxKwt8niLJtg72ZkOAAAAwELq1QjVI+e30D0Dm+pYToH/enpWnvo984MGtojTs5e3U7DTbmKVwB+TnVeUELezBgcAAAD+kIhgp67t3kDXdEvU+v3H9dGKZH354yFtS8vWP2du1vivt+qidnV0TfdEta0XbXa5v1vrulGadG2nMtdenLdDn6w5oDv7NdZD5zU3qTL8FTTELaSgOB0ukRAHAAAAYE3hLofCXaeWkvO3peuku1ApmXllmuE+n4+d87C8E/lFCXEHDXEAAADgTzEMQx0Sa6hDYg3944KWmrHugCavSNaO9BOatnq/pq3er9Z1I3VNtwa6qF0dhbkCqzXp8/kU7nIoyGHTua1q+6/n5HsU7LSzuTZABNbvuirOXXiqIe60838gAAAAANZ3ZZdEtakbrYJS65ljOQW67NWlurJLfV3ZJVFRIYEzJg/Vi78hzqZ0AAAA4C+LCnXqpl5JurFnQ63ae0yTV+zT1xtTtelglh6esVH/+eonXdKhjkZ0baCWdSLNLvd3MQxDj1/USmMGNlWNsCD/9We+3aZFOw7rrrOb6OL2deRkTWFpNMQtpKBMQ5z/4wAAAAAIDD+/kTF9zX7tOpyjJ7/eque/36HLO9XTTb2S1DA2zKQKgdPLKW6IB7EpHQAAACg3hmGoa1KMuibF6J9DC/TpmgOavDJZe47k6MPlyfpwebI6JEZrRNdEXdi2jkKCrH/0VulmeIHHq282pSgtK1/3T9+g57/frjv6NdblnepxjJhF0XW1ELfH53/MuDYAAAAAger6Hg319PC2Oqt2hHILCvXesn3q/78fdOt7q7R01xH5fL4zvwhQCXLyCyVJQQ5uWgEAAAAVISYsSLf1baS54/pp8q3ddEGbBDlshtYlH9ffPvlR3Z78Xo9/sVk70rLNLvV3C3LY9P24fnrovOaKDQ/SgWMn9Y/PN6nP0/P1+sJd/klUsA7DV8XvRGRlZSkqKkqZmZmKjLT2+IUmj3wtj7fo7dgz/nzO2wMAAAAQ0Hw+n5bsPKq3l+zRvK3p/ustEiJ1c6+Guqh9HbkCtBEZSGvNyhKIvybXvbVCi3YcUVJsmObff7bZ5QAAAADVQnp2nqavPqApK5N14NhJ//WuDWN0TfdEDWkdHzBrxTx3oaat2q/XFuzSocw8SVJUiFM39WqoG3s2VHRo0BleAWdSHmtNGuIW4fP5lPTw15Ikp83QjifPN7kiAAAAACg/uw6f0LtL9uqTNQd00l2Uyo0Nd+m67g10TfdExYa7TK7wjwmUtWZlCsRfk8smLdXqfcfUPD5Cs8f2NbscAAAAoFrxen1auOOwJq9I1tyt6SosDo3WCHXq8s71dXXXRCUFyNFbBR6vPl9/UJN+2KU9R3IkSWFBdl3bo4Fu6Z2kuIhgkysMXDTEf4dAWZAXeLxq9ug3kqQQp00//d95JlcEAAAAAOXveG6Bpqzcr/eW7lVqVtHu+SCHTR/f0UPt60crJfOk9hzJUVJsmBKiQkyu9tcFylqzMgXir8nfP9uoj1Yk68ou9fXU8LZmlwMAAABUW6mZeZq2ar+mrkpWSnHSWpJ6NampEV0baHDL2gpyWP8k6EKvT19vTNHE+Tu1NbVoDLzLYdP955yl2/o2Mrm6wFQea01HOdeEP8ld6PU/dtqt/39oAAAAAPgzokODdNfZjXVrnyR9sylVby3eo8NZeWpdJ1LTViXr4Rkb5fVJNkMaP6yNruySaHbJqMIctqKjyuIiAmtCAQAAAFDVxEcFa8ygphrZv7F+2HZYH63Ypx+2H9aSnUe1ZOdRxYa7dEXnerq6a6Lqx4SaXe6vstsMDW1XRxe2TdC8rel6ef5OrUs+rvgoEuJmoiFuEWUb4pwdDgAAAKBqc9ptuqhdHQ1tm6AjJwp0+ES+vxkuSV6f9MiMTerbrJalk+IIbPmeorV4sDMwzicEAAAAqjqH3aZBLWtrUMva2p+Rq2mr9mva6v06nJ2vV37YpUkLdqlv01q6pluiBjSPk8OiIVPDMDSwRW0NaB6nVXuPqVODGv6vvbV4j9bsy9A9A5uqeXxgTNcKdDTELaKgVEPcYbPm/3kBAAAAoLwZhqFaES4t3XXE3wwvUejzae+RXBriqDA7009Ikk7kuU2uBAAAAMDP1Y8J1f3nnqUxg5rq+y1p+mhFshbvPKIF2w9rwfbDio8M1pVd6uuqrvUtu240DENdk2L8n3sKvXp94S6lZeWrX7NaNMQrCQ1xi3AXnrrz4wyAMxAAAAAAoDwlxYbJZqhMU9xuGGoYa91ReAh8u48UNcSP5hSYXAkAAACAX+O023RemwSd1yZBe4/kaMrKZE1fc0CpWXl6Ye4OvTRvhwY0r61ruiWqb7NastusO4nZYbfpvZu76sPl+3Rph3r+6/O2pinIblevJjVlGNatP1DRebUIT6FXJb+/gyw63gEAAAAAKkpCVIjGD2sje/HCyG4YenJYa8vu8kfVEB0SJEmKj+Q8PwAAACAQNIwN08Pnt9Cyhwfohavaq1tSjLw+6fuf0nTTu6vU9+n5mjh/p9Kz88wu9Vc1j4/Uvy9po6DigKyn0KvHv9iia99aoUteWarvNqfK+/MRavhLSIhbRIOaYfrolm4a8eYKOThDHAAAAEA1dGWXot38e4/kqmFsKM1wVLiE6GDtPpKjxnHhZpcCAAAA4A9wOey6uH1dXdy+rnamZ2vyiv36ZM1+HTx+Us98u00T5mzXOa1qa0TXBurZuKZsFk6N53m8GtA8TlNXJWvD/uO6/YM1Oqt2hO7u31gXtEmw7DnpgYRfQQtxF+/24AxxAAAAANVVQlSIejSuSTMclSLf7ZUkuTi6DAAAAAhYTeIi9M+hLbXy74P0v8vbqWNitDxen77emKpr31qhAf/7Qa8t2KWjJ/LNLvW0wl0OPX5RKy1+cIDuOruxwl0ObUvL1pip6zXwuQWaujJZBR6v2WUGNFZ8FuIu/s3MGeIAAAAAAFS83IJCSUXpEgAAAACBLdhp1/BO9TTj7l76ZkwfXde9gcJdDu09mqvx32xVj/HzdM+UdVqx+6h8PuuNJI8Nd+nBIc215KEBum9wM9UIdWrf0Vw9NGOj+j0zX28v3qOTxWsY/DF0Xi1iR1q2Js7fKUlyWnhsAwAAAAAAVYHP59OWlCxJUm6Bx+RqAAAAAJSnFgmR+r9LWmvFIwP132Ft1KZulAoKvfpiwyFd+fpyDZ6wUG8v3qPMXLfZpf5CVIhTowc21eIHB+jRC1qodqRLKZl5+teXW9TrqXmaOH+nsvKsV7eV0RC3iMPZ+Vq3/7gkcYY4AAAAAAAVLM99auRgVKjTxEoAAAAAVJQwl0NXdU3UrNG9NWtUb13dtb5Cg+zamX5C//pyi7o++b3u+3iD1uw7ZrnUeJjLoVv7NNLCB/rrP5e2Vv2YEGXkFOiZb7fpzUV7zC4voNAQt4ikWmG6rGNdSZLTztsCAAAAAEBFyimVCo8MpiEOAAAAVHVt6kVp/LC2WvHIQP3fJa3VPD5C+R6vPl17QMMnLdV5LyzSB8v2Ktti6WuXw65rujXQ/PvO1oQr26ldvSjd0KOB/+s70rKVknnSxAqtj86rRSREhahrUk1JNMQBAAAAAKhoufmnzt4LDeIMcQAAAKC6iAh26rruDfTNmD6acXdPDe9YTy6HTVtTs/WPmZvV7cm5eujTH7XxQKbZpZbhsNt0aYd6mjmqt2qGu/zXH/18k/o+PV+zNhwysTprc5hdAE5xe4vGtTk4QxwAAAAAgApVOiHuctAQBwAAAKobwzDUMbGGOibW0D8vbKlP1x7Q5JXJ2pl+QlNX7dfUVfvVpm6UrumWqKHt6ijMZb22ak6+RyWD3js3rOG/7i70EsAtxXrvXDWVlpWn7anZkkiIAwAAAABQ0U6UGoPocrAOBwAAAKqzqFCnbu6dpJt6NdTKPRn6aEWyZm9K1caDmXpoxkb9+6ufdGmHuhrRLVEtEiLNLtcvzOXQx3f00L6jOUqICvFfv+vDNTIMQ6P6N1G7+tHmFWgRNMQtYuH2w3pv2T5JktNOQhwAAAAAgIqUnU9CHAAAAEBZhmGoW6Oa6taopo6eyNcnaw5oyspk7T2aqw+W79MHy/epY2K0RnRroAvbJijYaY21RIOaYf7HB47lat7WdHl90pwtaerTNFZ3n91E3RvFyDCqZw+SLdAW4S70+R87SIgDAAAAAFChMk+WSog7WYcDAAAAKKtmuEt39GusefedrQ9v6abz28TLYTO0Nvm47p++Qd2enKt/zdqineknzC61jHo1QvXdvX01vGM92W2GFu04oqvfWK7LXl2m+VvT5fP5zvwiVQwJcYtwF3r9j0mIAwAAAABQsTJzTzXEg9iYDgAAAOBX2GyGejeNVe+msUrPztP01Qc0eUWyDh4/qbeX7NHbS/aoW1KMRnRL1JDW8ZaYQNUkLkL/u6Kdxg5qqtcW7tLHqw9ozb5juundVWqZEKmR/ZuoXf0oJWfkKik2rMy49aqIhrhFlG2IsxAHAAAAAKAiZecVjUw3VHSDCwAAAADOJC4iWCP7N9Gd/Rpr4Y7D+mh5suZtTdOKPRlasSdDMWFBurxTPV3dNVENY8PO/IIVrH5MqP59SRvdM6Cp3ly8Rx8u36ctKVkaOXmt/zk2Qxo/rI2u7JJoYqUVi86rReR7TjXEHTbeFgAAAAAAKlJJQ9xOMxwAAADAH2S3Gep/VpzevKGzFj84QGMGNlV8ZLAycgr02sLdOvvZH3Ttmyv0zcaUMqFYs8RFBuuR81toyYMDdFOvhmW+5vVJj8zYpJTMk+YUVwnovFoEI9MBAAAAAKg8WflFI9MdrMEBAAAA/AV1okN07+BmWvxgf71+XSf1a1ZLhiEt3nlEd320Vj3/O0/PfrtNB47lml2qaoQFaXDL2r+4Xujzae8R8+urKIxMtwhGpgMAAAAAUHlyihPiTGkDAAAAUB4cdpvOaRWvc1rFa39GrqasTNbHqw/ocHa+Xp6/UxN/2Kmzm9XSiG4N1P+sWnKY1A9Mig2TzShKhpewG4YaxoaaUk9lYNVnEe7CU7/r2J0OAAAAAEDFGlSciogOdZpcCQAAAICqpn5MqB4Y0lxLHxqgiSM6qleTmvL5pPnbDuu291erz9Pz9fz325WamVfptSVEhWj8sDayG0X9SLth6MlhrZUQFVLptVQWEuIWUeAhIQ4AAAAAQGWJCQuSJEUE0xAHAAAAUDGCHDZd0DZBF7RN0J4jOZqyMlnTV+9XSmaenv9+h16at1MDmsfpmm6J6tu0lmy2ygnNXtklUX2b1dLeI7lqGBtapZvhEg1xyyg9Mt1RSb/ZAQAAAACorvLcRetwl4NN6QAAAAAqXlJsmB45v4XGDW6mbzen6qMVyVq5J0NztqRpzpY01asRoqu7JuqKzvVVK8JV4fUkRIVU+UZ4CRriFsEZ4gAAAAAAVJ7lu48UP/L95vMAAAAAoDwFO+26uH1dXdy+rnakZeujFcmasfaADhw7qWe+3aYJc7br3FbxGtEtUT0a1ay01HhVRkPcIkqfIe7kDHEAAAAAACrUt5vSJEkeLw1xAAAAAOZoWjtCj1/USg8Oaa4vfzykySuTtS75uL7amKKvNqYoKTZMV3etr8s61fcf+4Q/joa4RRSUHplOQhwAAAAAgArVoGaoDhw/qXAXt0YAAAAAmCskyK7LO9fX5Z3ra8uhLE1euU+frzukPUdy9OTXW/Xst9t1Xpt4XdOtgbo0rCHDIFz7R9B5tYhnLmurno1rSmJkOgAAAAAAFW1Qy9qSpNjwij+bDwAAAAB+r5Z1IvXvS9poxSMDNX5YG7WuG6mCQq9mrj+kK15bpnMmLNQ7S/YoM9dtdqkBg23QFhEa5FDJZg5GpgMAAAAAULHyPUWT2lwOu8mVAAAAAMAvhbkcurproq7umqgfDxzXR8uT9cWGQ9qRfkJPzNqip2Zv1YVt6+iabolqXz+a1PhvoCFuISXniDtsJMQBAAAAAKgoPp9PJwsKJUkuJ2twAAAAANbWtl602l4Wrb9f2EKfrzuoj5Yna1tatj5Zc0CfrDmgFgmRuqZboi7pUJdjoU6DVZ9FTPphl3YfPiGJhDgAAAAAABUp3+PVC3N3SJLspCgAAAAABIjIYKeu79FQs8f20ad39dCwDnUV5LDpp5QsPfr5JnX9z/d6eMZGbTqYaXaplsIWAYv4dnOqjpwokMQZ4gAAAAAAVKScfI//cZiLkekAAAAAAothGOrUIEadGsTon0Nb6pM1BzR5ZbJ2H87RlJXJmrIyWe3qRWlEt0QNbVdHoUFlW8KFXp9W7slQenae4iKC1TUpRnZb1d0sTEPcIkZ0S9SBY7k6cqJADhLiAAAAAABUmJz8Qv/jYCcNcQAAAACBKzo0SLf2aaRbeidp+e4MTV6ZrNmbUrThQKY2HNiof3/5ky7tWFcjuiWqeXykZm9K0ROztiglM8//GglRwXpsaEsNaZ1g4n9JxaEhbhFXdK6v1xfuLmqIc4Y4AAAAAAAVJqfgVELc5aAhDgAAACDwGYahHo1rqkfjmjpyojg1viJZyRm5en/ZPr2/bJ8a1QrT7sM5v/je1Mw83fXhWk26tmOVbIrTebUQd6FXkhTkICEOAAAAAEBFyS3TEOfWCAAAAICqJTbcpTv7NdYP95+tD27pqiGt4mUzdNpmuCT5iv/3iVlbVOj1nfY5gYxVn0VsT8vWyYKikW0kxAEAAAAAqDilR6a7nKzBAQAAAFRNNpuhPk1r6dXrOunlER1/87k+SSmZeVq5J6NyiqtErPos4to3Vyg9O1+SOEMcAAAAAIAKlJPPyHQAAAAA1UvJpOozSc/OO/OTAgwNcYso/ZswyM7bAgAAAABARckpKJUQZ2Q6AAAAgGogLiK4XJ8XSFj1WYS78NQ8fgcNcQAAAAAAKgxniAMAAACobromxSghKli/NqfakJQQFayuSTGVWValYNVnEQWlEuIOGyPTAQAAAACoKGXPEGdkOgAAAICqz24z9NjQlpL0i6Z4yeePDW0pexXsU9IQtwCfz1d2ZDq70wEAAAAAqDClE+LBrMEBAAAAVBNDWido0rUdFR9Vdix6fFSwJl3bUUNaJ5hUWcVymF0ApEKvT75TE9NJiAMAAAAAUIFO5JcamU5CHAAAAEA1MqR1gga3jNfKPRlKz85TXETRmPSqmAwvQUPcAkqfHy5xhjgAAAAAABUpt/TIdBLiAAAAAKoZu81Qj8Y1zS6j0rDqs4DS54dLUhANcQAAAAAAKsx1PRoo2Fm09qYhDgAAAABVG6s+C3D/rCHusFfdkQQAAAAAAJitdd0oeYuHtTEyHQAAAACqNhriFvCLhngVntEPAAAAAIDZfD6fCjxFa3ES4gAAAABQtbHqswC359QZ4nZDMgwa4gAAAAAAVJTZm1P9j2mIAwAAAEDVxqrPAmauP+h/XOiTpq1KNrEaAAAAAACqtqe+2ep/7HIwMh0AAAAAqjIa4iZLyTyp577fXubaIzM2KSXzpEkVAQAAAABQtbVIiPQ/dtqZ0gYAAAAAVRkNcZPtOZIjn6/stUKfT3uP5JpTEAAAAAAAVdwj57eQJAU7bRxbBgAAAABVHA1xkyXFhsn2s7W33TDUMDbUnIIAAAAAAKji8j1eSVKwk3HpAAAAAFDV0RA3WUJUiMYPa1OmKf7ksNZKiAoxrygAAAAAAKqwfE+hJMnl4LYIAAAAAFR1rPws4MouiZp0TUdJUr3oYF3ZJdHkigAAAAAAqJqOnsjX8ElLJUlBdm6LAAAAAEBVx8rPIiJCnJKkkCCHyZUAAAAAAFB15RYUKs/NyHQAAAAAqC5oiFuEp9AnSXKwOx0AAAAAgApzIt/jf+xysgYHAAAAgKqOlZ9FeLxFu9OdduMMzwQAAAAAAH9WbkGphriDhDgAAAAAVHU0xC3CXZIQt9EQBwAAAACgouTkF/ofuxzcFgEAAACAqo6Vn0W4C0sS4rwlAAAAAABUlLIJcdbgAAAAAFDVsfKziJIzxGmIAwAAAABQccomxBmZDgAAAABVHd1XiyhJiDs4QxwAAAAAgApTOiEe7OS2CAAAAABUdaz8LMJNQhwAAAAAgAp3goQ4AAAAAFQrdF8twuMtOUOchDgAAAAAABWlzBniJMQBAAAAoMpj5WcRJQlxh423BAAAAACAipKele9/7HKwBgcAAACAqo6Vn0WUnCHOyHQAAAAAACrGtFXJmrZ6v//zXek5JlYDAAAAAKgMdF8twlPIyHQAAAAAACpKSuZJPTxjY5lr87elKyXzpEkVAQAAAAAqAw1xi/CPTKchDgAAAABAudtzJEdeX9lrPkl7j+SaUg8AAAAAoHLQELcIj7coIc4Z4gAAAAAAlL+k2DDZfrYH3TCkhrGh5hQEAAAAAKgUdF8toiQhHuTgLQEAAAAAoLwlRIVo/LA2shunuuLDOtRVQlSIiVUBAAAAACoa3VeLcBeWJMQZmQ4AAAAAQEW4skuiFj/UX23qRkqSejeNNbkiAAAAAEBFoyFuER7/GeK8JQAAAAAAVJSEqBCFOB2SpGCH3eRqAAAAAAAVje6rRZQkxIPsJMQBAAAAAKhI+Z5CSZLLyW0RAAAAAKjqWPlZhJuEOAAAAAAAlSLfU7Qp3UVCHAAAAACqPLqvFuHxcoY4AAAAAACVIc9dnBB3cFsEAAAAAKo6Vn4W4R+ZzmIcAAAAAIAKRUIcAAAAAKoPuq8W4R+ZbuMtAQAAAACgIvkb4pwhDgAAAABVHis/i/AUJ8QddkamAwAAAABQkfIZmQ4AAAAA1QYrP4vweIsS4k4a4gAAAAAAVChGpgMAAABA9UFD3CIKihfjTjtvCQAAAAAAFcVT6PVvSichDgAAAABVHys/iyhZjHOGOAAAAAAAFaeg+MgySQp2khAHAAAAgKqO7qtFlJwhzsh0AAAAAAAqTr77VEM8iIQ4AAAAAFR5rPwsoqCw5Axx3hIAAAAAACpKvufUhnS7jU3pAAAAAFDV0X21iJKEuIOEOAAAAAAAFSbfUyhJcjkYlw4AAAAA1QENcYsoOUOchDgAAAAAABUnr3hkuotx6QAAAABQLbD6s4gC/8g23hIAAAAAACrKqYQ4628AAAAAqA5Y/VmEx1s8Mp3zywAAAAAAqDAlZ4i7nIxMBwAAAIDqgIa4RXgKGZkOAAAAAEBFy2dkOgAAAABUK6z+LMJdWDIynYQ4AAAAAAAVhZHpAAAAAFC9sPqzCDcJcQAAAAAAKpx/ZLqDkekAAAAAUB3QfbUI/xniJMQBAAAAAKgw/oS4k1siAAAAAFAdsPqzAJ/P50+IO2y8JQAAAAAAVJRTZ4iTEAcAAACA6oDuqwV4vD7/4yBGpgMAAAAAUGH8I9NJiAMAAABAtcDqzwI8haca4oxMBwAAAACg4uS5i0emO7glAgAAAADVAas/C3AXnx8u0RAHAAAAAKAi+RPijEwHAAAAgGqBhrgFuD2nGuJOzhAHAAAAAKDC5HtIiAMAAABAdcLqzwJKdqcbhrRiT4YKS50pDgAAAAAAykeh16c9h3MkSUdz8ll/AwAAAEA1EBAN8YkTJ6phw4YKDg5Wt27dtHLlSrNLKjezN6Xo4olLJEk+n3T1G8vV+6l5mr0pxeTKAAAAAADVUVVdg8/elKLeT83T15tSJUmzNqSw/gYAAACAasDyDfFp06Zp3Lhxeuyxx7R27Vq1a9dO5557rtLT080u7S+bvSlFd324Voez88tcT83M010frv1/9u47PIpq/+P4Z3bT24b0UBNCMyQgICAKiIKAKBZQEcT286pw0WsveL0CNrxey7WiV8GKYAMVFBCQIkWqdKQGQkkhBJKQkLY7vz9CVkINJdns5v16nn3MzpyZ+W4yRA6fOefQKQcAAAAAVCtP7YOX97/TcgorbKf/DQAAAACer8YH4q+//rruuece3XXXXUpMTNT777+vgIAAjRs3ztWlnRO7w9SoKRt0osnZyreNmrKB6dsAAAAAANXGE/vg9L8BAAAAoHar0YF4cXGxVqxYoR49eji3WSwW9ejRQ4sXLz7hMUVFRcrNza3wqomWpmQf92T60UxJaTmFWpqSXX1FAQAAAABqrTPtg9P/BgAAAAC4gxodiGdlZclutys6OrrC9ujoaKWnp5/wmNGjR8tmszlfDRo0qI5Sz1hm3sk742fTDgAAAACAc3GmfXD63wAAAAAAd1CjA/GzMXz4cOXk5Dhfu3btcnVJJxQV7Hde2wEAAAAAUJ3ofwMAAAAA3IGXqws4lYiICFmtVmVkZFTYnpGRoZiYmBMe4+vrK19f3+oo75x0iA9TrM1P6TmFJ1zHzJAUY/NTh/iw6i4NAAAAAFALnWkfnP43AAAAAMAd1OgR4j4+PmrXrp1mz57t3OZwODR79mx16tTJhZWdO6vF0Ii+iZLKOt9HK38/om+irJZj9wIAAAAAcP55ah+c/jcAAAAA1G41OhCXpEceeUQffvihPv30U23cuFFDhw5Vfn6+7rrrLleXds56J8VqzOC2irFVnJYtxuanMYPbqndSrIsqAwAAAADURp7aB6f/DQAAAAC1V42eMl2SBgwYoH379unZZ59Venq6LrzwQk2fPl3R0dGuLu286J0UqysTY7Q0JVuZeYWKCi6bpo0n0wEAAAAA1c2T++D0vwEAAACgdjJM0zzREloeIzc3VzabTTk5OQoJCXF1OQAAAAAAD0Bf83h8TwAAAAAA59v56GvW+CnTAQAAAAAAAAAAAAA4GwTiAAAAAAAAAAAAAACPRCAOAAAAAAAAAAAAAPBIBOIAAAAAAAAAAAAAAI9EIA4AAAAAAAAAAAAA8EgE4gAAAAAAAAAAAAAAj0QgDgAAAAAAAAAAAADwSATiAAAAAAAAAAAAAACPRCAOAAAAAAAAAAAAAPBIBOIAAAAAAAAAAAAAAI9EIA4AAAAAAAAAAAAA8EgE4gAAAAAAAAAAAAAAj0QgDgAAAAAAAAAAAADwSATiAAAAAAAAAAAAAACPRCAOAAAAAAAAAAAAAPBIBOIAAAAAAAAAAAAAAI9EIA4AAAAAAAAAAAAA8EgE4gAAAAAAAAAAAAAAj0QgDgAAAAAAAAAAAADwSATiAAAAAAAAAAAAAACPRCAOAAAAAAAAAAAAAPBIBOIAAAAAAAAAAAAAAI/k5eoCqpppmpKk3NxcF1cCAAAAAPAU5X3M8j4n6H8DAAAAAM6/89H/9vhAPC8vT5LUoEEDF1cCAAAAAPA0eXl5stlsri6jRqD/DQAAAACoKufS/zZMD3+c3eFwaO/evQoODpZhGK4u56Ryc3PVoEED7dq1SyEhIa4uB6g07l24I+5buCvuXbgr7l24q1Pdu6ZpKi8vT3Xr1pXFwmpkEv1voKpx78Jdce/CXXHvwh1x38JdVXX/2+NHiFssFtWvX9/VZVRaSEgIv6Tglrh34Y64b+GuuHfhrrh34a5Odu8yMrwi+t9A9eDehbvi3oW74t6FO+K+hbuqqv43j7EDAAAAAAAAAAAAADwSgTgAAAAAAAAAAAAAwCMRiNcQvr6+GjFihHx9fV1dCnBGuHfhjrhv4a64d+GuuHfhrrh3PRM/V7gr7l24K+5duCvuXbgj7lu4q6q+dw3TNM0qOTMAAAAAAAAAAAAAAC7ECHEAAAAAAAAAAAAAgEciEAcAAAAAAAAAAAAAeCQCcQAAAAAAAAAAAACARyIQBwAAAAAAAAAAAAB4JALxGuDdd99VXFyc/Pz81LFjRy1dutTVJQEVjBw5UoZhVHi1aNHCub+wsFDDhg1TeHi4goKC1L9/f2VkZLiwYtRW8+fPV9++fVW3bl0ZhqHvv/++wn7TNPXss88qNjZW/v7+6tGjh7Zs2VKhTXZ2tm699VaFhIQoNDRUd999tw4dOlSNnwK10enu3TvvvPO438O9e/eu0IZ7F9Vt9OjRat++vYKDgxUVFaXrr79emzZtqtCmMn9HSE1N1dVXX62AgABFRUXp8ccfV2lpaXV+FNQylbl3u3Xrdtzv3SFDhlRow73rvuiDoyaj/w13Qf8b7or+N9wR/W+4q5rU/yYQd7GvvvpKjzzyiEaMGKGVK1eqdevW6tWrlzIzM11dGlBBy5YtlZaW5nwtWLDAue/hhx/WlClT9M0332jevHnau3ev+vXr58JqUVvl5+erdevWevfdd0+4/5VXXtFbb72l999/X0uWLFFgYKB69eqlwsJCZ5tbb71V69ev18yZMzV16lTNnz9f9957b3V9BNRSp7t3Jal3794Vfg9PmDChwn7uXVS3efPmadiwYfr99981c+ZMlZSUqGfPnsrPz3e2Od3fEex2u66++moVFxdr0aJF+vTTT/XJJ5/o2WefdcVHQi1RmXtXku65554Kv3dfeeUV5z7uXfdFHxzugP433AH9b7gr+t9wR/S/4a5qVP/bhEt16NDBHDZsmPO93W4369ata44ePdqFVQEVjRgxwmzduvUJ9x08eND09vY2v/nmG+e2jRs3mpLMxYsXV1OFwPEkmZMnT3a+dzgcZkxMjPmf//zHue3gwYOmr6+vOWHCBNM0TXPDhg2mJHPZsmXONtOmTTMNwzD37NlTbbWjdjv23jVN07zjjjvM66677qTHcO+iJsjMzDQlmfPmzTNNs3J/R/j5559Ni8VipqenO9uMGTPGDAkJMYuKiqr3A6DWOvbeNU3TvOyyy8wHH3zwpMdw77ov+uCo6eh/wx3R/4a7ov8Nd0X/G+7Klf1vRoi7UHFxsVasWKEePXo4t1ksFvXo0UOLFy92YWXA8bZs2aK6deuqcePGuvXWW5WamipJWrFihUpKSircxy1atFDDhg25j1GjpKSkKD09vcK9arPZ1LFjR+e9unjxYoWGhuqiiy5ytunRo4csFouWLFlS7TUDR5s7d66ioqLUvHlzDR06VPv373fu495FTZCTkyNJCgsLk1S5vyMsXrxYycnJio6Odrbp1auXcnNztX79+mqsHrXZsfduufHjxysiIkJJSUkaPny4CgoKnPu4d90TfXC4C/rfcHf0v+Hu6H+jpqP/DXflyv631znWjnOQlZUlu91e4YcoSdHR0frzzz9dVBVwvI4dO+qTTz5R8+bNlZaWplGjRqlLly5at26d0tPT5ePjo9DQ0ArHREdHKz093TUFAydQfj+e6Hdu+b709HRFRUVV2O/l5aWwsDDuZ7hU79691a9fP8XHx2vbtm16+umnddVVV2nx4sWyWq3cu3A5h8Ohhx56SJdeeqmSkpIkqVJ/R0hPTz/h7+XyfUBVO9G9K0mDBg1So0aNVLduXa1Zs0ZPPvmkNm3apEmTJkni3nVX9MHhDuh/wxPQ/4Y7o/+Nmo7+N9yVq/vfBOIATuuqq65yft2qVSt17NhRjRo10tdffy1/f38XVgYAtcMtt9zi/Do5OVmtWrVSQkKC5s6dq+7du7uwMqDMsGHDtG7dugprnALu4GT37tFrQCYnJys2Nlbdu3fXtm3blJCQUN1lAqhF6H8DgGvR/0ZNR/8b7srV/W+mTHehiIgIWa1WZWRkVNiekZGhmJgYF1UFnF5oaKiaNWumrVu3KiYmRsXFxTp48GCFNtzHqGnK78dT/c6NiYlRZmZmhf2lpaXKzs7mfkaN0rhxY0VERGjr1q2SuHfhWvfff7+mTp2qOXPmqH79+s7tlfk7QkxMzAl/L5fvA6rSye7dE+nYsaMkVfi9y73rfuiDwx3R/4Y7ov8NT0L/GzUJ/W+4q5rQ/yYQdyEfHx+1a9dOs2fPdm5zOByaPXu2OnXq5MLKgFM7dOiQtm3bptjYWLVr107e3t4V7uNNmzYpNTWV+xg1Snx8vGJiYircq7m5uVqyZInzXu3UqZMOHjyoFStWONv8+uuvcjgczv8RAzXB7t27tX//fsXGxkri3oVrmKap+++/X5MnT9avv/6q+Pj4Cvsr83eETp06ae3atRX+QWnmzJkKCQlRYmJi9XwQ1Dqnu3dPZNWqVZJU4fcu9677oQ8Od0T/G+6I/jc8Cf1v1AT0v+GualT/24RLTZw40fT19TU/+eQTc8OGDea9995rhoaGmunp6a4uDXB69NFHzblz55opKSnmwoULzR49epgRERFmZmamaZqmOWTIELNhw4bmr7/+ai5fvtzs1KmT2alTJxdXjdooLy/P/OOPP8w//vjDlGS+/vrr5h9//GHu3LnTNE3TfPnll83Q0FDzhx9+MNesWWNed911Znx8vHn48GHnOXr37m22adPGXLJkiblgwQKzadOm5sCBA131kVBLnOrezcvLMx977DFz8eLFZkpKijlr1iyzbdu2ZtOmTc3CwkLnObh3Ud2GDh1q2mw2c+7cuWZaWprzVVBQ4Gxzur8jlJaWmklJSWbPnj3NVatWmdOnTzcjIyPN4cOHu+IjoZY43b27detW87nnnjOXL19upqSkmD/88IPZuHFjs2vXrs5zcO+6L/rgqOnof8Nd0P+Gu6L/DXdE/xvuqib1vwnEa4C3337bbNiwoenj42N26NDB/P33311dElDBgAEDzNjYWNPHx8esV6+eOWDAAHPr1q3O/YcPHzb//ve/m3Xq1DEDAgLMG264wUxLS3Nhxait5syZY0o67nXHHXeYpmmaDofD/Ne//mVGR0ebvr6+Zvfu3c1NmzZVOMf+/fvNgQMHmkFBQWZISIh51113mXl5eS74NKhNTnXvFhQUmD179jQjIyNNb29vs1GjRuY999xz3D/cc++iup3onpVkfvzxx842lfk7wo4dO8yrrrrK9Pf3NyMiIsxHH33ULCkpqeZPg9rkdPduamqq2bVrVzMsLMz09fU1mzRpYj7++ONmTk5OhfNw77ov+uCoyeh/w13Q/4a7ov8Nd0T/G+6qJvW/jSMFAQAAAAAAAAAAAADgUVhDHAAAAAAAAAAAAADgkQjEAQAAAAAAAAAAAAAeiUAcAAAAAAAAAAAAAOCRCMQBAAAAAAAAAAAAAB6JQBwAAAAAAAAAAAAA4JEIxAEAAAAAAAAAAAAAHolAHAAAAAAAAAAAAADgkQjEAQAAAAAAAAAAAAAeiUAcAIAa7M4779T1119f7df95JNPZBiGDMPQQw89dM7nCg0NPaNj7rzzTuf1v//++3O6PgAAAAAAp0P/m/43AMBzebm6AAAAaivDME65f8SIEXrzzTdlmmY1VVRRSEiINm3apMDAwHM6z4ABA9SnT58zOubNN9/Uyy+/rNjY2HO6NgAAAAAA9L9Pjv43AKA2IBAHAMBF0tLSnF9/9dVXevbZZ7Vp0ybntqCgIAUFBbmiNEll/2AQExNzzufx9/eXv7//GR1js9lks9nO+doAAAAAAND/Pjn63wCA2oAp0wEAcJGYmBjny2azOTvA5a+goKDjpmzr1q2bHnjgAT300EOqU6eOoqOj9eGHHyo/P1933XWXgoOD1aRJE02bNq3CtdatW6errrpKQUFBio6O1m233aasrKwzrjkuLk4vvPCCbr/9dgUFBalRo0b68ccftW/fPl133XUKCgpSq1attHz5cucxx07ZNnLkSF144YX6/PPPFRcXJ5vNpltuuUV5eXlnXA8AAAAAAKdD/5v+NwCgdiMQBwDAzXz66aeKiIjQ0qVL9cADD2jo0KG66aabdMkll2jlypXq2bOnbrvtNhUUFEiSDh48qCuuuEJt2rTR8uXLNX36dGVkZOjmm28+q+u/8cYbuvTSS/XHH3/o6quv1m233abbb79dgwcP1sqVK5WQkKDbb7/9lFPNbdu2Td9//72mTp2qqVOnat68eXr55ZfPqh4AAAAAAKoC/W8AADwDgTgAAG6mdevWeuaZZ9S0aVMNHz5cfn5+ioiI0D333KOmTZvq2Wef1f79+7VmzRpJ0jvvvKM2bdropZdeUosWLdSmTRuNGzdOc+bM0ebNm8/4+n369NF9993nvFZubq7at2+vm266Sc2aNdOTTz6pjRs3KiMj46TncDgc+uSTT5SUlKQuXbrotttu0+zZs8/6ewIAAAAAwPlG/xsAAM/AGuIAALiZVq1aOb+2Wq0KDw9XcnKyc1t0dLQkKTMzU5K0evVqzZkz54TroW3btk3NmjU76+uXX+tk1z/ZGmhxcXEKDg52vo+NjXXWCwAAAABATUD/GwAAz0AgDgCAm/H29q7w3jCMCtsMw5BU9hS4JB06dEh9+/bVv//97+POFRsbe07XL7/Wqa5/unOUH3Oq9gAAAAAAVDf63wAAeAYCcQAAPFzbtm313XffKS4uTl5e/K8fAAAAAICqQP8bAICaiTXEAQDwcMOGDVN2drYGDhyoZcuWadu2bZoxY4buuusu2e12V5cHAAAAAIBHoP8NAEDNRCAOAICHq1u3rhYuXCi73a6ePXsqOTlZDz30kEJDQ2Wx8FcBAAAAAADOB/rfAADUTIZpmqariwAAADXLJ598ooceekgHDx50aR2GYWjy5Mm6/vrrXVoHAAAAAABVgf43AABVj8fSAADACeXk5CgoKEhPPvlktV97yJAhCgoKqvbrAgAAAABQ3eh/AwBQtRghDgAAjpOXl6eMjAxJUmhoqCIiIqr1+pmZmcrNzZUkxcbGKjAwsFqvDwAAAABAdaD/DQBA1SMQBwAAAAAAAAAAAAB4JKZMBwAAAAAAAAAAAAB4JAJxAAAAAAAAAAAAAIBHIhAHAAAAAAAAAAAAAHgkAnEAAAAAAAAAAAAAgEciEAcAAAAAAAAAAAAAeCQCcQAAAAAAAAAAAACARyIQBwAAAAAAAAAAAAB4JAJxAAAAAAAAAAAAAIBHIhAHAAAAAAAAAAAAAHgkAnEAAAAAAAAAAAAAgEciEAcAAAAAAAAAAAAAeCQCcQAAAAAAAAAAAACARyIQBwAAAAAAAAAAAAB4JAJxAAAAAAAAAAAAAIBHIhAHAABu784771RcXJyrywAAAAAAAAAA1DAE4gAAVKMFCxboqquuUr169eTn56eGDRuqb9+++vLLLyWVBbuGYZz2deeddzrPefDgQfn5+ckwDG3cuNG5feTIkZU6V7du3U7Z3s/P76SfZ+PGjc42Bw8erIpvGQAAAAAAAAAAZ83L1QUAAFBbfPPNNxowYIAuvPBCPfjgg6pTp45SUlI0f/58ffjhhxo0aJDuu+8+9ejRw3lMSkqKnn32Wd17773q0qWLc3tCQkKF8xqGoZiYGI0fP14vvPCCJKlfv35q0qSJs92hQ4c0dOhQ3XDDDerXr59ze3R0dIU6x4wZo6CgIOd7q9V60s/0xRdfKCYmRgcOHNC3336rv/3tb2fxnQEAAAAAAAAAoGoYpmmari4CAABPl5+frw4dOsgwDK1cuVI+Pj4V9mdmZioqKuq445YvX6727dvr448/rjAq/GiXXXaZIiIi1KhRI33//ffavn37CdtlZWUpMjJSI0aM0MiRI4/bP3LkSI0aNUr79u1TRETEaT+TaZpq3Lix+vXrp5SUFB04cEBz5sw57XGVkZ+fr8DAwEq3v/POOzV37lzt2LHjvFwfAAAAAAAAAOAZmDIdAIDzrHzq8Q0bNmjQoEGqU6eOOnfurG3btql9+/bHheGSThiGV0Zqaqp+++033XLLLbrllluUkpKiRYsWnVP9pmkqNzdXp3tmbuHChdqxY4fz2vPnz9fu3bvP+Hon+36V++KLL9SuXTv5+/srLCxMt9xyi3bt2nXG1wEAAAAAAAAA1D4E4gAAVJGbbrpJBQUFeumll3TPPfeoUaNGmj179lmFxiczYcIEBQYG6pprrlGHDh2UkJCg8ePHn9M5GzduLJvNpuDgYA0ePFgZGRknbDd+/HglJCSoffv26tu3rwICAjRhwoSzvu6x3y9JevHFF3X77beradOmev311/XQQw9p9uzZ6tq1K2uWAwAAAAAAAABOizXEAQCoIq1bt9aXX37pfO/n56e7775bCQkJuvTSS9W5c2f17NlTl1xyiSyWs3tGbfz48bruuuvk7+8vSRowYID+97//6c0335SX15n9b75OnTq6//771alTJ/n6+uq3337Tu+++q6VLl2r58uUKCQlxti0pKdE333yjIUOGSJL8/f117bXXavz48Xr88cfP6rMc+/3auXOnRowYoRdeeEFPP/20c3u/fv3Upk0bvffeexW2AwAAAAAAAABwLEaIAwBQRcrD4nL/93//p+nTp6tbt25asGCBnn/+eXXp0kVNmzY9q2nO16xZo7Vr12rgwIHObQMHDlRWVpZmzJhxxud78MEH9fbbb2vQoEHq37+//vvf/+rTTz/Vli1b9N5771VoO23aNO3fv/+4a69evVrr168/42tLx3+/Jk2aJIfDoZtvvllZWVnOV0xMjJo2bXre1isHAAAAAAAAAHguAnEAAKpIfHz8cdt69eqlGTNm6ODBg5o/f76GDRumnTt36pprrlFmZuYZnf+LL75QYGCgGjdurK1bt2rr1q3y8/NTXFzcOU+bXm7QoEGKiYnRrFmzjrt2fHy8fH19nddOSEhQQEDAWV/72O/Xli1bZJqmmjZtqsjIyAqvjRs3nvH3CwAAAAAAAABQ+zBlOgAAVaR8GvMTCQgIUJcuXdSlSxdFRERo1KhRmjZtmu64445Knds0TU2YMEH5+flKTEw8bn9mZqYOHTqkoKCgs66/XIMGDZSdne18n5ubqylTpqiwsFBNmzY9rv2XX36pF198UYZhnNF1jv1+ORwOGYahadOmyWq1Htf+fHw2AAAAAAAAAIBnIxAHAMDFLrroIklSWlpapY+ZN2+edu/ereeee04XXHBBhX0HDhzQvffeq++//16DBw8+p9pM09SOHTvUpk0b57ZJkyapsLBQY8aMUURERIX2mzZt0jPPPKOFCxeqc+fO53TthIQEmaap+Ph4NWvW7JzOBQAAAAAAAAConQjEAQCoJrNnz1b37t2P2/7zzz9Lkpo3b17pc5VPl/7444/Lz8/vuP3/+c9/NH78+DMKxPft26fIyMgK28aMGaN9+/apd+/eFa7duHHj49b8lqSioiK9/PLLGj9+/DkH4v369dPw4cM1atQoffHFFxVGnJumqezsbIWHh5/TNQAAAAAAAAAAno1AHACAanLdddcpPj5effv2VUJCgvLz8zVr1ixNmTJF7du3V9++fSt1nqKiIn333Xe68sorTxiGS9K1116rN998U5mZmYqKiqrUeRs1aqQBAwYoOTlZfn5+WrBggSZOnKgLL7xQ9913nyRp7969mjNnjv7xj3+c8By+vr7q1auXvvnmG7311lvy9vau1LVPJCEhQS+88IKGDx+uHTt26Prrr1dwcLBSUlI0efJk3XvvvXrsscfO+vwAAAAAAAAAAM9ncXUBAADUFh999JGSkpL09ddf64EHHtCTTz6pbdu26Z///Kdmz54tL6/KPaf2008/6eDBg6cM0Pv27avS0lJNnDix0vXdeuutWrp0qUaOHKmHHnpIy5Yt0xNPPKH58+crICBAkjRx4kQ5HI7TXnv//v2aNm1apa99Mk899ZS+++47WSwWjRo1So899ph+/PFH9ezZU9dee+05nx8AAAAAAAAA4NkM0zRNVxcBAAAAAAAAAAAAAMD5xghxAAAAAAAAAAAAAIBHYg1xAABQJQ4dOqRDhw6dsk1kZKSsVms1VQQAAAAAAAAAqG0IxAEAQJV49dVXNWrUqFO2SUlJUVxcXPUUBAAAAAAAAACodVhDHAAAVInt27dr+/btp2zTuXNn+fn5VVNFAAAAAAAAAIDahkAcAAAAAAAAAAAAAOCRLK4uAAAAAAAAAAAAAACAquDxa4g7HA7t3btXwcHBMgzD1eUAAAAAADyAaZrKy8tT3bp1ZbHwrDkAAAAAADWVxwfie/fuVYMGDVxdBgAAAADAA+3atUv169d3dRkAAAAAAOAkPD4QDw4OllT2jxQhISEurgYAAAAA4Alyc3PVoEEDZ58TAAAAAADUTB4fiJdPkx4SEkIgDgAAAAA4r1iaCwAAAACAmo2FzgAAAAAAAAAAAAAAHolAHAAAAAAAAAAAAADgkQjEAQAAAAAAAAAAAAAeyePXEAcAAABQPex2u0pKSlxdBnBeeHt7y2q1uroMAAAAAABwjgjEAQAAAJwT0zSVnp6ugwcPuroU4LwKDQ1VTEyMDMNwdSkAAAAAAOAsEYgDAAAAOCflYXhUVJQCAgIID+H2TNNUQUGBMjMzJUmxsbEurggAAAAAAJwtAnEAAAAAZ81utzvD8PDwcFeXA5w3/v7+kqTMzExFRUUxfToAAAAAAG7K4uoCAAAAALiv8jXDAwICXFwJcP6V39fl9zkAAAAAAHA/BOIAAAAAzhnTpMMTcV8DAAAAAOD+CMQBAAAAoJabO3euDMPQwYMHq/Q6O3bskGEYWrVqVY04DwAAAAAA8HwE4gAAAABczu4wtXjbfv2wao8Wb9svu8N0SR2rV6/Wtddeq6ioKPn5+SkuLk4DBgxQZmamRo4cKcMwTvkqN2HCBFmtVg0bNsy5rVu3bqc8tlu3bidtN2TIkBPW26tXL1mtVi1btuycPvcll1yitLQ02Wy2czpPVbjzzjt1/fXXV9jWoEEDpaWlKSkpyTVFAQAAAAAAt+Hl6gIAAAAA1G7T16Vp1JQNSsspdG6LtflpRN9E9U6KrZYaiouLlZOTo+7du+uaa67RjBkzFBoaqh07dujHH39Ufn6+HnvssQrBdPv27XXvvffqnnvuOe58Y8eO1RNPPKEPPvhAr732mvz8/DRp0iQVFxdLknbt2qUOHTpo1qxZatmypSTJx8fHefw999yj5557zvn+RGu0p6amatGiRbr//vs1btw4tW/f/qw/v4+Pj2JiYs76+OpmtVrdql4AAAAAAOA6jBAHAAAA4DLT16Vp6BcrK4ThkpSeU6ihX6zU9HVpVXLdbt266f7779dDDz2kiIgI9erVSwsXLlROTo4++ugjtWnTRvHx8br88sv1xhtvKD4+XkFBQYqJiXG+rFargoODK2yTpJSUFC1atEhPPfWUmjVrpkmTJkmSwsLCnO0iIyMlSeHh4c5tYWFhzvoCAgIqnDckJOS4z/Dxxx/rmmuu0dChQzVhwgQdPnz4lJ95586d6tu3r+rUqaPAwEC1bNlSP//8s6Tjp0z/5JNPFBoaqqlTp6p58+YKCAjQjTfeqIKCAn366aeKi4tTnTp19I9//EN2u915DcMw9P3331e4bmhoqD755JMT1mS323X33XcrPj5e/v7+at68ud58803n/pEjR+rTTz/VDz/84BwtP3fu3BNOmT5v3jx16NBBvr6+io2N1VNPPaXS0tIKP/N//OMfeuKJJ5w/i5EjR57yewYAAAAAANwfgTgAAACA88o0TRUUl572lVdYohE/rteJJkcv3zbyxw3KKyyp1PlM88ymWf/000/l4+OjhQsX6v3331dMTIxKS0s1efLkMz7X0T7++GNdffXVstlsGjx4sMaOHXvG5xg/frwiIiKUlJSk4cOHq6CgoMJ+0zT18ccfa/DgwWrRooWaNGmib7/99pTnHDZsmIqKijR//nytXbtW//73vxUUFHTS9gUFBXrrrbc0ceJETZ8+XXPnztUNN9ygn3/+WT///LM+//xzffDBB6e97qk4HA7Vr19f33zzjTZs2KBnn31WTz/9tL7++mtJ0mOPPaabb75ZvXv3VlpamtLS0nTJJZccd549e/aoT58+at++vVavXq0xY8Zo7NixeuGFFyq0+/TTTxUYGKglS5bolVde0XPPPaeZM2eedf0AAAAAAKDmY8p0AAAAAOfV4RK7Ep+dcc7nMSWl5xYqeeQvlWq/4bleCvCpfBenadOmeuWVVypse/rppzVo0CANGTJEHTp00BVXXKHbb79d0dHRlTqnw+HQJ598orfffluSdMstt+jRRx9VSkqK4uPjK3WOQYMGqVGjRqpbt67WrFmjJ598Ups2bXKONJekWbNmqaCgQL169ZIkZ/B+2223nfS8qamp6t+/v5KTkyVJjRs3PmUdJSUlGjNmjBISEiRJN954oz7//HNlZGQoKChIiYmJuvzyyzVnzhwNGDCgUp/tWN7e3ho1apTzfXx8vBYvXqyvv/5aN998s4KCguTv76+ioqJTTpH+3nvvqUGDBnrnnXdkGIZatGihvXv36sknn9Szzz4ri6XsWfBWrVppxIgRksp+/u+8845mz56tK6+88qzqBwAAAAAANR8jxAEAAADUSu3atTtu24svvqj09HS9//77atmypd5//321aNFCa9eurdQ5Z86cqfz8fPXp00eSFBERoSuvvFLjxo2rdF333nuvevXqpeTkZN1666367LPPNHnyZG3bts3ZZty4cRowYIC8vMoeABg4cKAWLlxYoc2x/vGPf+iFF17QpZdeqhEjRmjNmjWnrCMgIMAZhktSdHS04uLiKowqj46OVmZmZqU/24m8++67ateunSIjIxUUFKT//e9/Sk1NPaNzbNy4UZ06dZJhGM5tl156qQ4dOqTdu3c7t7Vq1arCcbGxsedcPwAAAAAAqNkYIQ4AAADgvPL3tmrDc71O225pSrbu/HjZadt9cld7dYgPO207f29rpeorFxgYeMLt4eHhuummm3TTTTfppZdeUps2bfTqq6/q008/Pe05x44dq+zsbPn7+zu3ORwOrVmzRqNGjXKOVD4THTt2lCRt3bpVCQkJys7O1uTJk50juMvZ7XaNGzdOL7744gnP87e//U29evXSTz/9pF9++UWjR4/Wa6+9pgceeOCE7b29vSu8NwzjhNscDkeF98dON19SUnLSzzZx4kQ99thjeu2119SpUycFBwfrP//5j5YsWXLSY87F6eoHAAAAAACeh0AcAAAAwHllGEalpi7v0jRSsTY/pecUnnAdcUNSjM1PXZpGymoxTtCi6vn4+CghIUH5+fmnbbt//3798MMPmjhxolq2bOncbrfb1blzZ/3yyy/q3bv3GdewatUqSWWjmaWy9cXr16+v77//vkK7X375Ra+99pqee+45Wa0nfjigQYMGGjJkiIYMGaLhw4frww8/PGkgfjYiIyOVlpbmfL9ly5bj1j8/2sKFC3XJJZfo73//u3PbsaPcfXx8ZLfbT3ndCy64QN99951M03SOEl+4cKGCg4NVv379s/koAAAAAADAQ7h0yvSRI0fKMIwKrxYtWjj3FxYWatiwYQoPD1dQUJD69++vjIwMF1YMAAAA4HyxWgyN6JsoqSz8Plr5+xF9E6stDJ86daoGDx6sqVOnavPmzdq0aZNeffVV/fzzz7ruuutOe/znn3+u8PBw3XzzzUpKSnK+WrdurT59+mjs2LGnPce2bdv0/PPPa8WKFdqxY4d+/PFH3X777eratatzuu+xY8fqxhtvrHCNpKQk3X333crKytL06dNPeO6HHnpIM2bMUEpKilauXKk5c+boggsuOLNv0mlcccUVeuedd/THH39o+fLlGjJkyHGjso/WtGlTLV++XDNmzNDmzZv1r3/9S8uWVZw1IC4uTmvWrNGmTZuUlZV1whHnf//737Vr1y498MAD+vPPP/XDDz9oxIgReuSRR85qVD4AAAAAAPAcLv+XgZYtWyotLc35WrBggXPfww8/rClTpuibb77RvHnztHfvXvXr18+F1QIAAAA4n3onxWrM4LaKsflV2B5j89OYwW3VOym22mpJTExUQECAHn30UV144YW6+OKL9fXXX+ujjz7Sbbfddtrjx40bpxtuuKHCOtbl+vfvrx9//FFZWVmnPIePj49mzZqlnj17qkWLFnr00UfVv39/TZkyRZK0YsUKrV69Wv379z/uWJvNpu7du580eLfb7Ro2bJguuOAC9e7dW82aNdN777132s91Jl577TU1aNBAXbp00aBBg/TYY48pICDgpO3vu+8+9evXTwMGDFDHjh21f//+CqPFJemee+5R8+bNddFFFykyMlILFy487jz16tXTzz//rKVLl6p169YaMmSI7r77bj3zzDPn9fMBAAAAAAD3Y5jHLvBWjUaOHKnvv//eOQXg0XJychQZGakvv/xSN954oyTpzz//1AUXXKDFixfr4osvrtQ1cnNzZbPZlJOTo5CQkPNZPgAAAFDrFRYWKiUlRfHx8fLz8zv9ASdhd5hampKtzLxCRQX7qUN8mMumSQfKner+pq8JAAAAAIB7cPka4lu2bFHdunXl5+enTp06afTo0WrYsKFWrFihkpIS9ejRw9m2RYsWatiw4SkD8aKiIhUVFTnf5+bmVvlnAAAAAHBurBZDnRLCXV0GAAAAAAAAPIxLp0zv2LGjPvnkE02fPl1jxoxRSkqKunTpory8PKWnp8vHx0ehoaEVjomOjlZ6evpJzzl69GjZbDbnq0GDBlX8KQAAAAAAAAAAAAAANZFLR4hfddVVzq9btWqljh07qlGjRvr666/l7+9/VuccPny4HnnkEef73NxcQnEAAAAAAAAAAAAAqIVcOkL8WKGhoWrWrJm2bt2qmJgYFRcX6+DBgxXaZGRkKCYm5qTn8PX1VUhISIUXzkxazmEt2paltJzDri4FAAAAAAAAAAAAAM5ajQrEDx06pG3btik2Nlbt2rWTt7e3Zs+e7dy/adMmpaamqlOnTi6s0rN9tSxVl778qwZ9uESXvvyrvlqW6uqSAAAAAAAAAAAAAOCsuHTK9Mcee0x9+/ZVo0aNtHfvXo0YMUJWq1UDBw6UzWbT3XffrUceeURhYWEKCQnRAw88oE6dOuniiy92ZdkeKy3nsIZPWiuHWfbeYUpPT1qnrs0iFWs7uynsAQAAAAAAAAAAAMBVXBqI7969WwMHDtT+/fsVGRmpzp076/fff1dkZKQk6Y033pDFYlH//v1VVFSkXr166b333nNlyR4tJSvfGYaXs5umdmQVEIgDAAAAAAAAAAAAcDsuDcQnTpx4yv1+fn5699139e6771ZTRbVbfESgDElHZ+JWw1BcRICrSgIAAAAAAAAAAACAs1aj1hCHa8Xa/NUnObbCthdvSGJ0OAAAAKpcQXGp4p76SXFP/aSC4lJXlwMAAAAAAAAPQSCOChqGVxwN3iwm2EWVAAAAAAAAAAAAAMC5IRBHBQfyiyVJhlH2fvLKPS6sBgAAAKheq1ev1rXXXquoqCj5+fkpLi5OAwYMUGZmpkaOHCnDME75KjdhwgRZrVYNGzbMua1bt26nPLZbt24nbTdkyJAT1turVy9ZrVYtW7asSr8vAAAAAAAA7opAHBVkHwnEeyZGy9tqqLjU4eKKAAAAgOqRkZGh7t27KywsTDNmzNDGjRv18ccfq27dusrPz9djjz2mtLQ056t+/fp67rnnKmwrN3bsWD3xxBOaMGGCCgsLJUmTJk1ytlu6dKkkadasWc5tkyZNch5/zz33VDjvK6+8cly9qampWrRoke6//36NGzeuir87AAAAAAAA7snL1QWgZgn09VJ4oI+ubV1PL/drpTqBPq4uCQAAALVMek6hGkcGVfl1unXrpqSkJHl5eemLL77Q/v375eXlpY8++kheXmVdpfj4eF1++eXOY4KC/qrLarUqODhYMTExFc6bkpKiRYsW6bvvvtOcOXM0adIkDRo0SGFhYc425SF5eHj4ccdLUkBAwAm3H+3jjz/WNddco6FDh+riiy/W66+/Ln9//zP/RgAAAAAAAHgwRoijgjcGXKgV/7pSV7eKJQwHAADAOSkoLq3068slqc7jerw+T18tS1Wp3aGC4lIVlthPe96z9emnn8rHx0cLFy7U3LlzVVpaqsmTJ8s0zbM+58cff6yrr75aNptNgwcP1tixY8/4HOPHj1dERISSkpI0fPhwFRQUVNhvmqY+/vhjDR48WC1atFCTJk307bffnnXNAAAAAAAAnooR4jitHVn5Cg/yUbCft6tLAQAAgBtJfHbGWR3nMKWnJ61Tid3UM9+vU8f4MH11Xyfn/s7/nuNc6qfcjpevPqtrNW3a1DkdefPmzfX0009r0KBBGjJkiDp06KArrrhCt99+u6KjoytXu8OhTz75RG+//bYk6ZZbbtGjjz6qlJQUxcfHV+ocgwYNUqNGjVS3bl2tWbNGTz75pDZt2lRhSvVZs2apoKBAvXr1kiRn8H7bbbedyccHAAAAAADweIwQxyk98e1qdXt1rn5cvdfVpQAAAKAWsZum9uUVVfl12rVrV+H9iy++qPT0dL3//vtq2bKl3n//fbVo0UJr166t1Plmzpyp/Px89enTR5IUERGhK6+88ozW+L733nvVq1cvJScn69Zbb9Vnn32myZMna9u2bc4248aN04ABA5xTuw8cOFALFy6s0AYAAAAAAACMEMdRDuQX65b//a6wQB+N/1tHWSyGmkQFyWJIqfsLTn8CAAAA4CgbnutVqXbpOYXq8fo8OY6apdxqGLqxXT3dd1ljWQyjQvsFT16u8yUwMPC4beHh4brpppt000036aWXXlKbNm306quv6tNPPz3t+caOHavs7OwKa3k7HA6tWbNGo0aNksVy5s8kd+zYUZK0detWJSQkKDs7W5MnT1ZJSYnGjBnjbGe32zVu3Di9+OKLZ3wNAAAAAAAAT0UgDqf9+cXalJGnED8vWSxl/+g44KKGuv7CeooK8XNxdQAAAHA3AT6V6240jgzSqGtb6l8/rJckWQzppX5JahB2fFh9Juc9H3x8fJSQkKD8/PzTtt2/f79++OEHTZw4US1btnRut9vt6ty5s3755Rf17t37jGtYtWqVJCk2NlZS2fri9evX1/fff1+h3S+//KLXXntNzz33nKxW6xlfBwAAAAAAwBMRiMMp1uanL+7uqMISu3ObLcBbEmuHAwAAoGr1b1ffGYjPeuQyNY4MqvYapk6dqokTJ+qWW25Rs2bNZJqmpkyZop9//lkff/zxaY///PPPFR4erptvvlnGMaPa+/Tpo7Fjx542EN+2bZu+/PJL9enTR+Hh4VqzZo0efvhhde3aVa1atZJUNgr9xhtvVFJSUoVjGzRooOHDh2v69Om6+uqzW1MdAAAAAADA0xCIwynQ10udm0acdH96TqGiQ3yP+8c9AAAA4HyKsblmdqLExEQFBATo0Ucf1a5du+Tr66umTZvqo48+0m233Xba48eNG6cbbrjhhH9f7t+/v2677TZlZWUpIuLkf+f28fHRrFmz9N///lf5+flq0KCB+vfvr2eeeUaStGLFCq1evVoffvjhccfabDZ1795dY8eOJRAHAAAAAAA4wjBN0zx9M/eVm5srm82mnJwchYSEuLoct2Sapu75bIVm/5mhb4d0UrtGYa4uCQAAADVEYWGhUlJSFB8fLz+/sw+yC4pLlfjsDElla49X57TowMmc6v6mrwkAAAAAgHuwuLoA1BwrUw9o4tJUrduTU2G7YRgK8fOSaUqTVu5xUXUAAAAAAAAAAAAAcGYIxOE0bW2anpq0VlNW7z1u3w1t60mSpq5JU1Gp/bj9AAAAwLkI8PHSjpev1o6Xr2Z0OAAAAAAAAM4bAnE4ZeeXSJLqBPoct++ShAhFh/gq53CJ5vyZWd2lAQAAAAAAAAAAAMAZIxCH04GCYklSWMDxgbjVYuj6C8tGiTNtOgAAAAAAAAAAAAB3QCAOp/35ZYH4iUaIS39Nmz5nU6YOHGkLAAAAAAAAAAAAADUVgTicykPusEDvE+5vEROixNgQldhNTV2bVp2lAQAAoIYzTdPVJQDnHfc1AAAAAADuj0AcTuWBeJ0TTJlerl/b8mnTd1dLTQAAAKjZvL3LHqYsKChwcSXA+Vd+X5ff5wAAAAAAwP14uboA1AzFpQ7lFZVKksJOMmW6JF3buq5e+nmj/kg9qJSsfMVHBFZXiQAAAKiBrFarQkNDlZmZKUkKCAiQYRgurgo4N6ZpqqCgQJmZmQoNDZXVanV1SQAAAAAA4CwRiEOSdLCgbHS4xZBC/E4++iEqxE+dm0Zq/uZ9mvzHHj1yZbPqKhEAAAA1VExMjCQ5Q3HAU4SGhjrvbwAAAAAA4J4IxCFJyi74a7p0i+XUI3r6t62n+Zv36fs/9ujhHk0ZAQQAAFDLGYah2NhYRUVFqaSkxNXlAOeFt7c3I8MBAAAAAPAABOKQJGWXrx9+iunSy/VMjFGgj1Wp2QVasfOALooLq+ryAAAA4AasVisBIgAAAAAAAGoUAnFI+isQDws4fSDu72NV/3b1daiwVMGnmF7dk9gdppamZCszr1BRwX7qEB8m62lG0gMAAAAAAAAAAABwLQJxSJIOOEeIVy7gfu66pKosR1LNCaGnr0vTqCkblJZT6NwWa/PTiL6J6p0UW+31AAAAAAAAAAAAAKgcAnE4RQT5KirYz9VlSKo5IfT0dWka+sVKmcdsT88p1NAvVmrM4LaE4gAAAAAAAAAAAEANZZimeWzW51Fyc3Nls9mUk5OjkJAQV5fjUUzT1Ia0XK3fk6ub2zc4b+c9WQhdPja8ukJou8NU53//WiGUP7aeGJufFjx5BdOnAwAAALUMfU0AAAAAANwDI8Rx1nbsL9DVby2Ql8VQj8RohQWefv3x07E7TI2asuG4MFySTJWF0KOmbFD3FtEqdZgqKrWrsMRxVv8tOup9YYldRaUV/3ugoPikYXh5PWk5hVqakq1OCeHn/NkBAAAAAAAAAAAAnF8E4jhr8RGBateojqJDfHWosPS8BOJLU7IrFUI3fWbaOV/rfHnhpw3qkxyrdo3qqHX9UPn7WF1dEgAAAAAAAAAAAAARiOOIv49fof2HivWvaxKVVM9W6eO+ua+TLOdxuvDMvJOH4SdjtRjy87LI19sqPy+L/Lyt8jnyX9/K/tfbIj+vsv/6elnl523RtsxDev6njae9/vq9uVq/N1eS5GUxdEFsiNo1qqO2jeqobcNQ1Qv1l2EwpToAAAAAAAAAAABQ3QjEIUn6I/Wg0nIKZXec2ZLy5zMMz84v1k9r0irV9oPBbXVp00j5eVnkZbWctxqO1qVppD5akKL0nMITTuFuSAoP8tG9XRtr9a4cLd+ZrYzcIq3dk6O1e3L0yaIdkqToEN+ygLxhWUjesm6IfL0YRQ4AAAAAAAAAAABUNcM0zTNLQN1Mbm6ubDabcnJyFBIS4upyaqzF2/Yr61CRLmseqRA/7zM+fvu+Q0rLKdSlTSLO+NiiUrs+XbRDb/+6VXmFpadsa0iKsflpwZNX6Knv1iipnk03XVRfAT5V82zH9HVpGvrFSkmqEIqXPwYwZnBb9U6KLdtvmtqbU6gVOw9o5c4DWpl6QOv35h73kIGPl0Wt6tnUrlEdtWlYR20bhSoq2K/SNdkdppamZCszr1BRwX7qEB8m63l8MAEAAADA6dHXBAAAAADAPRCI45zN3ZSpOz9epvp1/DX/8csrPWrcNE39vDZdL0/fqF3Zh0/b/ugQun6dAF3z9gJJks3fW4M6NtQdneIUY6t8sFxZ09eladSUDRXWNo+1+WlE30RnGH4yBcWlWrM7RytTy0LyFTsP6EBByXHtGoYFHBlFHqq2jeqoeXTwCUe+n0stAAAAAM4f+poAAAAAALgHAnGcs8ISu9q/MEt5RaX66t6L1bFx+GmP+SP1gF74aaNW7DwgSQrwsaqg2C5JuqNTI3WMD9PzP208afBbUFyq71bs1tgFKdqxv0BS2frd17auq//rHH9G66BXxvkalW2aplKy8rUy9aBzJPnmzDwd+6cw0Meq1g1C/1qLvEEdLd6epaFfrDxu+vYTjVYHAAAAULXoawIAAAAA4B4IxKGM3EL9+mem6ob667JmkWd1jie+Xa2vl+/WLe0b6MUbkk8aHu/KLtArMzZpyuq9kiQ/L4sahQdoU8YhSdKTvVtoyGWNZRhGpUJou8PU7I0Z+mhBipamZDu3d2ocrr91idflzaPO6zrnVSG3sESrygPy1AP6I/WgDhUdP3W81WKcdI33o6eSZ/p0AAAAoOrR1wQAAAAAwD0QiMM55fkFsSGa9mCXszrH4m37NfDD3+XvbZXN30vpuUXOfbE2Pz3Rq7k2Zx7S2AUpKi51yDCk61rX1Z6Dh7VsxwF5WQy9cmMr9Wtb/6w/x5rdBzV2QYqmrklzBseNIwN1d+d49WtTX/4+1rM+d3WyO0xtyczTiiNTrP+RelApWfmVOnbCPRerU8LpR+gDAAAAODf0NQEAAAAAcA8E4tDkP3br4a9W69Im4Rr/t4vP6hwOh6mLXpyl7Pzi07a9JCFcQ7sl6KWf/9TGtFwF+Fj1/uB26nqWo9OPtffgYX26aIe+XJqqvMKykdZ1Arw1ul+y204pPv73nfrn9+tO2+6RK5vqgSuayjAYJQ4AAABUJfqaAAAAAAC4By9XFwDXy84vkSSFBfqe9TlMSUWl9lO2sVoMjRnUVo2jAnXHuGXac/CwIoJ89PGdHZRc//yt+V031F/D+1ygB7o31TfLd2ncwhTtyj6shmGBzjaldoe8rJbzds2q1jgyqFLtXp+5RV8t262rkmLUp1Ws2jQIJRwHAAAAAAAAAABArUUgDh04Mqo7LMD7rM+xNCVb+UWnDsTtDlN209SN7y/WwYISxYUH6LP/66iG4QFnfd1TCfL10l2Xxuv2TnFampKtxLp/jdoYPmmt0nML9WTvFkqqd/7C+KrSIT5MsTY/pecU6mRTOvh5W2RI2nPwsD5akKKPFqSors1PVyXHqk9yWThe09dTBwAAAAAAAAAAAM4nAnEou6AsEK8T6HPW58jMK6xUu2K7QwM7NNSibfs17o6LFB509qPSK8tqMSqsq51XWKIpa/aqsMShh690VPn1zwerxdCIvoka+sVKGVKFULw84v7vgAvVrXmU5m7ap5/Xpmn2xgztzSnU2AUpGrsgRbE2P12VFKurW8WoTYM6hOMAAAAAAAAAAADweATiUPahIyPEzyEQjwr2q3S7a1vXVVGpQ37e1rO+3rkI9vPWzIcv04z16WrbsI5z+xszN8tqMXRrx4bVEtSfqd5JsRozuK1GTdmgtJy/HkCIsflpRN9E5/rovZNi1DspRoUlds3bXBaOz9qQobScQo1bmKJxC8vC8d5JMbo6OVZtGxKOAwAAAAAAAAAAwDMZpmmebAZmj5CbmyubzaacnByFhISc/oBa6OYPFmtpSrbeHthGfVvXPatz2B2mOv/71wpB7bFiQny18KnustbA8PVgQbE6jf5Vh0vs8vWyqF/b+rq7c7yaRFVu7e7qZHeYWpqSrcy8QkUF+6lDfNhpv6eFJXbNLw/HN2bqUFGpc19MyJFwvFWs2hGOAwAAAJVCXxMAAAAAAPfACHH8tYb4OYwQt1oM3dK+od6Ytfmkba5pFVsjw3BJCvT10sv9k/XRbylauydHE5amasLSVF3RIkp/6xyvTgnhSs8tVEpWvuIjAhVr83dZrcdOAV8Zft5W9WwZo54ty0aO/7YlyzlyPD23UJ8s2qFPFu1QdIivrkoqW3P8okaE4wAAAAAAAAAAAHBvjBCHLnphprIOFWvag110QezZfY8KikvV+7+/KTW7QFaLIbvjr9sq0Meq6y6sq5f6tTpfJVcZ0zS1bMcBffTbds3cmKHyPx2xNj+l5xTKlGQxpNH9kjWgfUOX1no+FJXa9dvmsnB85oYM5R01cjwq2FdXJcWUheNxJx6Ffjaj1QEAAABPQF8TAAAAAAD3wAjxWs7hMHWgoETSuY0Qf+2XzUrNLlB0sK/2HSqqsO9wiV0PdG96TnVWF8Mw1CE+TB3iw7QjK1/jFqbo62W7KkwF7zClpyetU9dmkS4dKX4++HpZ1SMxWj0So1VUateCLVn66Ug4nplXpE8X79Sni3cq8qhwvP2RcHz6urTj1jOPPWY9cwAAAAAAAAAAAMCVCMRrubzCUudo7tAA77M6x4qdBzRuYYok6c5L4/Tv6Zsq7HeY0o6sArcLj+MiAvXcdUnq0iRC93y+osI+u2m65Wc6FV8vq7pfEK3uF5SF4wu3ZumnNen6ZUO69uUV6bPFO/XZkXA8MTZE8zbvO+4c6TmFGvrFSo0Z3JZQHAAAAAAAAAAAAC5HIF7LZReUrR8e5OslXy/rGR9fWGLXE9+ulmlKN7arr+vb1NN/ZmzSUTOmy2oYiosIOF8lV7uk+jZZDHnUZzodXy+rrmgRrStaRKu4NLksHF+bpl/Wl4Xj8/KOD8MlyZRkSBo1ZYOuTIxh+nQAAAAAAAAAAAC4lMXVBcC1CopLFRnsq6hg37M6/q3ZW7RtX74ig331r6sTFWvz1+h+ybIaZUGo1TD0Ur8ktx5JXf6ZyqNdQ3L7z3QmfLwsurxFlF69qbWWP3Olnuzd/JTtTUlpOYVampJdPQUCAAAAAAAAAAAAJ8EI8VquZV2blv2zh0zTPH3jY6zdnaMP5m+XJL14fZJsR6ZcH9C+obo2i9SOrALFRQR4RHA8oH1D1Qn00eif/9R1retqQPuGri7JJXy8LKobWrmf55KU/bq4cZgMg1HiAAAAAAAAAAAAcA0CcUjSGYeWxaUOPf7tatkdpvq2rqueLWMq7I+1+XtEEH60nokx6pkYc/qGHi4q2K9S7f47a4umrU3XwA4NdEOb+s4HJgAAAAAAAAAAAIDqwpTpOCtj5m7Tn+l5Cgv00ci+ia4uB9WoQ3yYYm1+OtUjFP7eVvl6GdqUkaeRUzaow0uz9MjXq7R8R/ZZzUYAAAAAAAAAAAAAnA0C8Vruo9+26+b3F+vr5bsqfcyf6bl6Z84WSdKoa1sqPOjs1h93V4eKSjV1zV6V2h2uLsUlrBZDI448BHFsKG4ceb0xoLWW/vNKPXddS7WICVZRqUOTVu7Rje8v1pVvzNfYBSk6WFBc3aUDAAAAAAAAAACgliEQr+U2pedp6Y5s7csrqlT7UrtDT3y7RiV2Uz0To3VNq9gqrrBmMU1TPV6bp/u//ENLd2S7uhyX6Z0UqzGD2yrGVnH69Bibn8YMbqveSbGy+Xvr9k5xmvZgF03++yW6+aL68ve2amvmIT0/dYM6vDRbD038Q0u272fUOAAAAAAAAAAAAKqEYXp4EpWbmyubzaacnByFhIS4upwaZ2Narrbvy1ez6CA1jQ4+bfv3523Ty9P+VIifl2Y9cpmiQiq3nrQneeLb1Vq244Ce7nOBrkyMdnU5LmV3mFqakq3MvEJFBfupQ3yYrJaTT6aeW1iiH1bt1YQlqdqQluvcnhAZqIEdGqpf2/oKC/SpjtIBAACAc0JfEwAAAAAA90Agjkrbtu+QrnrzNxWXOvTqTa11Y7v6ri7JJQpL7PL1ssgwTrWKNk7FNE2t3ZOjCUtT9cOqvSootkuSfKwW9U6K0cAODXVx4zC+xwAAAKix6GsCAAAAAOAeCMRRKXaHqZs/WKwVOw/osmaR+uSu9oSVOC8OFZXqx1V79eXSnVq3569R440jAnVLhwbq37Z+rVunHgAAADUffU0AAAAAANwDgXgt9/WyXQr281K35lHy97GetN3HC1M0asoGBfl6acbDXVUv1L8aq6yZCkvs2n3gsJpEBbm6FI+xdneOJixL1Q9/7FH+kVHj3lZDvVrGaFCHhrq4cbgsJ5mS/UynbwcAAADOBX1NAAAAAADcA4F4LVZqd6jJP6dJklb+68qTrt2cur9Avf47X4dL7HrxhiTd2rFRdZZZI/2RekC3jV2q8CAfzX2sG6Plz7P8olJNWb1XXy5N1ZrdOc7tceEBuqVDQ93Yrr4ijho1Pn1dmkZN2aC0nELntlibn0b0TVTvpNhqrR0AAAC1A31NAAAAAADcg5erC4DrHCgokSQZhmTz9z5hG9M09eR3a3S4xK5OjcM1sH3D6iyxxmoWHawSu0M79xdoY1qeEuvyD2DnU6Cvl27p0FC3dGiodXtyNHFZqr7/Y6927C/Qy9P+1Gu/bFLPxLK1xnMPl2jYlyt17JM96TmFGvrFSo0Z3JZQHAAAAAAAAAAAoJayuLoAuM6BgmJJUqi/90mnlp6wdJcWb98vf2+rXu6ffNLpqmubQF8vdW0WKUmavj7dxdV4tqR6Nr1wfbKWPN1dr/RvpdYNQlViN/XT2jQNHrtED0z447gwXJJz26gpG2R3ePREGAAAAAAAAAAAADgJAvFaLDu/LBCvc5Kp0vcePKyXft4oSXq8V3M1Cg+sttrcwVVJMZKkGesIxKtDoK+Xbm7fQD8Mu1Q//6OLbu/USP7eFtlPseqDKSktp1BLU7Krr1AAAAAAAAAAAADUGEyZXosdOBKIhwX8FYjbHaaWpmQrM7dQ4xal6FBRqdo1qqM7LolzUZU1V/cW0fKyGNqUkaft+w6pcWSQq0uqNRLrhui565KUXM+mx79dc9r2mXmFp20DAAAAAAAAAAAAz0MgXotlF1QcIT59XZpGTdmgtJyK4eE1rWJPOqV6bWYL8FanhHD9tiVL09en6+/dmri6pFqnfp2ASrWLCPKt4koAAAAAAAAAAABQEzFlei129Ajx6evSNPSLlceF4ZL03JQNmr4urbrLcwu9mTbdpTrEhynW5qfTPa7xz8lr9dWyVBWXOqqlLgAAAAAAAAAAANQMBOK12H7nGuLeGjVlg06+ErM0asoG2R2nalE7XZkYLcOQVu/O0Z6Dh11dTq1jtRga0TdRko4LxcvfB/hYtWN/gZ78bq0u+88cjVuQooLi0mqtEwAAAAAAAAAAAK5BIF6LlY8QzyssPeHI8HKmpLScQi1Nya6mytxHVLCf2jcKkyT9sp5R4q7QOylWYwa3VYzNr8L2GJuf3h/cVkv/2UP/7HOBooJ9lZZTqOembtClL/+qt2dvUU5BiYuqBgAAAAAAAAAAQHVgDfFaLPsMw8DMvJOH5rVZr6QYLd2RrWnr0nXXpfGuLqdW6p0UqysTY7Q0JVuZeYWKCvZTh/gwWS1l48Tv6dpYt1/SSN+t2KP3521TanaBXpu5WR/M365bL26ouzvHKyrY7zRXAQAAAAAAAAAAgLthhHgtVj5CvG6of6XaExieWK+W0ZKkZTuytS+vyMXV1F5Wi6FOCeG67sJ66pQQ7gzDy/l6WTWoY0P9+uhlevOWC9UiJliHikr1wbzt6vzvOXrm+7XalV3gouoBAAAAAAAAAABQFQjEa7HsI4H4xY3DFWvzO24N5nKGpFhb2YhbHK9+nQAl17PJNKVZGzNcXQ5Ow8tq0XUX1tO0B7to7B0XqW3DUBWXOvTF76nq9upcPfzVKm3OyHN1mQAAAAAAAAAAADgPCMRrMR8vi7ythiKCfDSib6LME7QpD8lH9E08bsQt/nJ1q1hd3DhMEUG+ri4FlWQYhrpfEK3vhl6iifderC5NI2R3mJr8xx71fGO+7v1suVbtOujqMgEAAAAAAAAAAHAODNM0T5SDeozc3FzZbDbl5OQoJCTE1eXUOOU/fsMw9NSkNZq4dFeF/bE2P43om6jeSbGuKM9tmKYpw+CBAXe3dneO3pu7VdPXp6v8N+MlCeEadnkTXZIQzs8YAAAATvQ1AQAAAABwD16uLgCudXTAd7jYLknq37aeujaLVFRw2TTpjAw/PYJSz5Bc36Yxg9tpa+YhvT9vm77/Y48WbduvRdv2q3V9m/5+eRNdeUG0LPyZAAAAAAAAAAAAcAuMEIfTJaNna29Oob78W0dd0iTC1eW4paxDRdqwN1ddm0W6uhScB7sPFOij31I0YWmqikodkqSmUUEa2i1BfVvXlbeVVScAAABqK/qaAAAAAAC4B9KcWmrFzmzdOGaRnpuyQZK05+Bh7c0plNVi6MKGoa4tzk2lZOWrw4uzdO/ny52j7eHe6tcJ0MhrW2rhU1fo790SFOzrpS2Zh/TI16t1+atz9fniHSos4WcNAAAAAAAAAABQU9WYQPzll1+WYRh66KGHnNu6desmwzAqvIYMGeK6Ij3I7gOHtXznAW1My5UkLd+RLUlKqhuiAB9m0j8bceEBql8nQM2ig5WeW+jqcnAeRQT56oneLbRw+BV6vFdzhQf6aPeBw/rXD+vV+d9z9P68bcorLHF1mQAAAAAAAAAAADhGjUg+ly1bpg8++ECtWrU6bt8999yj5557zvk+ICCgOkvzWB3iw/TerW0V5Ft2CyxNKQvE28eFubIst2YYhqY92EWBvjXijxWqQIift4Zd3kT/d2m8vl6+S/+bv117Dh7Wy9P+1HtztuqOS+J05yVxCg/ydXWpAAAAAAAAAAAAUA0YIX7o0CHdeuut+vDDD1WnTp3j9gcEBCgmJsb5Ym228yPW5q8+ybHOta6X7zggSbqIQPycEIbXDv4+Vt1xSZzmPt5Nr97UWgmRgcotLNXbv27Vpf/+VaOmrNfeg4ddXSYAAAAAAAAAAECt5/JAfNiwYbr66qvVo0ePE+4fP368IiIilJSUpOHDh6ugoOCU5ysqKlJubm6FF04tp6BEmzLyJEkXxR3/UALOXF5hiTKYNt3jeVsturFdfc18+DK9P7itkuvZVFji0McLd+iy/8zRE9+u1vZ9h1xdJgAAAAAAAAAAQK3l0uGsEydO1MqVK7Vs2bIT7h80aJAaNWqkunXras2aNXryySe1adMmTZo06aTnHD16tEaNGlVVJXuM+Zv36VBRqdo0DNWGvWUPDTSODFQEUz2fs88X79DzUzeqf7t6Gt3v+GUA4HksFkO9k2LVq2WMftuSpffmbtXv27P19fLd+mbFbvVJitXQbglKqmdzdakAAAAAAAAAAAC1issC8V27dunBBx/UzJkz5efnd8I29957r/Pr5ORkxcbGqnv37tq2bZsSEhJOeMzw4cP1yCOPON/n5uaqQYMG57d4DzBm7jYt3r5fb95yoTamlY0Ob9+I6dLPh8aRQSq2O/TL+gy9cL0pq8VwdUmoJoZhqGuzSHVtFqkVOw9ozNytmrUxUz+tTdNPa9N0WbNIDbu8iTrE82cNAAAAAAAAAACgOrhsyvQVK1YoMzNTbdu2lZeXl7y8vDRv3jy99dZb8vLykt1uP+6Yjh07SpK2bt160vP6+voqJCSkwgvHO1BQLEkKC/TR8h3Zkpgu/XzpEB+m0ABv7c8v1rIj31vUPu0a1dFHd7TX9Ie66LoL68piSPM279PNHyzWTe8v0pw/M2WapqvLBAAAAAAAAAAA8GguC8S7d++utWvXatWqVc7XRRddpFtvvVWrVq2S1Wo97phVq1ZJkmJjY6u5Ws+TnV8WiAf6eGnN7hxJYtTqeeJttajHBdGSpOnr0l1cDVytRUyI3ryljeY81k0DOzSUj9WiZTsO6K5PlqnPWws0ZfVe2R0E4wAAAAAAAAAAAFXBZYF4cHCwkpKSKrwCAwMVHh6upKQkbdu2Tc8//7xWrFihHTt26Mcff9Ttt9+url27qlUr1mU+F6ZpOkeIp+cWqtjuUGSwrxqGBbi4Ms/Ru2WMJGnG+nRGAUOS1Cg8UKP7Jeu3Jy/XPV3iFeBj1ca0XD0w4Q/1eH2evlqWquJSh6vLBAAAAAAAAAAA8CguC8RPx8fHR7NmzVLPnj3VokULPfroo+rfv7+mTJni6tLc3qGiUpXYy0LazRlH1g+PqyPDYK3r86Vz0wgF+liVllPoHIEPSFJ0iJ/+eXWiFj11hR7q0VShAd5KycrXk9+tVddX5mjsghQVFJe6ukwAAAAAAAAAAACP4OXqAo42d+5c59cNGjTQvHnzXFeMBzuQXyJJ8ve2atWug5Kk9nFMl34++XlbdXmLKE1dk6Zp69LVukGoq0uqFdJyDislK1/xEYGKtfm7upxTCg3w0UM9mumeLo01YWmqPvxtu9JzC/X81A1659ctuuvSeN3RKU62AG9XlwoAAAAAAAAAAOC2auwIcVSd7CPTpYcF+mjFzgOSCMSrQu+ksmnTp69LY9r0avDVslRd+vKvGvThEl368q/6almqq0uqlEBfL/2tS2PNf+Jyje6XrEbhATpQUKLXZ27WJS/P1uifNyozt9DVZQIAAAAAAAAAALglAvFaKDu/SJIU4GNVXmGpAn2sahET7OKqPE+35lHy8bJox/4Cbc445OpyPNrm9Dw99d1aOY48d+AwpacnrVNazmHXFnYGfL2sGtihoWY/cpneGthGLWKClV9s1wfzt6vzK3P0z8lrlbq/wNVlAgAAAAAAAAAAuBUC8Voo+8iU6eVjlts2qiMvK7fC+Rbk66WuTSMkSdPXpbu4Gs9TWGLX18t26Y5xS9X7zfk6dgy+3TS1I8v9AmQvq0XXtq6raQ920bg7L1K7RnVUXOrQ+CWpuvy1uXpo4h/alJ7n6jIBAAAAAAAAAADcAiloLXQgv2zK9MPFdklMl16VerU8Mm36egLx86G41OH82mIYeuGnDZq3eZ9zZPixwgN9qqmy888wDF3RIlrfDumkr+69WF2bRcruMPX9qr3q9d/5uuez5foj9YCrywQAAAAAAAAAAKjRCMRrofI1xA8c+e9FcXVcWY5H63FBtKwWQxvTcrVzf76ry3Fbu7ILdNvYJer93/nO9dh9vCy6u3NjPXplM8165DL9u3+yrEbF4+7+bJnW7clxQcXnj2EY6tg4XJ/9XwdNub+z+iTHyDCkmRsydMN7izTow9+1YEsW69QDAAAAAAAAAACcgJerC0D1Kx8hXlBsl5fFUJsGBOJVpU6gjy5rFimLIR0usbu6HLex/1CR0nIKlVTPJkkKD/LRsh3ZKixxaHPGITU/sub9gz2aOo9pEhWkrs0itSOrQEWldj3z/Trtyj6sfmMW6blrW2pA+wYyDOOE13MXyfVteu/WdtqaeUgfzNumyX/s0aJt+7Vo2361rm/T3y9voisviJbFUvY57Q5TS1OylZlXqKhgP3WID5PV4t7fAwAAAAAAAAAAgDNhmB4+rDA3N1c2m005OTkKCQlxdTk1whPfrtaklXtU6jB1YYNQfT/sUleX5NFM03T7ILY6ZB0q0vR16fp5bZp+375fzaKDNf2hrs7909elqXlMiOIjAit1vpyCEj3y9SrN/jNTknRju/p6pX8rZ1jsCfYcPKwP52/XxGWpKiwpm06+aVSQhnZLkI+XRS/+tFFpOYXO9rE2P43om6jeSbGuKhkAAMBj0NcEAAAAAMA9EIjXUsMnrdGEpbt0T5d4/fPqRFeXg1oqM69QM9al6+e16VqSsr/CWuDJ9Wz68p6OCvbzPuvzOxymxszbptd+2aTbO8Vp5LUtz0PVNU/WoSJ9vDBFny3eqbzC0pO2K38UYMzgtoTiAAAA54i+JgAAAAAA7oEp02up5TsOSJLax4W5uJLaI3V/gXILS5zTgNdWmbmFmr4+XT+tSdPSHdk6+pGcVvVt6pMcqz5JsWoYHnDO17JYDA27vIkubhyu5KO+7yV2h7ytlnM+f00REeSrx3u10H2XJeizxTv0+i+bKzxcUM5UWSg+asoGXZkYw/TpAAAAAAAAAADA4xGI10IH8ou1JfOQJKldI9YPrw7fLN+lx79do06NwzXh3otdXU61Kyq1a8KSVP28Nl3LdlYMwVs3CNXVyTG6KilWDcLOPQQ/kaPv81K7Q4M/WqLWDUL1RK/m8vKgYDzEz1vtGoadMAwvZ0pKyynU0pRsdUoIr7baAAAAAAAAAAAAXIFAvJaxO0zd9P5iSVJ8eIDCg3xdXFHtcHHjcFkthryshuwOs1aMzC0oLlWAT9mvGG+LRWPmbVNGbpEk6cIGobo6OVZXJceofp2qCcFPZv6WfVqSkq11e3I0uGOj8zISvSbJzCs8faMzaAcAAAAAAAAAAODOCMRrmZzDJdq6r2x0eId4pkuvLg3CArTymStlCzj79bBrqrScw0rJyld8RKBibf7ae/Cw/jHhD+3MLtDvw7vLajFksRgaclmC7A5TVyXHql6ov8vqvaJFtMbc2laSPC4Ml6SoYL9Ktft4YYoSY0PUNDq4iisCAAAAAAAAAABwHQLxWsbf26r4iAClZBWoQzzTJVcnTwzDv1qWquGT1sphShZDGt0vWf3a1teWzEPKOVyi9Xtz1Kp+qCTprkvjXVvsUa5Kjq3wfvG2/Vq9+6Du69pYhuHeo/c7xIcp1uan9JxCnWLmdK3alaPeb/6mW9o30MNXNlMEs0UAAAAAAAAAAAAP5DmL56JSDEPafeCwJKl9HCPEXSEzr1CHi+2uLuOcpeUc1lNHwnBJcpjS05PWKetQkd4Z1EaLh1/hDMNrspyCEj0wYaVenvan7v18hXIOl7i6pHNitRga0TdRknRstG8ceY28NlE9E6Nld5gavyRV3f4zV+/N3arCEve/LwEAAAAAAAAAAI5GIF7LrNp1UCV2U9EhvmoQ5rppq2urR79erY4vzdYvG9JdXco5W7c7V+YxQ5DtpqkdWQXq0jRSsTb3uL9C/L30yJXN5WO1aOaGDF37zgKt35vj6rLOSe+kWI0Z3FYxtorTp8fY/DRmcFvdeUm8/nf7RZp478VKrmfToaJSvTJ9k7q/Nk8/rNojh+NUY8sBAAAAAAAAAADcB1Om1zLT16VJkppFB7v91NDuKMbmK9OUZqxP13UX1nN1Oedk6to9x22zGobiItxrXW7DMDSoY0Ml17Np6PgV2rm/QP3eW6Tnr0vSze0buLq8s9Y7KVZXJsZoaUq2MvMKFRXspw7xYbJa/vpzf3HjcP0w7FL9sHqPXpm+SXsOHtaDE1dp3IIUPXNNIrNIAAAAAAAAAAAAt8cI8Vpm3uYsSVJeYamLK6mdercsW7t6zp/73Hp66t+379cPq8oerijPV62GoZf6JbnNyPBjJde3aeoDnXV580gVlTr0xHdr9MS3q93652S1GOqUEK7rLqynTgnhFcLwchaLoRva1Nevj3bTYz2bKdDHqtW7c3TT+4s19IsV2rk/3wWVAwAAAAAAAAAAnB8E4rWI3WFq94ECSVJCZKCLq6mdkuqFqF6ovw6X2DVv8z5Xl3NWCkvsGj5prSRpUMeGWvjUFZpwz8Va8NTlGtC+oYurOzehAT4ae0d7PdazmQxD+nr5bvV7b1GtCIX9fay6/4qmmvN4Nw3s0FAWQ5q2Ll09Xp+n56duUE6Be6+tDgAAAAAAAAAAaicC8Vrkz/RcldjL1gZOiApycTW1k2EY6tUyRpI0Y517riP+9q9blJKVr6hgXz11VQvF2vzVKSHcbUeGH8tiMXT/FU31+f91VHigjzak5eqatxfol/Xu+fM6U1HBfhrdL1nTHuyqrs0iVWI3NXZBirr+Z47GLkhRcanD1SUCAAAAAAAAAABUGoF4LbJ8xwHn1xFBvi6spHa7KrksEJ+1McPtwsWNabn6YN52SdJz1yUpxM/bxRVVnc5NIzT1H53VtmGo8gpLde/nKzR62kaV2t3rZ3a2mscE67P/66BP/6+DmkcHK+dwiZ6fukE935in6evSZZqmq0sEAAAAAAAAAAA4LQLxWmTpjmzn12EBPi6spHZr27COIoJ8lVtYqt+373d1OZVmd5h6atJalTpM9WoZrd5JMa4uqcrF2vw18d5OuuvSOEnSB/O2a5qbjuw/W5c1i9RP/+is0f2SFRHkox37CzTkixUa8L/ftWb3QVeXBwAAAAAAAAAAcEoE4rWEaZpaflQgXieQQNxVrBZDPVtGS5Kmu9E03J8u2qHVuw4q2NdLz12X5Opyqo2Pl0Uj+rbUO4Pa6OaL6uuaVrGuLqnaeVktGtihoeY+frnuv7yJfL0sWpqSrWvfWaiHv1qlvQcPu7pEAAAAAAAAAACAEyIQryV2HzisjNwi5/swAnGX6n1kHfFf1mfI7qj5U0/vPlCgV3/ZJEl6qk8LRYf4ubii6ndNq7p65cbWMgxDkpRXWKIvl6TWqqnDg3y99Fiv5przWDf1a1NPkjT5jz26/NW5+s+MP3WoqNTFFQIAAAAAAAAAAFREIF5LLE3JrvCeKdNdq1NCuEL8vJR1qEgrdh44/QEuNn1dugqK7eoQF6aB7Ru6uhyXM01TT363Rk9PXqsRP653dTnVrm6ov14fcKF+vP9SdYgPU1GpQ+/O2aZu/5mj8Ut21pp11gEAAAAAAAAAQM1HIF5LLN/5VyButRgK9vNyYTXwtlrUI/HItOlusCb137o01sd3tddL/ZJlsRiuLqdG6JQQoUAfq244MlK6NmpVP1Rf3XuxPritneIjApV1qFj/nLxOfd76TXM3Zbq6PAAAAAAAAAAAAALx2mLZjr9GIdcJ8CbUrAHKp02fsT7dLabdvrx5lJpEBbm6jBrBMAzddnEjLXjyCrVpWMe5PXV/gQurcg3DMNSrZYxmPNRVI/omKjTAW5szDunOj5fptrFL9Gd6rqtLBAAAAAAAAAAAtRiBeC2QnV+srZmHnO/rMF16jdC1WaRiQvzUIT5M+cV2V5dzQp8v3qH0nEJXl1Fj1Qn868/Shr25uvKNeRo+aY0KS2rmz7Mq+XhZdNel8Zr32OX6W+d4eVsN/bYlS33e/E1PfbdGmXncRwAAAAAAAAAAoPoRiNcCy3eUTZceE+IrqWKIB9fx87Zq0VNX6I0BFyrIt+ZNYb9gS5b+9cN69Xxjng7kF7u6nBpvZeoBFdsdmrB0l258f5F2Zde+0eKSZAvw1jPXJGrWI5epT3KMHKY0cdkudfvPXL09e4sO19CHPwAAAAAAAAAAgGciEK8Flu8smy69UXigfL0sCmOEeI1Rk6eujwz2VesGobqhTT0eoqiEwRc30mf/10F1Ary1bk+urn7rN83emOHqslymUXig3ru1nb4Z0kmtG4SqoNiu12Zu1hWvzdV3K3bL4aj5ywQAAAAAAAAAAAD3Z5jusHjxOcjNzZXNZlNOTo5CQkJcXY5LXP/uQq3adVBvDGitG9rUV4ndIW8rz0LUFKZpamNansKDfBQd4ufqciqwO0yV2B3y87a6uhS3sffgYQ37cqX+SD0oSfp7twQ9cmUzedXiP3MOh6kpa/bqlembtOfgYUlSUr0QPXN1oi5uHO7i6gAAAM4OfU0AAAAAANxD7U1oaonDxXat25MjSbqoUZgkEYbXME9+t0Z93vpNXy/b5epSJEmldofza6vFIAw/Q3VD/fXVvZ105yVxkqT35m7TbWOXal9ekWsLcyGLxdB1F9bT7Ecv05O9WyjI10vr9uTqlv/9rns+W67t+w65ukQAAAAAAAAAAOChSEY93KpdB1XqMBUT4qf6dfxdXQ5OoF2jOvL1siivqNTVpajU7lD/9xdr9LSNrPV8Dny8LBp5bUu9NbCNAnysWrx9v655+zct25Ht6tJcys/bqqHdEjT38W4afHFDWS2GZm7IUM835mvkj+tZqx4AAAAAAAAAAJx3TJnu4d6avUWvz9ysvq3rKjzQR7sPFGhotyZq16iOq0vDEYeL7XKYpgJ9vVxdiv43f5te+vlPhfh5adajlykquGZN4e6OtmbmacgXK7U185CsFkPDr2qhuzvHyzBq7vrx1WVrZp5e+vlP/fpnpiQpxM9LD1zRVLdf0ki+XsxMAAAAarba3tcEAAAAAMBdMELcw5WPSG0fV0dLUrI1a2Om8gpLXFwVjubvY60RYXjq/gK9PnOzJOmfV19AGH6eNIkK1g/DLtW1revK7jD1wk8bNezLlXI4PPpZpEppEhWscXe21xd3d1SLmGDlFpbqxZ836srX5+unNWny8Oe1AAAAAAAAAABANXB9CocqU2p3aOXOA5LK1g9vGBagtJxCXRDL6IWaKj2nUDG26g+iTdPU05PXqrDEoU6Nw3XzRQ2qvQZPFujrpTdvuVAXxdXR81M3KC48UBYLI8TLdW4aoZ/+0UXfrditV3/ZpNTsAg37cqXaNaqjf159gdo2ZEYLAAAAAAAAAABwdgjEPdif6XnKL7Yr2M9LzWOClViXILymKiyxq997i7QxPVdLhndXVEj1huKTVu7Rgq1Z8vGy6KV+yUznXQUMw9DtneLUIT5MTSKDnNsPF9vl78P04FaLoZvbN9DVrWL1v/nb9b/527Vi5wH1e2+R+rauqyd6NVeDsABXlwkAAAAAAAAAANwMU6Z7sPLp0ts1qiMro1FrND9vq3y9LTJNacaGjGq9dtahIj3/0wZJ0oPdmyo+IrBar1/btIgJkZe17FdvUaldt/xv8ZHR+XYXV1YzBPp66eErm2nOY910Y7v6Mgxpyuq96v76PI2etlG5LPkAAAAAAAAAAADOAIG4B1u+o2y69PZxYcotLNGU1Xu1eNt+F1eFk+ndMkaSNGNderVe9/mpG3SwoEQtYoJ1b9fG1Xrt2m7R1v1asydHP61J0/78YleXU6PE2Pz06k2tNfWBzrokIVzFpQ59MG+7uv1nrj5bvEMldoerSwQAAAAAAAAAAG6AQNxDmaappUdGiLePC9OOrHw9MOEPPfL1KtcWhpPqdSQQX7x9vw5UUzg6Z1Omfli1VxZD+nf/VvK28iuhOl3eIkqf3NVBb95yoeqF+ru6nBqpZV2bxv+toz66/SI1jgxUdn6xnv1hvXr/d75mb8yQaZquLhEAAAAAAAAAANRgpF8eKjW7QPvyiuRjtahVfZuyjwSsdQJ8XFwZTiYuIlAtYoJld5iatbHqp03PLyrVM5PXSZLuvCRerRuEVvk1cbzLmkWqW/Mo5/tf/8zQqzM2ye4g6C1nGIZ6JEZrxkNd9dx1LRUW6KNt+/J196fLdetHS7R+b46rSwQAAAAAAAAAADUUgbiHWnZkuvTk+jb5eVudgXhYIIF4TXZVUqwkacb6qp82/fWZm7Xn4GHVC/XXoz2bVfn1cHoHC4r18Fer9c6crbp93BJlHSpydUk1irfVots7xWnu491032WN5WO1aNG2/brm7QV6/JvVysgtdHWJAAAAAAAAAACghiEQ91DLUv6aLl0Sgbib6J1UNm36/C1ZOlRUWmXXWb3roD5emCJJevGGJAX6elXZtVB5oQE+eu66lvL3tmrh1v265q0FWrEz29Vl1Tghft4aftUFmv3oZbqmVaxMU/pmxW51+89cvTFzswqKq+7PDgAAAAAAAAAAcC8E4h5q2c7yQLyOJOlAAYG4O2gWHaT4iEAVlzo058/MKruOj5dFF8SG6LoL61aYrhuud92F9fTj/ZcqITJQ6bmFGvDB7xq7IIW1sk+gQViA3hnUVpP+fonaNgzV4RK73py9Rd3+M1dfL9vFtPMAAAAAAAAAAIBA3BPtP1Sk7fvyJUntGpUF4tn5JZJYQ7ymMwxDvVqWjRKfXoXTpl8QG6Ifhl2qF65PqrJr4Ow1jQ7WD/d31jWtYlXqMPX81A26/8s/qnTWAHfWtmEdfTf0Er07qK0ahPkrM69IT3y3Rte8vUALt2a5ujwAAAAAAAAAAOBCBOIeqHz98ObRwQo9EoAfcE6Z7u2yulA55dOmz/kzU4Ul9vN6bsdRI2a9rBYF+3E/1FRBvl56e2AbjeybKC+LoZ/WpunadxZoc0aeq0urkQzD0NWtYjXrkcv0dJ8WCvbz0sa0XN360RL93yfLtDXzr++b3WFq8bb9+mHVHi3etp+R5AAAAAAAAAAAeDAWDvZAy3eUTZd+0ZHp0iUp+8iU6XWYMr3Ga13fplibn9JyCrVgS5Z6JEafl/Oapqk7P1mmC+vbNOyKJvL1sp6X86LqGIahOy+NV3L9UN3/5Upt35ev695ZqNH9knV9m3quLq9G8vWy6t6uCbqxXQO9NXuLvvh9p379M1PzNu/TwA4N1Kp+qN6YuVlpOYXOY2JtfhrRN1G9k2JdWDkAAAAAAAAAAKgKjBD3QMt2lo0Qbx8X5tzmHCHOlOk13tHTpk9bd/6mTZ+3eZ/mb96n//22XZm5ReftvKh67RrV0dQHOqtzkwgdLrHroa9W6Znv16qo9PzOIOBJwgJ9NPLalprxcFf1uCBadoepL35P1RPfrqkQhktSek6hhn6xUtPXpbmoWgAAAAAAAAAAUFUIxD1MQXGp1u/JkSS1jz8qED8yQjwsiEDcHfROilFksK+iQ3zP2zkvaxapdwe11bPXtFSDsIDzdl5Uj/AgX336fx30jyuaSJK++D1Vv27MdHFVNV9CZJA+uuMijb+7o7wsxgnblE+YPmrKBqZPBwAAAAAAAADAwzBluodZlXpQpQ5TdW1+qhfqL6ls3egDBSWSGCHuLjrEhWnJ8O6ynCTAOxvlayzDfVkthh7p2VxtGtXRgi1ZuiqZn2dlWSyGSk8RdpuS0nIKtTQlW50SwquvMAAAAAAAAAAAUKUYIe5hlu0omy79oqOmS88rLHWOegwlEHcLFotx3sLwNbsPKvvIlPnwDJc3j9K/rkl0vj+QX6wP5m1jdPMpZOYVnr7RGbQDAAAAAAAAAADugUDcQ9gdphZv26+f15atgdsuro5zX25hiQJ8rAr29ZKPFz9yd2J3mFq+I/usg868whLd9/kK9Xh9ntbuzjnP1aEmME1TD3+9SqOn/alnvl/r6nJqrKhgv0q1y8gtquJKAAAAAAAAAABAdWLKdA8wfV2aRk3ZoLScv0Y2vj17i6KDfdU7KVYNwgK04bneKiyxu7BKnCnTNHXlG/O0fV++vh3SqcKo/8p6dcYmpeUUqmFYgJpEBVVBlXA1wzB0/YX1tGZ3jm67OM7V5dRYHeLDFGvzU3pOoU71eMlLP2/Uhr05euaaREUE+VZbfQAAAAAAAAAAoGowXNjNTV+XpqFfrKwQhkvS/kPFGvrFSk1fl+bc5udtre7ycA4Mw1CrejaF+Hlpz8HDZ3z8ip0H9NnvOyVJL92QLH8ffv6e6vo29bTgycuVWDfEuW1jWq5MkynUy1kthkb0LZtm/tjFCIwjr27NImUY0ver9uqKV+fqyyWpcjANPQAAAAAAAAAAbs0wPTwxyc3Nlc1mU05OjkJCQk5/gBuxO0x1/vevx4Xh5QxJMTY/LXjyClnP03rUqF77DxUp2M/7jKe6Ly516Jq3f9PmjEO6sV19vXpT6yqqEDXRytQDGvDBYvVqGaOHezRTRl6h4iMCFWvzd3VpLneiGTVibX4a0TdRvZNitXrXQT09ea3W782VJLVrVEcv3ZCs5jHBrioZAADUUJ7c1wQAAAAAwJMQiLuxxdv2a+CHv5+23d+7JejP9Dz1TIzWLR0aVkNlcLW3Zm/R6zM3KzzQR7MeuUx1An1cXRKq0dfLdunpyWtVetToZoshje6XrAHt+R1gd5hampKtzLxCRQX7qUN8WIWHhkrtDn2yaIden7lZBcV2eVkM/a1LYz3YvSkzLQAAACdP7msCAAAAAOBJWEPcjWXmnXhk+LH+TM/Tr39mKiEysIorQlUxTVPZ+cUKr8Saxlsz8/TOr1slSc/2TSQMr4Vubt9ANn8v3ffFSuc2hyk9+d1azVifoegQP9n8vWXz91aIv5ds/t7qEB+mqGA/SVKJ3SFDkpfVM1fVsFoMdUoIP+l+L6tFf+vSWH2SYzXyx/X6ZUOG3p+3TVPX7NXz1yfp8uZR1VgtAAAAAAAAAAA4FwTibqw8vDqdHhdEq2ditJpGM+WvO1q3J0dDx6+Qr5dVsx657JRtHQ5TwyetVbHdocubR+ra1nWrqUrUNMH+3ifc/uufmSfc/sXdHZ2/U75ZvltPT16rq1vF6t1BbZ1t/j5+hQJ8vP4K0/28ZAvwVoif91EBe9l//bzdfyR13VB//e/2izRzQ4ZG/LBOuw8c1l0fL9PVybF6tm+iokMq9zsYAAAAAAAAAAC4DoG4G+sQH6ZYm5/Scwp1onnvy9cQH9C+AWuIu7EGYQFKzylUid3U1sw8NYk6+YMNE5alatmOAwrwseqFG5JlGPzca6v4iEBZjLKR4eUMQ3qoe1OZknIPlyrncIlyDpco93CJokP+mn0gt7BEkuR71Nr1hSV2/bw2vdLX9/GyKMTPW6/e1Erdjoyo/iP1gCb/sUct64ZUmLp9+Y5s+ftYy4L1AG8F+XjJUoN+Z12ZGK1LEsL1xszN+njRDv20Nk3zN+/T472b69aOjfj9CgAAAAAAAABADUYg7sasFkMj+iZq6BcrZUgVQvHyeGZE30TCGjdn8/fWJQkRmrd5n2aszzhpIJ6eU6iXf/5TkvRYz+aqF+pfnWWihom1+Wt0v2Q9PWmd7KYpq2HopX5JlVpD/G+d43VTu/rHbX/h+iTlFpaH6KXKLQ/UC/8K1nMOl8hhSsWlDmUdKpKX5a9QfWNanj5bvFM9LoiuUMegj5aouNThfG8xpGC/ilO6l41I/2sU+tGzXuQWligrr0hhgT4KDajcEgFpOYeVkpWv+IhAxdpO/2cl0NdLz1yTqBva1tPTk9dp9a6DevaH9fpuxW69eEOykurZKnVdAAAAAAAAAABQvQzTNE80uNhj5ObmymazKScnRyEhIa4up0pMX5emZ75fp6xDxc5tsTY/jeibqN5JsZq1IUO+3ha1bVhHgb48A+GOJi5N1VOT1iq5nk1THuh8wjb3fb5cM9ZnqHWDUE0aegkPQkBSWfC7I6tAcREBlQp+z5VpmjpUVKrcwlLlFJSoYXiAgo783lm966Bmb8xQfGSgbmhTFrgXlzrU563fnIF60VHB+Km8O6itrm4VK0n6aU2ahn25Uh3iw/T1fZ2cbW7532I5HFLIUcF6iJ+3tu87pKlr0mSqLHwf3S+5Ug8KlLM7TH25ZKdemb5JeUWlshjSXZfG65Erm/E7FgCAWqQ29DUBAAAAAPAE/Mu9B+idFKtAHy/dNm6pYkJ89caANuoQH+YMRB/5epVyC0s165HL1CQqyMXV4mz0SIyWZfJard2To90HClS/TkCF/Uu279eM9Rnyshj6d/9kwnA4xdr8qyUIL2cYhoL9vBXs533cLAWtG4SqdYPQCtt8vCya9chlzveFJXblFv412rx8avfcwhLlFPw1Ij0+ItB5TKnDoWDfssC7nGmaWrnzoIrtpw7YHab01Hdr1aZhHTWLPvlyBEezWgzd1ilOPVvG6LmpG/TTmjSNXZCiaWvTNPLalurZMqZS5wEAAAAAAAAAAFWPQNxDZOUXSZISooLUKSHcub3E7lBuYakkKSywclMJo+aJCPJV+7gwLUnJ1oz1Gbq7c3yF/R3iw/TGgNbKzC1SixhGp8B9+Xlb5edtVVSwX6WPue7Cerruwno6dsKTcXe2/2ud9CPTum9Oz9PsPzMrtDMl9X17gQZ2aKj7r2iiiCBfVUZ0iJ/eHdRWN7XL1L9+WKdd2Yd17+crdGVitEZd21J1WbYAAAAAAAAAAACXIxD3EPvyygLxyGOCnIMFJZIkw1CF0ZNwP72TYrQkJVvT16UdF4gbhuGcghqorQzDqPB156YRx7VJyzmsOS//Kscxi4UUlTr05dJU3X9FkzO+brfmUfrlocv01q9b9OH87Zq5IUMLt2bpkSub6c5L4uRltZz+JAAAAAAAAAAAoErwr/QewhmIB1cMxLPzy9YVD/X3ZhptN9fryDTMy3ceUGZeoSRpS0aeco489ADg9GJt/hrdL1nWI+G51TD0cr9kffZ/HfT0VS0qjA5/fuoGTV+XLvux6fkJ+PtY9WTvFvrpH110UaM6Kii264WfNuradxZq9a6DVfVxAAAAAAAAAADAaTBC3EOUB+LHTjNcHojXYbp0t1c31F+t69u0eneOZm7IUP+29XXfFyuUV1iqj26/6Li1mQGc2ID2DdW1WaR2ZBUoLiLAucZ612aRzjbr9uRo7IIUfbpoh+Y/cXmlpz9vHhOsr+/rpK+X79LoaX9qQ1qurn9voW67uJEe69VcIX7M1AEAAAAAAAAAQHVihLiHyDzJCPEDBWWBeDiBuEfonRQrSZq+Ll0ZuYXO7XHhga4qCXBLsTZ/dUoId4bhx4qx+WnY5Qka1LFhhTD82xW7lXnUn70TsVgM3dKhoWY/epluaFNPpil9tninerw2Tz+tSTturXMAAAAAAAAAAFB1GCHuIU43ZXqdAAJxT9CrZbT+Pf1PLdqapc3phzTujvYqLLXLFsCoU+B8igjy1eO9WlTYtjUzT499s1reVkPXXVhPf+sSrxYxIac8xxsDLtSN7errme/XKSUrX8O+XKluzSP1/HVJahAWUNUfAwAAAAAAAACAWo8R4h5i36HyKdOPGSF+JBAPY4S4R2gcGaToEF/ZTemez5fritfmsj4xUE0OFzt0UaM6KrGb+nbFbvX+72+6bewSzd+875Sjvi9tEqFpD3bRP7o3lY/Vormb9unKN+bpvblbVWJ3VOMnAAAAAAAAAACg9iEQ9wBFpXYdLCiRdIIR4gWsIe5J0nIOKzO3yPneYUpPT1qntJzDLqwKqB2S69v07dBLNOnvl6hPcowshvTblizdPm6prnrzN32zfJeKSu0nPNbP26pHrmymaQ910cWNw1RY4tAr0zfpmrcWaMXO7Gr+JAAAAAAAAAAA1B4E4h4g61BZ6O1tNWTzrzh1dvmU6WFMme4RUrLydew4VLtpakdWgUvqAWqjtg3r6L1b22ne45frzkviFOBj1Z/peXr82zXq/O85enfOVh088jDSsRIigzThnov12k2tFRboo00Zeeo/ZrGGT1pz0mMAAAAAAAAAAMDZIxD3AM71w4N8ZRhGhX3ONcQZIe4R4iMCZan4I5bVMBQXwVrEQHVrEBagkde21OKnuuvJ3i0UHeKrfXlF+s+MTeo0+lc9+8M67Tl4/OwNhmGof7v6mv3IZbr5ovqSpAlLd6n7a/P0/R97Tjn9OgAAAAAAAAAAODME4h4gM7dQkhQZ4nfcvgNHRhyGE4h7hFibv0b3S5b1yIMPVsPQ/7N331FR3Vsbx5+ZobdBQIpSVKwI2Av2GltMMb3Xm+ZNM9WUm5hmYprJTX2TmxgTTTHdxJLYe29gwYaCCoIgQ5M68/6BYIgaQYGhfD9rscKcc+bwoGbBOfvs/XtlXKSCzK52TgY0XmY3R907KFzLHx+it67upA5BXjpRVKLpqw8qxZJ/1vc1cXfSlCs76bu7Y9Ta30PpuYV66Nstuul/65RwLLcWvwMAAAAAAAAAABouB3sHwIVLyznVIf53+UVWSXSINyTX9AjVgLZNdeBYnlr4uVEMB+oIJwejxnUN1uVdmmvVvnQtiU9Vt7Am5fs/W5GgAC8XjegYIAfTqefRerb00ZwH+uuT5fv17sI9WrH3mEZMXaZ/D26tuwe2krODyR7fDgAAAAAAAAAADYLB1sBns2ZlZclsNstiscjLy8vecWrE1AW7NXXBHl3XM1STx0Wdtj+/qEQORkOFAgwAoPZk5hUqZvIinSgq0df/6q2YcN8zHncwPVfP/Byn5XuOSZJaNXXXy5dFnfV4AABgP43hWhMAAAAAgIaACmkDkHpyDXF/z9M7xCXJxdFEMRwA7MhgMOhfA1qpX2s/9W7lU759cXyqki2n1hkP83XX9Nt76t3rusjPw1n703J13Sdr9Mh3W5WRW2iP6AAAAAAAAAAA1Gt1pkr66quvymAw6KGHHirflp+fr/Hjx8vX11ceHh664oordPToUfuFrKPSThbEm56lIA4AsC+zq6MmDG+rr+7sJYPBIEnKKSjWA19vVv/XFuvhb7do+xGLpNLi+SWdmmnhIwN1Q69QGQzSD5sOaeibS/TdhiQ18MEuAAAAAAAAAABUqzpREF+/fr0+/vhjRUdHV9j+8MMPa/bs2Zo1a5aWLl2qI0eOaNy4cXZKWXedrSC+NzVHt32+Ti/M3mGPWACAf5CeU6AOQV4qttr00+bDGvPuCl3/yRot3pUqq9Ums6ujXr48Sj/c20ftAz11PK9Ij3+/Tdf83xrtTc22d3wAAAAAAAAAAOoFuxfEc3JydMMNN+iTTz5RkyZNyrdbLBb973//01tvvaUhQ4aoW7du+vzzz7Vq1SqtWbPGjonrnrSzjEw/knlCi+PTtGrfMXvEAgD8gzBfd313d4x+Gd9XF0cHyWQ0aNW+dN02bb0umrpM365PVH5RibqGNtHs+/vpqdHt5epo0rqEDI16Z7ne/CNe+UUl9v42AAAAAAAAAACo0+xeEB8/frzGjBmjYcOGVdi+ceNGFRUVVdjevn17hYaGavXq1Wc9X0FBgbKysip8NGQ2m+2sHeJtAjz02hVRundQuD2iAQAqoVOIt967vquWPjZId/ZrKQ9nB+1NzdETP8Sq32uL9O7CPcrOL9ZdA8L154QBGtreX0UlNv130V6NmLpMy/ek2ftbAAAAAAAAAACgzrJrQfybb77Rpk2bNHny5NP2paSkyMnJSd7e3hW2BwQEKCUl5aznnDx5ssxmc/lHSEhIdceuU7JOFKuwxCpJ8vOoWBAPMrvqmh6hurRzc3tEAwBUQXATNz1zcYRWTRyip0d3UDOzi47lFOqtP3erz6sL9fRPsSoqsenTW7rroxu7KtDLRQfT83TT/9bpga83KzU7397fAgAAAAAAAAAAdY7dCuJJSUl68MEHNWPGDLm4uFTbeSdOnCiLxVL+kZSUVG3nrovSckoLIF4uDnJxNNk5DQDgQnm5OOpfA1pp6eOD9c61nRXV3Kz8IqtmrE3UuoR0GQwGjYwM0oJHBuq2vi1kNEi/bj2ioW8u1Yy1B2W12uz9LQAAAAAAAAAAUGfYrSC+ceNGpaamqmvXrnJwcJCDg4OWLl2qd999Vw4ODgoICFBhYaEyMzMrvO/o0aMKDAw863mdnZ3l5eVV4aMhS806uX641+kPFWxNytSy3WlKsdA1CAD1jaPJqEs7N9ev/+6rb+7qrcs6N6sw8WPFnmPqHOKtH+7po6jmZmXnF+vpn+J05UertCulYS8XAgAAAAAAAABAZdmtID506FDFxsZqy5Yt5R/du3fXDTfcUP65o6OjFi5cWP6e+Ph4JSYmKiYmxl6x65y0nJPrh/9tXLokfbxsn27+bJ3mxSXXdiwAQDUxGAzq3cpXU6/tUj4JxGq16bV5u/TgN1u0MyVbP4/vq+fGRsjdyaRNiZka8+4KTZ6zU3mFxXZODwAAAAAAAACAfTnY6wt7enoqMjKywjZ3d3f5+vqWb7/jjjs0YcIE+fj4yMvLS/fff79iYmLUu3dve0Suk9KyTxbEPU8viGfkFkqSfM5QLAcA1F+FJVZd1rm5ftl6WJd2biaT0aDb+rZUqI+bpq86qKV70vTxsv36bVuyXryso4a0D7B3ZAAAAAAAAAAA7MJuBfHKePvtt2U0GnXFFVeooKBAI0aM0AcffGDvWHVK6smCuP8ZCuLHc4skST5uTrWaCQBQs1wcTXpwWBs9MLS1DAaDJMlms+n1+fHak5qjXi19tD8tV4czT+j2aRs0KjJQz43tqEDz6ctrAAAAAAAAAADQkNWpgviSJUsqvHZxcdH777+v999/3z6B6oF/7BDPK+0Qb+LuWKuZAAC1o6wYLkmWE0Vq4uakEqtNaxMyJElBZhcdzcrX3LgULd9zTI9e1FY3xbSQyWg42ykBAAAAAAAAAGhQ7LaGOKrH2QriNptNx8tGprvTIQ4ADZ23m5O+vqu3fru/ny7r3EwORoOSLfmy2iRnB6NyCor1/OwduvyDlYo7bLF3XAAAAAAAAAAAagUF8XouNTtfkuTvWXEMbnZBsYqtNklSE0amA0CjEdncrKnXdtHyJwbr7gGt5OnioIJiqyTJIGnbIYvG/neFXpi9QzkFxeXvK7HatHpfun7Zclir96Wr5OTPEAAAAAAAAAAA6rM6NTIdVXe2DvGy7nA3J5NcHE21ngsAYF9BZldNHN1B9w9to2/XJ+mzFQk6nHlCkmST9NnKBP269bBeuixKNptNL/y2Q8mW/L+830XPjY3QyMggO30HAAAAAAAAAABcOAri9VhhsVXH84oknV4Qz2BcOgBAkoezg+7o11K3xIRp3vYUfbI8QVuTMiVJx3IKdc9XG8/4vhRLvu79apM+vLErRXEAAAAAAAAAQL3FyPR67FhOaXe4o8kgb1fHCvuO51EQBwCc4mAy6uLoZvr5vj6adU+MhncI0E29Q896fNnA9EmzdzA+HQAAAAAAAABQb1EQr8fKxqX7eTjLaDRU2JeeU1oQZ/1wAMBfGQwG9Wjho09u6a7RUc3+8VibpGRLvtYlZNROOAAAAAAAAAAAqhkF8XrsbOuHS3SIAwDOLTU7/9wHSVq6O1WFxdYaTgMAAAAAAAAAQPVjDfF6LLWsIO5xekE8I7d0bXE6xAEAZ+Pv6VKp4z5aul8z1yZqWIcAjYgM1MC2TeXiaKrhdAAAAAAAAAAAXDgK4vVYWYe4v9fpBfHcgmJJko+742n7AACQpJ4tfRRkdlGKJV//tEq4i6NRWfnF+nHzYf24+bBcHU0a3L6pRnQM1JD2/vJ04WcNAAAAAAAAAKBuoiBej6XllI66PVOH+IuXReqZizvI9k8VDgBAo2YyGvTc2Ajd+9UmGaQKRfG/vs4vssrf00ndwny07ZBFhzNPaE5siubEpsjJZFS/Nn4aGRmo4R0C1ISlOgAAAAAAAAAAdQhriNdjqVlnX0NckpwdTIy0BQD8o5GRQfrwxq4KNFccnx5odtFHN3bV9Nt7qrm3q1KzCzU3LkX92/jp63/10n2DwtXKz12FJVYt2pWqx7/fpu4vL9D87Sl2+k4AAAAAAAAAADgdHeL1WFpOWUG8cmvAAgBwJiMjgzQ8IlDrEjKUmp0vf08X9WzpI5PRIEma//AAvTZ3l75cc1DfrE/Skvg0vTIuUo+NaKc9qTmaF5eiuXEp2pWSpS4h3uXnnb89RYnpeRoVFajgJm52+u4AAAAAAAAAAI0ZBfF6rGwN8TN1iI+fuUnOJqMmju5w1g5yAADKmIwGxYT7nnGfh7ODXrwsUmOig/TkD9t0ID1Pt0/boHFdmuvZiyP0wNA2emBoG6VY8uXvdeohremrD2jl3nRZbTbdPTBckmS12mQ8WWgHAAAAAAAAAKCmMTK9nrLZbOUFcf+/FbxLrDbNiU3Wj5sPy0DNAQBQTXq38tXcBwfoX/1bymiQftx8WMPfXqq5scmSdNrY9dFRQeoT7quRkYHl237eclhD31yi1+fvUuwhi2w2mwAAAAAAAAAAqCkGWwO/E52VlSWz2SyLxSIvLy97x6k2lhNF6jTpD0nSrhdHVlgrvKjEqp82H9bx3ELd0a+lHEw89wAAqF6bE4/r8e+3aU9qjiRpdFSgJl0Sec6pJPd8uVHz/rLOeHNvV42MDNTIyEB1C21C9zgAoN5oqNeaAAAAAAA0NBTE66m9qTka9tZSebo4KPb5EfaOAwBohAqKS/Teor36cMk+FVtt8nZz1HNjI3RZ5+YynGVESVZ+kRbvStW8uBQtiU/TiaKS8n1NPZ11UUSARkYGqncrXznyQBcAoA5rqNeaAAAAAAA0NBTE66nV+9J13Sdr1KqpuxY9MsjecQAAjdj2IxY9/v02bT+SJUka0t5fL18eqSCz6z++70RhiZbuTtP87SlasPOosvOLy/eZXR01rENpcbx/G78Kk1AAAKgLGuq1JgAAAAAADQ0F8Xrqly2H9eA3W9SrpY++vTumwr7DmSe052i2gpu4qrW/p50SAgAak6ISq/5v2X69s2CPCkus8nR20FNjOujaHiFn7Rb/q8Jiq1btO6b521P0x/ajSs8tLN839ZrOuqxL85qMDwBAlTXUa00AAAAAABoaZpHWU2nZBZIkfy+X0/YtjU/TrZ+v16tzd9V2LABAI+VoMmr84Nb6/YF+6hLqreyCYk38MVY3/m+tkjLyzvl+JwejBrXz1+Rx0Vr39DB9c1dv3dqnhcJ83TSkg3/5cZ+tSNCdX2zQij3HavLbAQAAAAAAAAA0EA6VOejXX3+t8omHDx8uV9d/HpWK85eWU1oQb+rhfNq+43mlXXVN3CDHK9IAAI6QSURBVJxqNRMAAG0CPPX9PX30+coEvfFHvFbuTddFby/TEyPb6eaYFjIaz90tbjIa1LuVr3q38tVztogKHea/bDmsrYcsGty+qfrJT1LpuuT5RSXy9zz9ITEAAAAAAAAAQONWqYL4ZZddVqWTGgwG7dmzR61atTqfTKiEtKyTBXHP0wviGSfHzPq4UxAHANQ+k9GgO/u30rAOAXryx21asz9Dz8/eod+2Jeu1K6MV3tSj0uf6+7j1166M1ry4FF0UEVi+7adNh/X87O3qHtZEIzoGamRkoIKbuFXb9wMAAAAAAAAAqL8qVRCXpJSUFPn7+5/7QEmenqxbXdPKOsT9z1AQP05BHABQB7Twc9fMO3tr5rpEvTp3lzYcPK5R7yzXw8Pa6l/9W8rBVPWVW9oHeql9YMV1Wvem5shmk9YfOK71B47rpd93Kqq5WSMjS4vjVSnAAwAAAAAAAAAalkoVxG+55ZYqjT+/8cYb5eXlde4Dcd7K1hA/Y4d42ch0CuIAADszGg26sXeYBrf318QfY7Vsd5pem7dLc2KT9fpV0acVt8/Hi5dF6t5B4Zq/PUXz4lK0/kCGYg9bFHvYotfnx6uNv4dGRQZqRGSgIoK8Tus6BwAAAAAAAAA0XAabzWazd4ialJWVJbPZLIvF0qCK9F1f/FMZuYWa+2B/dQiq+H1d+t4KbT1k0ac3d9ewiAA7JQQAoCKbzaYfNh3WC7O3Kyu/WI4mg+4b1FrjB7eWk0PVu8XP5lhOgf7ccVTz4lK0at8xFZWc+lUn1MdNIyMDdU2PEDrHAQAXpKFeawIAAAAA0NBc0N3noqIibd++Xdu2bVNBQUF1ZcI5FJVYy9cJP9PI9PRcOsQBAHWPwWDQld2CtWDCQF0UEaCiEpveWbhHl7y3QtsOZVbb1/HzcNZ1PUP1xe09teGZ4Xr7mk4a0TFALo5GJWbk6f+W7VdCWm758TkFxSousVbb1wcAAAAAAAAA1B3nXRBfvny5WrRoocGDB2vQoEEKCQnRvHnzqjMbziI9p7TgbTIa1MTt9KI3a4gDAOoyfy8XfXxTN713fRf5ujtpV0q2Lnt/pV6du0v5RSXV+rXMro66vEuwPr6puzY9O1wf3tBV47o2V782fuXHfLhkr3q8vEBfrTlYrV8bAAAAAAAAAGB/lS6IW60VO6ceeughzZgxQ6mpqcrIyNBLL72ke++9t9oD4nSp2fmSJD8PJxmNFddBzS8qUW5haTHB5wzFcgAA6gKDwaCLo5vpzwkDdWnnZrLapI+W7tPod5Zrw4GMGvmabk4OGhUVpLeu7iwXR1P59jX7M3Q8r0ieLg7l2w4dz9Oc2GTlFRbXSBYAAAAAAAAAQO2odEG8V69e2rRpU/nrwsJChYaGlr8ODQ1Vfn5+9abDGaVll46n9/d0OW1fZl6RpNLucS9Xh9P2AwBQl/i4O+mda7vok5u7y9/TWfuP5eqqj1fr+V+3K7egdorR397VW1//q7eGdggo3/bLliO6b8YmdXnhT901fYN+2nxIlhNFtZIHAAAAAAAAAFB9Kl0xfe+993TnnXdq4MCBeumll/Tcc8+pW7duateunYqKirRr1y7997//rcmsOKmsIN70DOuHl60t3sTNSQaD4bT9AADURcMjAtSzpY9e/n2HvttwSNNWHdCCnUf12hXR6tva79wnuAAOJqNiwn0rbPN0cVCoj5sSM/L0x46j+mPHUTkYDerT2k+jIgM1PCJAfh6n/xwGAAAAAAAAANQtlS6I9+rVS+vXr9eUKVPUrVs3TZkyRfHx8Vq7dq1KSkrUo0cPNW/evCaz4qTygvgZbsQfzytbP9yxVjMBAHChzK6OmnJlJ10c3UwTf4zVoeMndMOna3VdzxBNHN1BXi6197Pt5pgWuql3mHYmZ2teXLLmbU/R7qM5WrY7Tct2p+npn2LVvYWPRkUGakTHQDXzdq21bAAAAAAAAACAyjPYbDZbVd+0b98+3XPPPfLy8tJ///tfNWvWrCayVYusrCyZzWZZLBZ5eXnZO061ePbnOH255qD+Pbi1Hh3RrsK+ObHJum/GJvVq6aNv746xU0IAAC5MTkGxpszbpemrD0qSAr1c9Mq4SA1pH3COd9acfWk5mheXovnbU7TtkKXCvk4h3nrsonbq16Zmu9kBAHVHQ7zWBAAAAACgIar0GuKStH37dv3www8qKSnRn3/+qUsuuUT9+/fXBx98UFP5cAbla4h7nd4hPjoqSLtfGqX/u7l7bccCAKDaeDg76IVLI/XtXb3VwtdNKVn5un3aBj387RYdP7k8SG0Lb+qh8YNb69d/99OKJwbr2Ysj1LOFjwwGaWtSpkzGU0uVHEzP1c7kLJ3Hc4cAAAAAAAAAgGpU6YL4W2+9pR49euj1119XTEyMPvnkE91yyy1au3at1qxZo5iYGMXGxtZkVpyUlnP2kemS5ORglNmVkekAgPqvVytfzX1wgO4a0EpGg/TT5sMa/vZSzYlNtmuu4CZuuqNfS313T4zWPTVMr46LUs+WPuX7P1uRoFHvLNfkubvsmBIAAAAAAAAAUOmC+JQpU/T7779rzZo12rRpk9566y1Jkp+fn6ZPn64XXnhBV199dY0FxSmp2fmSpKaeZy6IAwDQkLg6mfTU6A768b6+ahvgoWM5hbpvxibd+9XG8p+J9tTU01nX9gyt0CFeZLXJycGo3q1OFcl3HMnS879u15r96Sqx0jkOAAAAAAAAALXBobIH2mw2GY2l9XOTyXTaCNDhw4dr8+bN1ZsOp7HZbKdGpnu6nLb//cV7tedotq7tGarerXxrOx4AADWmc4i3Zt/fT+8v2qsPluzT3LgUrdqXrufGRujyLs1lMBjOfZJa8srlUXp6dAc5OZx69nD2tiOatuqApq06IF93Jw2PCNDIyED1CfercBwAAAAAAAAAoPpUuiD+2GOPafTo0erUqZN2796tV1555bRjXFxOL9CieuUUFCu/yCpJ8vN0Om3/qn3HtHJvuga186/taAAA1DhnB5MmXNROIyOD9Nj3W7X9SJYmfLdVs7ce0SvjohRkdrV3xHLuzhV/zRrQpqmOZRfoz51HlZ5bqG/WJ+mb9UnydHHQ0Pb+GhkZpIFtm8rVyWSnxAAAAAAAAADQ8Bhsf2/1/gexsbHatWuXoqKi1L59+5rMVW2ysrJkNptlsVjk5eVl7zgXbF9ajoa+uVQezg6KmzTitP0LdhxVwrFcDengr/CmHnZICABA7Sgqser/lu3XOwv2qLDEKk9nB00c3UHX9QypU93if1dUYtW6hAzNi0vR/O0pSj05+UWSXByNGtTWX6OiAjW4vb+8XBztmBQA8E8a2rUmAAAAAAANVZUK4vVRQ7tJsWZ/uq79vzVq5eeuRY8OsnccAADsbm9qth77fps2J2ZKkvqE++rVcdEK9XWzb7BKsFpt2px0XHNjUzRve4oOHT9Rvs/RZNDkcdG6sluwHRMCAM6moV1rAgAAAADQUFVqwcoJEyYoNze30iedOHGiMjIyzjsUzq5s/XA/T2c7JwEAoG5o7e+p7+/po2cvjpCLo1Gr9qVrxNRl+mxFgkqsdfu5P6PRoG5hPnrm4ggtf3ywfru/n/49uLXCm7qrqMSm9oGe5cduPJihL1YdUIol346JAQAAAAAAAKB+qVSHuMlkUkpKipo2bVqpk3p5eWnLli1q1arVBQe8UA3tqf3/rUjQi7/t0JjoIL1/fdcK+wqKS7RqX7p83JwUHWyu0+NiAQCoCQfTc/XED9u0Zn/pg3ndwprotSui1dq//i0jsjc1R+FN3ct/nk/4bot+3HRYt/VtoefGdpQk2Ww2ft4DgJ00tGtNAAAAAAAaKofKHGSz2dS2bdtK33CtSjc5qqasQ7ypx+kd4qlZBbrt8/VycTRq14ujajsaAAB2F+brrpl39tbX6xM1ec4ubTx4XKPfXa6Hh7XVv/q3lIOpUsNx6oS/F/G7h/noYHqeRkUGlW9bvS9dL/y2Q6MigzQyMlBtAzwokAMAAAAAAADAX1SqIP75559X+cQBAQFVfg/Orawg7u91ekE8I7dQkuTj5lSrmQAAqEuMRoNu6BWmwe389dRPsVoSn6bX5u3SnNhkTbkyWh2C6mcX3/W9QnV9r9AK2+bGpWhXSrZ2pWTr7QW71crPXSMiAzWyYyDTYgAAAAAAAABAlSyI33LLLTWdA5WUml26buiZOsQz8koL4k3cKYgDANDM21Wf39pDP246rEmztyv2sEVj/7tC4we31vjBreXkUH+6xc9mwvC2ig42a15cipbvOab9x3L14ZJ9+nDJPjUzu2hEZKBGRQapW1gTmYwUxwEAAAAAAAA0PpUqiKPuKB+Z7nl6Qfx4WYc4BXEAACRJBoNBV3QLVv82fnr2lzjN335U7yzco3lxKZpyZbQ6hXjbO+IFaeLupKu6h+iq7iHKzi/Skvg0zYtL0eL4VB2x5OvzlQf0+coD8vNw1kUdAzSyY6Biwn3lWI9GxwMAAAAAAADAheBuaD1zLOfkyHRPl9P2lY1Mb8LIdAAAKvD3ctFHN3bT+9d3la+7k+KPZuvyD1Zq8pydyi8qsXe8auHp4qixnZrp/Ru6atOzw/XJzd01rmtzebk46FhOgWauTdTNn63T5ysT7B0VAAAAAAAAAGoNHeL1SHGJVekni95n6hBPysiTJDk3gBGwAABUN4PBoDHRQYoJ99Wk2dv1y5Yj+njZfv2x46imXBmtHi187B2x2rg4mjQ8IkDDIwJUVGLVmv3pmheXovnbj2p4RGD5cb9vS9bvsUd0dfcQDWrnb8fEAAAAAAAAAFAzqJzWI+m5hbLZJKPh9LHo365P1BerD0qSvt94SN+uT7RHRAAA6jwfdye9c20XfXpzdwV4OSvhWK6u/ni1nv91u3ILiu0dr9o5mozq36apXr48SuueGqqWfu7l+37delhzYlO06eDx8m0FxSXly7AAAAAAAAAAQH133gXxvXv3av78+Tpx4oQkyWazVVsonFnZ+uF+Hs4yGQ3l25MtJzTxx9jy1zZJT/0Yp2TLidqOCABAvTEsIkB/PDxQ13QPkc0mTVt1QCOmLtOKPcfsHa3GGP/y+4Mk3T+kje4bFK6LOzUr37YkPk3dX16gGz5doy9XH1BqVn5txwQAAAAAAACAalPlgnh6erqGDRumtm3bavTo0UpOTpYk3XHHHXrkkUeqPSBOKSuI/31cesKxXFn/9jxCic2mA8fyaisaAAD1ktnVUa9dGa0v7+ip5t6uOnT8hG7831o9+cM2ZeUX2TtejYtsbtbjI9urbYBn+batSZkqsdq0cm+6nv1lu3pNXqgrPlylT5btL1+eRSp9IG/VvmM8gAcAAAAAAACgTqtyQfzhhx+Wg4ODEhMT5ebmVr79mmuu0bx586o1HCpKzS7t0Pp7Qbyln7v+1vAlk8GgFn5uAgAA59a/TVP98fAA3RITJkn6Zn2Shr+1VAt3HrVzstr3+Mj2WvrYID01ur26hnrLZpM2Hjyul+fsVP8pizXm3eW6a/oG9X11ka7/ZK36vrqIpVoAAAAAAAAA1FlVLoj/8ccfeu211xQcHFxhe5s2bXTw4MFqC4bTlXWI+/+tIB5kdtWEi9qVvzYZpFfGRSrI7Fqr+QAAqM/cnR006dJIfXd3jFr6uetoVoHu+GKDHvpmc6NbUzvM1113DQjXj/f11ZqJQ/XCpR0V08pXRoO0/UiW/thxtHw6jdUmTfwxlk5xAAAAAAAAAHVSlQviubm5FTrDy2RkZMjZ2fkM70B1OdvIdElq4+8hSWrh56YVTw7RNT1CazUbAAANRc+WPpr7YH/dPaCVjAbp5y1HNPztpZoTm2zvaHYRaHbRzTEt9PVdvbXhmeG6q3/L046x2lS+VEt8Srb+80uc5jbSPy8AAAAAAAAAdUuVC+L9+/fX9OnTy18bDAZZrVZNmTJFgwcPrtZwqCi1rCDucXpBPC27QI4mg7qGNKEzHACAC+TiaNLE0R3003191TbAQ8dyCnXfjE2658uN5UuYNEY+7k66rV/L05ZqMRpUvlTLmv3pmr76oL7bkFThmPcX79WfO46WP+AHAAAAAAAAALXBoapvmDJlioYOHaoNGzaosLBQjz/+uLZv366MjAytXLmyJjLipFMd4i6n7buxd5iu6RGivIKS2o4FAECD1SnEW7Pv76f3F+/TB4v3at72FK3en67/XByhcV2by2AwnPskDUyQ2VWTx0XpqR/jVGKzyWQwVFiqJSrYrDv7tVS7QM/y9xzNytfr8+PLXzf3dlWnELM6h3irU7C3Ipub5e5c5V9LAQAAAAAAAOCcDDabzVbVN1ksFr333nvaunWrcnJy1LVrV40fP15BQUE1kfGCZGVlyWw2y2KxyMvLy95xLsjA1xfrYHqeZt0Tox4tfOwdBwCARmXHkSw9/sNWxR3OkiQNatdUr1wepWbejXMyS7LlhA4cy1MLP7dzTqc5dDxP7y7co61JFu1Ozdbff/s0GqS2AZ6lBfKTRfK2AR5yMFV5mBEA1JqGdK0JAAAAAEBDdl4F8fqkodyksNlsivjPfJ0oKtGSRwephZ+7vSMBANDoFJdY9X/L92vqgj0qLLbKw9lBT43uoOt6hjTKbvHzkVNQrNhDFm1JytTWpExtPZSpZMvpY+hdHU1a8cRg+Z5cKia3oFhuTib+nAHUGQ3lWhMAAAAAgIauyrMpP//8c3l4eOiqq66qsH3WrFnKy8vTLbfcUm3hcEpWfrFOFJWOQ084lqsQHzeZTi7geeBYru7/erOig816+fIoe8YEAKBBczAZdd+g1rooIlCPf79VmxIz9dRPsZq99YheuyJaob5u9o5Y53k4Oygm3Fcx4b7l245m5ZcXyLckZWrbIYvcnEzycXcqP+aBrzdr6yGLJo+L0vCIAEmlDwxSIAcAAAAAAADwT6pcEJ88ebI+/vjj07b7+/vrrrvuoiBeA+bFJevZn7eXv75t2noFmV303NgIjYwM0q6UbMUettgxIQAAjUtrfw/NuqePvlh1QK/Pj9fq/ekaMXWZHhvRTrf0aVH+0BoqJ8DLRSM6BmpEx0BJktVqU2p2QYVi947kLB3LKZCvx6ki+Y+bDuv9xXtPjlk3q3NoE3UI8pSzg6nWvwcAAAAAAAAAdVOVR6a7uLho165datGiRYXtBw4cUIcOHXTixInqzHfB6vsYu3lxybr3q036+19S2e3hD2/squ4tfLThQIaMBoMuOnkjGQAA1I7E9Dw98cM2rd6fLknqGuqtKVd2Umt/Dzsna1jyi0q0/UiWIpt7lRe8n/k5Vl+tSaxwnJPJqA7NvNQ52KxOId7qHOKtFr7uMvKQAoBqVt+vNQEAAAAAaCyqXBAPDQ3Ve++9p0suuaTC9l9++UXjx4/XoUOHqjXgharPNylKrDb1e23RGdfVlEqL4oFmF614YgidaAAA2JHVatM365P0ypydyikolpODUQ8ObaO7B7SSg8lo73gN1vHcQm05dGrU+takTB3PKzrtOC8Xh/LieN/WfurdyvcMZwOAqqnP15oAAAAAADQmVR6Zft111+mBBx6Qp6enBgwYIElaunSpHnzwQV177bXVHrAxW5eQcdZiuCTZJCVb8rUuIaPCOpwAAKB2GY0GXd8rVIPaNdVTP8VqSXyaXp8fr7lxyZpyRSdFNKNQUhOauDtpcDt/DW7nL6l0TfGkjBPanHRcW5Ms2nooU3GHLcrKL9byPce0fM8xHcnMLy+IF5dY9fnKA+oU4q1uYU14wBAAAAAAAABogKrcIV5YWKibbrpJs2bNkoNDaT3darXq5ptv1kcffSQnJ6dznKF21een9n/ZclgPfrPlnMddHB2kSzs31+B2TelCAwDAzmw2m37afFiTZu+Q5USRHIwG3Te4tf49uLWcHPg5XduKSqyKT8nWlpNd5IPaNdXF0c0kSTuOZGn0u8vl6eygrc9dVD5WfdW+Y2ri5qS2AZ4UyQGcVX2+1gQAAAAAoDGpckG8zO7du7V161a5uroqKipKYWFh1Z2tWtTnmxSr96Xruk/WVOpYV0eTtk8awfqYAADUEanZ+frPz9s1b3uKJKldgKemXBmtTiHe9g2GcjuOZOmdhbvl4mjSO9d2Kd8+8PXFOpieJzcnkyKbm9UlxFudTn40M7vIYOD3LQD1+1oTAAAAAIDG5LwL4vVFfb5JUbaGeIolX2f6SzJIMrs5KjOvSNHBZv367361HREAAJzDnNhkPftznNJzC2U0SP/q30oPD28rF0eTvaPhDAqLrbrls3XadihTuYUlp+1v6umsTsHe6hxiVueQJooKNsvs6miHpADsrT5fawIAAAAA0JhUuSBeUlKiadOmaeHChUpNTZXVaq2wf9GiRdUa8ELV95sU8+KSde9Xm04riJf1JV0cHaTZ25J1RddgvXl1p9qOBwAAKiEjt1AvzN6un7cckSS19HPXa1dEq2dLHzsnw9mUWG3an5ajzUmZ2pqUqa2HMrUrOVvF1tN/dW7V1F2vX9lJ3cKa2CEpAHup79eaAAAAAAA0Fg5VfcODDz6oadOmacyYMYqMjGRkZA0bGRmkD2/sqoe/3aoTRae6lALNLnpubIR+25YsSWob4GGviAAA4Bx83J009douGtupmZ76KVYJx3J19cerdUtMmB4f2V7uzlX+lQw1zGQ0qE2Ap9oEeOrq7iGSpPyiEm0/YtGWJIu2nCyUJ2bkaX9arvw8nMrf+/nKBP2y5Yiu7xmqq3uE2OtbAAAAAAAAAKDzKIh/8803+u677zR69OiayIMzGBkZpN+2Jeu3bcm6vEtzXd09RD1b+shkNOjtP/dIktpQEAcAoM4b2iFAf7Tw0eQ5O/XN+iR9sfqgFuxM1WtXRKtfGz97x8M5uDia1C3MR93CTnX2Z+QWatuhTIX6uJVvW38gQ1uSMjWiY2D5tqSMPD39c5w6B5vL1yP383Cu1fwAAAAAAABAY1TlgriTk5Nat25dE1nwDwqKS0fTd2/RRDHhvpKkohKr9h/LkSS18fe0WzYAAFB5ZldHvXpFtC6ObqYnf9ymQ8dP6Mb/rdU13UP01JgOrEddz/i4O2lQO/8K2yaO6qARHQMV1dxcvm1zUqaW7U7Tst1p5duCm7iqU4i3Ogd7q3OotyKbmeXqxNryAAAAAAAAQHWqckH8kUce0TvvvKP33nuPcem1KP/kuHQXh1M3SQ+m56qoxCY3J5Oae7vaKxoAADgP/dr4af5DA/T6/HhNW3VA325I0pLdqXr5sigNiwiwdzxcgBAfN4X8pWNckrqGeuulyyLLR63vTcvRoeMndOj4Cf1+cgkck9GgtgGe6hzirc4hpZ3k7QNZlxgAAAAAAAC4EFUuiK9YsUKLFy/W3Llz1bFjRzk6Vuxi+vHHH6stHE4pKCrtEHdxPFUQ33O0rDvcQ0YjDycAAFDfuDs76PlLOmp0VJCe+GGbEo7l6s7pG3Rp52Z6bmxH+bg7nfskqBeCm7jpxt5hurF3mCQpK79IcYcs2nIoU1sSM7UlKVOp2QXamZylnclZ+nqdFOrjpmWPDy4/x9r96QrxcVOQ2YUHUwEAAAAAAIBKqnJB3NvbW5dffnlNZME/yC8+2SHuaCzftrusIB7AuHQAAOqzni19NPfB/np7wW59smy/ftlyRCv2HNOkSztqTFQQxc8GyMvFUX1a+6lP61Nrx6dY8rUl6bi2JFm0NSlTYb6nusytVpvu/GKDsguKNeeB/opoVto5fjQrXy6OJkbtAwAAAAAAAGdR5YL4559/XhM5cA5lHeLOfxmZvjs1W5LUNsDDLpkAAED1cXE0aeKoDhodGaTHv9+m+KPZ+vfMzZrd8YhevCxS/p4u9o6IGhZodtFIc5BGRgadti8jr1Chvm46mJ6nNn/53e+N+fGatfGQwpu6q1OIt7qEeJePWndyMJ52HgAAAAAAAKCxqXJBHPZxpg7xPUdLC+Jt/OkQBwCgoegU4q3Z9/fT+4v36v3FezV/+1Gt2Z+h/1wcoXFdm9Mt3kj5eTjr9wf6q7DYKkfTqd8Hj2YXSJL2peVqX1quftx0WJLk5GBUx2Ze6hTsfXJNcm+F+brx7wcAAAAAAACNznkVxL///nt99913SkxMVGFhYYV9mzZtqpZgqCi/qKwgXtohXlRiVcKxXEmq0CUEAADqPycHox4e3lYjIwP1+PfbFHvYokdmbdWvW4/olXFRau7tau+IsJO/d31Pv72n0nMKtO2QRZuTMrU1KVNbD2UqM69ImxMztTkxs/xYs6ujOoV465aYMA3tEFDLyQEAAAAAAAD7qPIcxXfffVe33XabAgICtHnzZvXs2VO+vr7av3+/Ro0aVaVzffjhh4qOjpaXl5e8vLwUExOjuXPnlu8fNGiQDAZDhY977rmnqpEbhPyTI9PLOsSzThSpT7ifWvt7cFMcAIAGqkOQl366r4+eGNleTg5GLd2dphFvL9OMtQdltdrsHQ91hK+Hswa399eE4W31xe09tfnZ4Vry6CC9c21n3dqnhbqEesvJwSjLiSIt252mjNxTD7RuP2LRv2du0jfrEu34HQAAAAAAAAA1x2Cz2ap0N7V9+/Z67rnndN1118nT01Nbt25Vq1at9J///EcZGRl67733Kn2u2bNny2QyqU2bNrLZbPriiy/0+uuva/PmzerYsaMGDRqktm3b6oUXXih/j5ubm7y8vCr9NbKysmQ2m2WxWKr0vrqm3TNzVVBs1fLHByvEx83ecQAAQC3bm5qjJ37Ypo0Hj0uSerfy0WtXRCvM193OyVAfFBZbtSslS1uTMjWkQ0D5A5Wfr0zQpNk7NKS9vz67tUf58a/M2anWTT3UKcRbrf09ZDIyah34u4ZyrQkAAAAAQENX5ZHpiYmJ6tOnjyTJ1dVV2dml61jfdNNN6t27d5UK4mPHjq3w+uWXX9aHH36oNWvWqGPHjpJKC+CBgYFVjdmg2Gw2FRSXdYib7JwGAADYQ2t/D313d4ymrz6gKfPitWZ/hkZMXabHRrTXrX1aULDEP3JyMCo62FvRwd4VtseE++qxEe3U4i8PVqRY8vV/y/aXv3Z3Mikq2KxOId7qEuKtTiHeCjIzoQgAAAAAAAD1Q5UL4oGBgcrIyFBYWJhCQ0O1Zs0aderUSQkJCapis3kFJSUlmjVrlnJzcxUTE1O+fcaMGfrqq68UGBiosWPH6tlnn5WbW+PqkC4rhkuS88mR6ScKS+TqRHEcAIDGxGQ06La+LTW0fYCe/HGbVu1L14u/7dDv245oypXRau3vae+IqGfaB3qpfWDFzlaDQbp7YCttScxU7GGLcgtLtGZ/htbszyg/JsDLWZ2CvcuL5FHBZnm6ONZ2fAAAAAAAAOCcqlwQHzJkiH799Vd16dJFt912mx5++GF9//332rBhg8aNG1flALGxsYqJiVF+fr48PDz0008/KSIiQpJ0/fXXKywsTM2aNdO2bdv0xBNPKD4+Xj/++ONZz1dQUKCCgoLy11lZWVXOVNcUFJ0qiLs4lBbBL3lvhY7nFemTm7upS2gTe0UDAAB2EOrrphl39tI365P08u87tSkxU6PfWaEHh7XRXQNaydFktHdE1GMBXi6aOKqDJKnEatPe1BxtTcrU5qRMbU3KVPzRbB3NKtAfO47qjx1HJZUW0dc9NUxNPZ0lSWnZBTK7OsrJofTfYrLlhBKO5aqlnzvd5QAAAAAAAKhVVV5D3Gq1ymq1ysGhtJb+zTffaNWqVWrTpo3uvvtuOTk5VSlAYWGhEhMTZbFY9P333+vTTz/V0qVLy4vif7Vo0SINHTpUe/fuVXh4+BnP9/zzz2vSpEmnba/P67odzcpXr1cWymiQ9r0yWiVWmyL+M1+FJVatfHJI+RqQAACg8TmSeUJP/xSrxfFpkqSOzbw05cpodWxmtnMyNFQnCksUd8SirUmZ2nLyo7jEpjVPDS0/5vZp67Vi7zG9cVUnnSgs1sQfY2W1SUaDNHlclK7pEWrH7wCoHqwhDgAAAABA/VDlgnhNGzZsmMLDw/Xxxx+fti83N1ceHh6aN2+eRowYccb3n6lDPCQkpF7fpDiYnquBry+Rm5NJO14YKUnKLSjW3tQcRQebZTCwZigAAI2ZzWbTT5sPa9LsHbKcKJKD0aD7BoVr/JDWcnZgiRXUvNyCYrk7nxo+NeTNJdqflqtPbu6mu7/cKOtfrjgMkn64N0Zdw3xqPyhQjSiIAwAAAABQP1RqZPq2bdsqfcLo6OjzDiOVdqD/taD9V1u2bJEkBQUFnfX9zs7OcnZ2vqAMdU3+yZHpLo6nbmi7OzuoU4i3nRIBAIC6xGAwaFzXYPVr46fnftmuuXEpenfRXs3bnqIpV3ZSZ35nQA37azFckhZOGKgD6XlKysirUAyXJJukcR+uVqdgs0ZHBWl0VJBCfNxqLywAAAAAAAAalUoVxDt37iyDwSCbzXbObuSSkpJKf/GJEydq1KhRCg0NVXZ2tmbOnKklS5Zo/vz52rdvn2bOnKnRo0fL19dX27Zt08MPP6wBAwZccNG9vikoLv0zdXZgPVAAAHB2/p4u+vDGbpoTm6z//BKn3UdzNO6DlbqzfytNGN62wsN1QE0yGAxq6ecuF0ejjAadVhSXpK2HLNp6yKLJc3cpqnlZcTxQYb7utR8YAAAAAAAADValCuIJCQnln2/evFmPPvqoHnvsMcXExEiSVq9erTfffFNTpkyp0hdPTU3VzTffrOTkZJnNZkVHR2v+/PkaPny4kpKStGDBAk2dOlW5ubkKCQnRFVdcoWeeeaZKX6Mh+HuH+NQFu3Usp0DX9QxlfVAAAHCa0VFBimnlqxd+26GfNh/W/y3brz93HNVrV0SrZ0vGVKP2BJldNXlclJ76MU4lNptMBoNeGRepwe39NX/7Uc2NTdaa/emKPWxR7GGLXpu3SxFBXhoTXdo53tKP4jgAAAAAAAAuTJXXEO/Zs6eef/55jR49usL2OXPm6Nlnn9XGjRurNeCFagjrui3bnaabP1un9oGemvfQAA1/a6n2pOZo2m09NKidv73jAQCAOmzRrqN66sc4pWTlS5JujgnT4yPby8O5Us9FAtUi2XJCB47lqYWfm4LMrhX2Hcsp0B/bj2puXLJW7UtXyV/ayd+9rosu6dSstuMCldIQrjUBAAAAAGgMqnwnNDY2Vi1btjxte8uWLbVjx45qCYWK8otKR6a7OJpUWGxVwrFcSVLbAE97xgIAAPXAkPYB+mOCjybP2amv1yVp+uqDWrgzVa9eEaX+bZraOx4aiSCz62mF8DJ+Hs66vleoru8VqozcQv25I0W/x6Zozf509Qn3LT/ut21HtOdoji7r0pzOcQAAAAAAAFRalRel7tChgyZPnqzCwsLybYWFhZo8ebI6dOhQreFQKr+4bGS6UQfSc1VstcnD2UFBZhc7JwMAAPWBl4ujJo+L1ow7eym4iasOZ57QTf9bp8e/3yrLiSJ7xwPK+bg76ZoeoZp+e09tfna4/Dycy/dNX31Q7yzco4U7j5ZvK7HaVMWBVwAAAAAAAGhkqtwh/tFHH2ns2LEKDg5WdHS0JGnbtm0yGAyaPXt2tQeEVHCyQ9zZwaTdR7MlSa39PWQwGOwZCwAA1DN9W/tp/kMD9Pr8eH2x+oC+23BIS+LT9PLlURoeEWDveEAF7n8b639tjxB5ODtoZGRg+bYfNh3SR0v3aXRkkEZFBSoiyIvfkQEAAAAAAFBBldcQl6Tc3FzNmDFDu3btklTaNX799dfL3b3ujS5sCOu6fbnmoJ79OU4jOgaoXaCX3l24R1d3D9aUKzvZOxoAAKinNhzI0OPfb9P+k0uxXNKpmZ6/pKN83J3snAyovDu/WK8FO1PLX7fwddOoqCCNiQpSx2YUx1GzGsK1JgAAAAAAjcF5FcTrk4Zwk+LT5fv10u87dWnnZiostmpuXIqeGdNBd/ZvZe9oAACgHssvKtHUBXv0f8v2yWqTfN2dNOnSjhoTFUQhEfVCdn6RFu1K1dzYFC2OT1XByaWGJCnEx1WjI4M0OipI0cFm/k2j2jWEa00AAAAAABqD8yqI79mzR4sXL1ZqaqqsVmuFff/5z3+qLVx1aAg3Kd5btEdv/LFb13QP0YaDGdqXlqsvbu+pgW2b2jsaAABoALYmZerx77cp/uTSLBdFBOilyyLl7+Vi52RA5eUWFGtxfKrmxCZr0a5U5Reduk5p7u2q0VGBGhUVpM7B3jIaKY7jwjWEa00AAAAAABqDKhfEP/nkE917773y8/NTYGBghU4Lg8GgTZs2VXvIC9EQblK8MT9e7y3eqxt7herr9Ukqsdq0euIQBZld7R0NAAA0EIXFVn2wZK/eW7RXxVabvFwc9OzFEbqyWzCdtah38gqLtSQ+rbw4nldYUr7vgxu6anRUkB3ToaFoCNeaAAAAAAA0Bg5VfcNLL72kl19+WU888URN5MEZFBSX3sDLL7aqxGqTp7ODAunYAgAA1cjJwaiHhrXViI6Bevz7bYo9bNFj32/T7G3JmjwuSs29eRAP9Yebk4NGR5WOS88vKtGS+DTNjUvWyr3HNOAvU5a+WnNQe1NzdHX3EEU0o6AJAAAAAADQEFW5IH78+HFdddVVNZEFZ1E27jEnv0iS1CbAg04tAABQIzoEeemn+/ro0xUJeuvP3Vq2O00XvbVUE0d30PU9Q2U0GlRitWldQoZSs/Pl7+mini19ZGIENeooF0eTRkYGamRkoEqstgr/VmeuTdSO5Cy1D/QsL4jnF5XI0WTk3zQAAAAAAEADUeWC+FVXXaU//vhD99xzT03kwRnkF5V2iFtOFEuS2gZ42jMOAABo4BxMRt0zMFzDIwL0+PfbtPHgcT3zc5xmbz2iMVFB+nDpPiVb8suPDzK76LmxERoZyRhq1G1/LXLbbDY9clFbzYlN0UUdA8u3z1ybqA+W7NWIjoEaExWkni195GAy2iMuAAAAAAAAqkGVC+KtW7fWs88+qzVr1igqKkqOjo4V9j/wwAPVFg6l8otLO8SP5xVKklr7e9gzDgAAaCTCm3rou7tjNH31AU2ZF6+1CRlam5Bx2nEplnzd+9UmfXhjV4riqDcMBoOGdgjQ0A4BFbYv25OmYzmFmrE2UTPWJsrH3UkjOgZodFSQerfylSPFcQAAAAAAgHrFYLPZbFV5Q8uWLc9+MoNB+/fvv+BQ1SkrK0tms1kWi0VeXvVzXcB/Td+gP3cc1VXdguVgMuiaHqHqHOJt71gAAKARSUjL1Yipy1RYYj3jfoOkQLOLVjwxhFHTqNeKSqxavS9dc2KTNX97io7nFZXv83Zz1IiIQI2KClSfcD85OVAcb8wawrUmAAAAAACNQZU7xBMSEmoiB/5BwckO8faBnurQzEsBXs52TgQAABqblKz8sxbDJckmKdmSr3UJGYoJ9629YEA1czQZNaBtUw1o21QvXhaptfszNCcuWfPjUpSeW6hvNyTp2w1JMrs6anhEgEZHBapf66YUxwEAAAAAAOqoKhfEUfvK1hB/6fedskkyGqTJ46J0TY9Q+wYDAACNRmp2/rkPqsJxQH3gaDKqXxs/9Wvjpxcu6ah1CaXF8XlxR3Usp0Dfbzyk7zce0me3dteQ9gHnPiEAAAAAAABqXZUL4rfffvs/7v/ss8/OOwzOLPtE6ZjGstn2Vpv01I9xGtC2qYLMrvYLBgAAGg1/T5dKHZdbUFzDSQD7cDAZ1ae1n/q09tOkSyK1/kCG5sQma9W+dPVr3bT8uP8u3KO9aTm6rW9LljkCAAAAAACoA6pcED9+/HiF10VFRYqLi1NmZqaGDBlSbcFwSs4ZbiyX2Gw6cCyPgjgAAKgVPVv6KMjsohRLfvlDemfy1E9xij2cpcdGtJOPu1Ot5QNqk8loUO9Wvurdylc2m00Gg0GSZLPZNGvjISVm5OmiiMDygnhWfpEcjUa5OpnsmBoAAAAAAKBxqnJB/Keffjptm9Vq1b333qvw8PBqCYWKrLbTbzubDAa18HOzQxoAANAYmYwGPTc2Qvd+tUkGqUJRvOx1jxZNtP7AcX29LlG/bzuiRy5qpxt6hcrBxNrKaLjKiuFl3r6ms+bFJWtw+1Nd49NWHtBHS/dpcHt/jY4M0uD2TeXmxOpVAAAAAAAAtcFgs52h2noe4uPjNWjQICUnJ1fH6apNVlaWzGazLBaLvLy87B3nvPR6ZYGOZhXIaCgdl24yGPTKuEjWEAcAALVuXlyyJs3eoWTLqbXCg8wuem5shEZGBmn9gQw998t27UjOkiS1C/DUc5dEqE+4n70iA3Z32+frtDg+rfy1i6NRg9v5a1RUkIa295e7M8Xx+qghXGsCAAAAANAYVFtBfM6cObrllluUlpZ27oNrUUO4SdH5hT+UmVekmXf2kuFkZzij0gEAgL2UWG1al5Ch1Ox8+Xu6qGdLH5mMhgr7v16XqDf+iFdmXpEkaUxUkJ4a00HNvfkdBo2PzWZT7GGL5sSmaE5sshIz8sr3OTsYNbBtU42JDtKQ9v7ydHG0Y1JURUO41gQAAAAAoDGockF8woQJFV7bbDYlJyfr999/1y233KL33nuvWgNeqIZwk6L9s3OVX2TV8scHK8SHMekAAKB+yMwr1Ft/7tZXaw7Kaivtir1vUGvdNaCVXBxZSxmNk81m0/YjWZoTm6w5sck6kH6qOO5kMmpAWz+NjgrS8IgAiuN1XEO41gQAAAAAoDGockF88ODBFV4bjUY1bdpUQ4YM0e233y4Hh7o17q++36Sw2WxqOXGOJKlLqLduiWmhy7o0t3MqAACAyttxJEvPz96udQkZkqTgJq56ZkyERnQMOG39ZaAxsdls2pmcrblxyfo9Nln703LL9826J0Y9WviUH8f/K3VPfb/WBAAAAACgsai2kel1VX2/SZFfVKL2z84rf/3EyPa6d1C4HRMBAABUnc1m02/bkvXKnJ3l64/3b+On58ZGqLW/p53TAfZns9m0+2iOfo9N1vqEDM24s5eMJ5cimDR7uxKO5Wr84NblRXLYX32/1gQAAAAAoLE473bu1NRUxcfHS5LatWsnf3//aguFUwqKrBVeOzkY7ZQEAADg/BkMBo3t1ExDO/jrg8X79H/L9mv5nmMaOXW5bunTQg8OayMvxkOjETMYDGoX6Kl2gRUfELFabZq9NVnHcgp0W9+W5dtTs/PlYDTKx92ptqMCAAAAAADUK1WurmZlZemmm25Ss2bNNHDgQA0cOFDNmzfXjTfeKIvFUhMZG7WC4pIKrymIAwCA+szNyUGPjminPycM0PCIABVbbfrfigQNeWOJvtuQJKu1QQ8vAqrMaDTo27t76/GR7dQn3Ld8+yfL9qvHywt0w6drNGPtQR3LKbBjSgAAAAAAgLqrytXVf/3rX1q7dq1+//13ZWZmKjMzU7/99ps2bNigu+++uyYyNmr5JzvET05LlLOJgjgAAKj/wnzd9cnN3TXtth5q1dRdx3IK9fj323T5h6u0JSnT3vGAOiW8qYfuG9Rajn+5FjiYnqcSq00r96br6Z/i1PPlBbr2/1bry9UHlJqdb8e0AAAAAAAAdUuV1xB3d3fX/Pnz1a9fvwrbly9frpEjRyo3N7daA16o+r6u2+6j2bro7WVyMBpUbLVp6jWddVmX5vaOBQAAUG0Ki636YtUBvbNwj3IKiiVJV3UL1uMj26upp7Od0wF1V2J6nubEJWtubLK2Hjo1rctgkHq08NHoyECNigpSgJeLHVM2XPX9WhMAAAAAgMaiymuI+/r6ymw2n7bdbDarSZMm1RIKp+QXlY5ML+sQZ2Q6AABoaJwcjPrXgFa6tHMzvTYvXj9sOqRZGw9pXlyKHhzWRrf0aVGhMxZAqVBfN90zMFz3DAxXUkae5sWl6PfYZG1JytS6hAytS8jQ87N3qHtYE42KCtLlXZqz5jgAAAAAAGh0qnxn8ZlnntGECROUkpJSvi0lJUWPPfaYnn322WoNh1Mj0w2G0oo4N4MBAEBD5e/lojev7qQf7+uj6GCzsguK9dLvOzXqneVavifN3vGAOi3Ex03/GtBKP4/vq5VPDtEzYzqoW1jpA8sbDh7Xi7/t0NGsU6PUi0us9ooKAAAAAABQqyrVId6lS5fygqwk7dmzR6GhoQoNDZUkJSYmytnZWWlpaawjXs0KiksqvKZDHAAANHRdQ5vo5/v6atbGJE2ZF6+9qTm66X/rNKJjgJ4ZE6EQHzd7RwTqtOberrqzfyvd2b+Vki0nNC8uRVuSMtU+0LP8mEdnbVVCep6eGNlOfcL97JgWAAAAAACgZlWqIH7ZZZfVcAycTVmHeBknOsQBAEAjYDQadE2PUI2MDNLUBbs1ffVBzd9+VIvj03TPgFa6d1BruTqZ7B0TqPOCzK66rW/LCtuKSqxatCtVWfnFcnY49f9RYnqebLIpzNe9tmMCAAAAAADUGIPNZrPZO0RNysrKktlslsVikZeXl73jVNnsrUd0/9eb5exgVEGxVT/c26d89CEAAEBjsftotp7/dbtW7UuXJDUzu+jpMREaHRVYYZIRgMpJzc7X4l2puqpbiIzG0v+HJv4Yq6/XJSoiyEtjooM0OipILf0ojp9Nfb/WBAAAAACgsahUhzjsJ7+odGR62VMLzoxMBwAAjVDbAE/NuLOX5m9P0Yu/7dThzBMaP3OTerfy0fOXdFT7QIpRQFX4e7romh6hFbblFhTLZDRoR3KWdiRn6fX58Wof6KkxUUEaFRWk1v4edkoLAAAAAABw/qrcIV5SUqK3335b3333nRITE1VYWFhhf0ZGRrUGvFD1/an9L9cc1LM/x8nRZFBRiU1/PDxAbQM8z/1GAACABupEYYk+XrZPHy7Zp4Jiq0xGg27qHaaHh7WV2c3R3vGAei0jt1B/bE/RnLgUrdp7TMXWU5eLbQM8NDqqtHOca5L6f60JAAAAAEBjUeV240mTJumtt97SNddcI4vFogkTJmjcuHEyGo16/vnnayBi41ZwskO8ha+7bugVKm9u8gIAgEbO1cmkh4a11cJHBmpUZKBKrDZNW3VAg95YrJlrE1VibdArAgE1ysfdSdf2DNX023tq/dPDNOXKaA1q11SOJoN2H83R1AV7dNHbyzTsraV66494pWbn2zsyAAAAAADAP6pyh3h4eLjeffddjRkzRp6entqyZUv5tjVr1mjmzJk1lfW81Pen9t9fvFevz4/X1d2DNeXKTvaOAwAAUOes3HtMz/+6XXtScyRJkc29NOmSjuoW5mPnZEDDYckr0oKdRzUnNlnL9xxTYYlVkrT88cEK8XGTJGXnF8nD2UEGg8GeUWtNfb/WBAAAAACgsajyGuIpKSmKioqSJHl4eMhisUiSLr74Yj377LPVmw7la4i7OJrsnAQAAKBu6tvaT3Me7K8vVx/U2wt2K+5wlq74cLUu79JcT45qrwAvF3tHBOo9s5ujrugWrCu6BSsrv0gLdx7V9sNZ5cVwSXromy3al5ajly6LUr82fnZMCwAAAAAAcEqVR6YHBwcrOTlZUmm3+B9//CFJWr9+vZydnas3HcoL4iVWmzJyC1XFhn4AAIBGwdFk1O39Wmrxo4N0bY8QGQzST5sPa8gbS/TR0n0qKC6xd0SgwfBycdTlXYL1zMUR5dsKiku0/kCGDqTnyd/r1HXhzuQsbUnK5DoGAAAAAADYTZUL4pdffrkWLlwoSbr//vv17LPPqk2bNrr55pt1++23V3vAxi6/qHQU4Yy1ier64p8qKLbaOREAAEDd5efhrFeviNbP9/VVl1Bv5RaW6NW5uzRy6nItjk+1dzygwXJ2MGn1xKH69ObuahvgWb79gyX7dNn7K9XvtcV66bcd2pR4nOI4AAAAAACoVVVeQ/zv1qxZo1WrVqlNmzYaO3ZsdeWqNvV9XbfHZm3VrI2HZDRIVpu075XRMhkbx5p8AAAAF8JqtemnzYc1ee4uHcspkCQNbe+vZy+OUAs/dzunAxqHJ77fptnbjiiv8NSUhmZmF42MDNKY6EB1CWkiYz29vqnv15oAAAAAADQWF1wQr+vq+02KB77erF+3HtEzYzrotr4tKYYDAABUUXZ+kf67aK8+W5GgYqtNTiaj7ujfUv8e3Fruzg72jgc0eCcKS7R0d5rmxCZr4c6jyv1LcTzQy0UjIwM1OipI3cNKi+PJlhNKOJarln7uCjK72jH5P6vv15oAAAAAADQWFMTruLumb9AfO47qpcsidWPvMHvHAQAAqLf2pubohd92aNnuNElSgJeznhrdQZd0aiaDgYcOgdqQX1SiZbvTNDcuRQt2HFV2QXH5Pn9PZ4U3ddfahAxZbZLRIE0eF6VreoTaMfHZ1fdrTQAAAAAAGgsK4nXczZ+t07LdaXrjqk66sluwveMAAADUazabTQt2purF33YoMSNPktSjRRM9N7ajIpub7ZwOaFwKiku0Ys8xzYlN0R87UpSdX3zaMSaDQSueHFwnO8Xr+7UmAAAAAACNhdHeAfDP8otKxwlOX31AT/0Ua+c0AAAA9ZvBYNDwiAD98fAAPTainVwdTVp/4LjGvrdCT/0Uq4zcQntHBBoNZweThnYI0JtXd9LGZ4br8ZHtTjumxGbTgWN5dkgHAAAAAAAaimotiJeUlJz7IFRJwcmC+LZDFi2NT7NzGgAAgIbBxdGk8YNba+EjAzW2UzPZbNLMtYka/MYSTV99QMUlVntHBBoVJwejLu/SXMa/rV5gMhjUws/NPqEAAAAAAECDUC0F8d27d+vxxx9XcDAjvatbQfGpm7HODjT0AwAAVKdm3q7673Vd9O1dvdU+0FOWE0X6zy/bdfF/V2jN/nR7xwMalSCzqyaPi5LJUFoVNxkMemVcZJ0clw4AAAAAAOoPh/N9Y15enr799lt99tlnWr16tbp3764JEyZUZzbo1Mh0qbRrAgAAANWvVytf/XZ/P329LlFv/LFbu1Kyde3/rdHF0UF6anQHNfOmIAfUhmt6hGpA26Y6cCxPLfzcKIYDAAAAAIALVuWC+Jo1a/Tpp59q1qxZCg0N1c6dO7V48WL179+/JvI1evlFpzrEHU0UxAEAAGqKg8mom2Ja6OLoZnrjj3jNXJeo37Yla+HOVI0fHK47+7eSi6PJ3jGBBi/I7EohHAAAAAAAVJtKV1jffPNNdezYUVdeeaWaNGmiZcuWKTY2VgaDQb6+vjWZsVHLL6ZDHAAAoDY1cXfSy5dHafa/+6lHiyY6UVSiN/7YreFvL9Uf21Nks9nsHREAAAAAAABAJVW6wvrEE0/osssu08GDB/X666+rU6dONZkLJ1UYmU6HOAAAQK2JbG7Wd3fH6J1rOyvAy1lJGSd015cbdcvn67U3Ncfe8QAAAAAAAABUQqUrrC+++KJmzZqlli1b6oknnlBcXFxN5oIkm82mguJTI9PpEAcAAKhdBoNBl3ZurkWPDNJ9g8LlZDJq2e40jZy6TC//vkPZ+UX2jggAAAAAAADgH1S6wjpx4kTt3r1bX375pVJSUtSrVy916tRJNptNx48fr8mMjVZhiVV/nchJQRwAAMA+3J0d9PjI9vrj4QEa2t5fxVabPlmeoMFvLNX3Gw/JamWMOgAAAAAAAFAXVbnCOnDgQH3xxRdKSUnRfffdp27dumngwIHq06eP3nrrrZrI2GjlF1krvKYgDgAAYF8t/Nz1v1t76PNbe6iln7uO5RTo0VlbNe7DVdqalGnveAAAAAAAAAD+5rwrrJ6enrr77ru1du1abd68WT179tSrr75andkavYK/rB8usYY4AABAXTG4vb/mPzRAT45qL3cnk7YkZeqyD1bqie+36VhOgb3jAQAAAAAAADipWiqsUVFRmjp1qg4fPlwdp8NJZR3iDkaDJAriAAAAdYmTg1H3DAzXokcHaVyX5rLZpG83JGnwG0v0vxUJKiqxnvskAAAAAAAAAGrUeVdYc3Nz9fnnn+vpp5/We++9p/T0dDk6OlZntkavoLi0Q7y8IM7IdAAAgDonwMtFb13TWd/fE6PI5l7Kzi/Wi7/t0Oh3lmvl3mP2jgcAAAAAAAA0apWusEZERCgjI0OSlJSUpMjISD388MP6888/9dxzzykiIkIJCQk1FrQxKusQd3Y06eLoIEUFm+2cCAAAAGfTvYWPfhnfT5PHRcnH3Ul7UnN0w6drdc+XG5WUkWfveAAAAAAAAECjVOmC+K5du1RcXCxJmjhxopo1a6aDBw9q3bp1OnjwoKKjo/X000/XWNDGKP9kh3gTN0e9d31XXd09xM6JAAAA8E9MRoOu6xmqxY8M0q19WshkNGje9hQNe2up3v5zt04Ultg7IgAAAAAAANConNcM7tWrV+v555+X2Vzasezh4aFJkyZpxYoV1RquscsvKr1h6uJosnMSAAAAVIXZzVHPX9JRvz/QT71b+aig2Kp3Fu7RsLeWam5ssmw2m70jAgAAAAAAAI1ClQriBkPpWtb5+fkKCgqqsK958+ZKS0urvmQoH5nu5GBUiZWbpgAAAPVN+0Avff2v3nr/+q5qZnbR4cwTunfGJt3w6VrtPppt73gAAAAAAABAg1elgvjQoUPVtWtXZWVlKT4+vsK+gwcPytfXt1rDNXZlHeKHj59Q+FNz9Ony/XZOBAAAgKoyGAwaEx2khY8M0gND28jJwahV+9I16p3lev7X7bKcKLJ3RAAAAAAAAKDBcqjsgf/5z3/KO8Sl0jHpfzV79mz179+/+pJBBcWlHeJlf+6OpvOacA8AAIA6wNXJpAnD2+qqbsF66fcdmr/9qKatOqBftx7R4yPa6aruITIZDec+EQAAAAAAAIBKM9ga+AKGWVlZMpvNslgs8vLysnecKvlqzUE983Ochrb31xtXdZKLo0muTqwnDgAA0BAs35OmSbN3aG9qjiQpqrlZz1/SUd3Cmtg5GYDKqM/XmgAAAAAANCaVbjk2mUxKTU2tySz4m7KR6e7ODmri7kQxHAAAoAHp36ap5j7YX8+M6SBPZwfFHrboig9XacJ3W5SalW/veAAAAAAAAECDUOmCeANvJK+TykamuzgyKh0AAKAhcjQZdWf/Vlr06CBd1S1YkvTjpsMa8uZS/d+yfSo8+fsgAAAAAAAAgPNDpbUOK+sQ3300R0/9FKudyVl2TgQAAICa0NTTWa9f1Uk/j++rTiHeyiko1itzdmnk1GVaEs+UJgAAAAAAAOB8OVTl4E8//VQeHh7/eMwDDzxwQYFwSlmH+KHjedqSlKnhHQLUIYi16QAAABqqziHe+unePvp+0yFNmbdL+4/l6tbP12tYhwA9e3EHhfm62zsiAAAAAAAAUK9UqSD+0UcfyWQ6+zrWBoOBgng1KusQL5tW7+RAQz8AAEBDZzQadHX3EI2MDNS7C/Zo2qoDWrDzqJbtTtO/BrTUfYNay925Sr/GAwAAAAAAAI1Wle6kbdiwQf7+/jWVBX9TVhC3nqyIUxAHAABoPLxcHPXMxRG6tmeIJs3eoeV7jun9xfv0w8bDmji6vS7p1EwGg8HeMQEAAAAAAIA6rdIVVm621b78otKR6SVlBXETBXEAAIDGprW/p6bf3lMf39RNwU1clZKVrwe/2aJrPl6jHUey7B0PAAAAAAAAqNMqXWG1lc3tPgur1arffvvtggPhlPIO8dK6OB3iAAAAjZTBYNCIjoFaMGGgJgxvKxdHo9YdyNDF/12uZ36O1fHcQntHBAAAAAAAAOqkSldYn3vuOXl4eJy2fe/evXrqqacUHBysyy+/vFrDNXYFxSc7xK2MTAcAAIDk4mjSA0PbaOEjgzQmOkhWm/TVmkQNfnOJvlxzsPz3RgAAAAAAAAClqlQQd3NzkySdOHFC06dP14ABA9SuXTutWrVK//nPf3To0KEaC9oYlXWIF59sEWdkOgAAACSpuber3r++q77+V2+1D/RUZl6Rnv05Thf/d4XW7k+3dzwAAAAAAACgzqhShXX9+vW6++67FRgYqKlTp+rSSy+VwWDQBx98oHvuuUcBAQE1lbNRyqdDHAAAAP8gJtxXv93fT5Mu6SgvFwftTM7SNf+3Rg98vVnJlhP2jgcAAAAAAADYXaUrrNHR0brqqqvk6+urVatWadOmTXrkkUdkMBhqMl+jVlC2hvjJyZd0iAMAAODvHExG3dKnhZY8NljX9wqVwSD9uvWIhryxVO8v3ls+dQgAAAAAAABojCpdYY2Pj9eAAQM0ePBgRURE1GQmnPT3m5d0iAMAAOBsfNyd9MrlUZr9737qFtZEJ4pK9Pr8eI2YukwLdhyVzcb64gAAAAAAAGh8Kl1h3b9/v9q1a6d7771XwcHBevTRR7V58+YL6hD/8MMPFR0dLS8vL3l5eSkmJkZz584t35+fn6/x48fL19dXHh4euuKKK3T06NHz/nr1TcHJkellKIgDAADgXCKbm/X9PTGaek1n+Xs662B6nu6cvkG3fr5e+9Jy7B0PAAAAAAAAqFWVrrA2b95cTz/9tPbu3asvv/xSKSkp6tu3r4qLizVt2jTt3r27yl88ODhYr776qjZu3KgNGzZoyJAhuvTSS7V9+3ZJ0sMPP6zZs2dr1qxZWrp0qY4cOaJx48ZV+evUV3/vEHcwMp4eAAAA52YwGHRZl+Za9Ogg3TMwXI4mg5buTtPIqcs0ec5OZecX2TsiAAAAAAAAUCsMtkrOTly2bJn69OkjBweH8m0Wi0UzZszQZ599pk2bNikyMlLbtm27oEA+Pj56/fXXdeWVV6pp06aaOXOmrrzySknSrl271KFDB61evVq9e/eu1PmysrJkNptlsVjk5eV1QdlqW4dn5+lEUYl6tvCRs6NRX97Ry96RAAAAUA8lHMvVC7O3a3F8miSpqaezJo5qr8s6N5eRhy6B81KfrzUBAAAAAGhMKt0hPnjwYGVkZFTYZjabdd9992nDhg3atGmTBg0adN5BSkpK9M033yg3N1cxMTHauHGjioqKNGzYsPJj2rdvr9DQUK1evfq8v059YbPZlF9c2iH+3vVdKIYDAADgvLX0c9fnt/XUZ7d2VwtfN6VlF2jCd1t15UerFHvIYu94AAAAAAAAQI1xOPchpc7VSN65c2e9++67VQ4QGxurmJgY5efny8PDQz/99JMiIiK0ZcsWOTk5ydvbu8LxAQEBSklJOev5CgoKVFBQUP46KyurypnqgsISq8r+yJ0dTfYNAwAAgAZhSPsA9W3tp89WHNB/F+3RpsRMXfL+Cl3bI0SPXtROvh7O9o4IAAAAAAAAVKtKd4hLpWsRVrd27dppy5YtWrt2re69917dcsst2rFjx3mfb/LkyTKbzeUfISEh1Zi29hQUW8s/d3Gs0l8TAAAAcFbODibdOyhcix4ZpMs6N5PNJn29LkmD3liiz1cmqLjEeu6TAAAAAAAAAPVEpdcQNxqNGjVqlJyd/7lr5Mcff7ygQMOGDVN4eLiuueYaDR06VMePH6/QJR4WFqaHHnpIDz/88Bnff6YO8ZCQkHq3rltqdr56vrxQkuTuZFK4v4d+/Xc/O6cCAABAQ7P+QIae+2W7diSXTlZqG+Ch58d2VJ/WfnZOBtRtrCEOAAAAAED9UKXWY09Pzwrd12f6uFBWq1UFBQXq1q2bHB0dtXDhwvJ98fHxSkxMVExMzFnf7+zsLC8vrwof9VFBUWlnjqPJoNzCEp0oLLFzIgAAADREPVr4aPb9/fTy5ZFq4uao3UdzdP2na3XfjI06dDzP3vEAAAAAAACAC1LpNcQl6d1335W/v3+1ffGJEydq1KhRCg0NVXZ2tmbOnKklS5Zo/vz5MpvNuuOOOzRhwgT5+PjIy8tL999/v2JiYtS7d+9qy1BX5ReVFsDdnEz69d/9ZFD1j6sHAAAAJMlkNOiGXmEaExWkt/7cra/WHNSc2BQt2pWqewe21t0DW8nF0WTvmAAAAAAAAECVVbogXhPrh6empurmm29WcnKyzGazoqOjNX/+fA0fPlyS9Pbbb8toNOqKK65QQUGBRowYoQ8++KDac9RF+Sc7xF0dHRTm627nNAAAAGgMvN2c9MKlkbquZ6ie/3W71iZk6O0Fu/XdhiQ9e3EHjegYWCPXBQAAAAAAAEBNqdIa4ikpKdXaIV4b6uu6busPZOiqj1arha+bljw22N5xAAAA0MjYbDb9ti1Zr8zZqWRLviSpX2s/PTc2Qm0CPO2cDrC/+nqtCQAAAABAY1PpNcQXL14sHx+fmsyCvyhbQ1ySXp27Sz9sPGTHNAAAAGhsDAaDxnZqpoWPDNT9Q1rLycGoFXuPaeQ7y/XC7B3Kyi+yd0QAAAAAAADgnCpdEHdyctK8efMqbJs+fbpatmwpf39/3XXXXSooKKj2gI1V2RrixVabPlq6T3Nik+2cCAAAAI2Rm5ODHrmonRY8PFDDIwJUYrXps5UJGvLGEn23PklWa6UGTgEAAAAAAAB2UemC+AsvvKDt27eXv46NjdUdd9yhYcOG6cknn9Ts2bM1efLkGgnZGOUXlxbETcbSNRqdHCr9VwUAAABUu1BfN31yc3d9cXtPtWrqrmM5hXr8h226/IOV2px43N7xAAAAAAAAgDOqdJV1y5YtGjp0aPnrb775Rr169dInn3yiCRMm6N1339V3331XIyEbo/yTI9MpiAMAAKAuGdi2qeY9OEBPj+4gD2cHbT1k0eUfrNKjs7YqNTvf3vEAAAAAAACACipdZT1+/LgCAgLKXy9dulSjRo0qf92jRw8lJSVVb7pGrGxkuslQWhB3NFEQBwAAQN3g5GDUvwa00qJHB+rKbsGSpO83HtKQN5bqk2X7VVhsLT+2xGrT6n3p+mXLYa3el64SRqwDAAAAAACgFjlU9sCAgAAlJCQoJCREhYWF2rRpkyZNmlS+Pzs7W46OjjUSsjEqOHkT0WigQxwAAAB1k7+ni964qpOu7xWq53/drm2HLHp5zk59sz5Rz43tqLzCYk2avUPJllOd40FmFz03NkIjI4PsmBwAAAAAAACNRaWrrKNHj9aTTz6p5cuXa+LEiXJzc1P//v3L92/btk3h4eE1ErIxKusQP1kPlxMd4gAAAKijuoY20c/39dWUK6Ll6+6kfWm5uvmzdbrnq00ViuGSlGLJ171fbdK8uGQ7pQUAAAAAAEBjUukq64svvigHBwcNHDhQn3zyiT755BM5OTmV7//ss8900UUX1UjIxqjgZEG8rEPcmQ5xAAAA1GFGo0FX9wjRokcH6dY+Lc56XNnA9EmzdzA+HQAAAAAAADWu0iPT/fz8tGzZMlksFnl4eMhkMlXYP2vWLHl4eFR7wMYq/y/rLkqMTAcAAED9YHZ11IiOgZq26sBZj7FJSrbka11ChmLCfWstGwAAAAAAABqfShfEy5jN5jNu9/HxueAwOOXvI9MdGZkOAACAeiI1O//cB0lKzarccQAAAAAAAMD5qnJBHLWjoIgOcQAAANRP/p4ulTrunYV7VGKzaUx0kJwdTOd+AwAAAAAAAFBFVFnrqPzi0g7xslUVnegQBwAAQD3Rs6WPgswuMpzjuP3HcjXhu63q++oivfXnbjrGAQAAAAAAUO2ostZRZSPTbScr4nSIAwAAoL4wGQ16bmyEJJ1WFDec/Hj9ymg9NqKdAr1cdCynUO8u3KM+ry7Sg99s1ubE47UdGQAAAAAAAA0UI9PrqPyTI9P9PJzUIchLfh7Odk4EAAAAVN7IyCB9eGNXTZq9Q8mWU53fgWYXPTc2QiMjgyRJdw1opfnbUzRt5QFtOHhcv2w5ol+2HFGnEG/d2idMo6MYpw4AAAAAAIDzZ7DZynqQK+/LL7/URx99pISEBK1evVphYWGaOnWqWrZsqUsvvbQmcp63rKwsmc1mWSwWeXl52TtOpV3z8WqtTcjQf6/rorGdmtk7DgAAAHBeSqw2rUvIUGp2vvw9XdSzpY9MxjMPU489ZNG0VQc0e+sRFZaUPSDqrBt6heqG3qGVXpscqA319VoTAAAAAIDGpspzuD/88ENNmDBBo0ePVmZmpkpKSkd7e3t7a+rUqdWdr9EqKC69AejiSDcMAAAA6i+T0aCYcF9d2rm5YsJ9z1oMl6SoYLPevLqTVk0cokeGt5W/p7OO5RTonYV71PfVRXrom83akpRZe+EBAAAAAABQ71W5IP7f//5Xn3zyiZ5++mmZTKeKtd27d1dsbGy1hmvMytYQd3Fk7XAAAAA0Ln4ezrp/aButfHKI3r2ui7qGequoxKaftxzRZe+v1GXvr9QvWw6r8ORDpAAAAAAAAMDZVLnampCQoC5dupy23dnZWbm5udUSCqc6xN+YH6+Bry/WxoMZdk4EAAAA1C5Hk1GXdGqmH+/rq1//3VfjujaXk8moLUmZevCbLer72iK9s2CP0rIL7B0VAAAAAAAAdVSVC+ItW7bUli1bTts+b948dejQoToyQac6xNNzC3UwPU9FJVVe6h0AAABoMKKDvfXW1Z218skhmnBynHpadoHeXrBbfV9dpAnfbtFWxqkDAAAAAADgbxyq+oYJEyZo/Pjxys/Pl81m07p16/T1119r8uTJ+vTTT2siY6NUVhB/9uII+bo7qW2gp50TAQAAAPbX1NNZDwxto3sGhmtuXLKmrTqgzYmZ+nHzYf24+bC6hHrr1j4tNCoySE4OLD8EAAAAAADQ2BlsNluVW49nzJih559/Xvv27ZMkNWvWTJMmTdIdd9xR7QEvVFZWlsxmsywWi7y8vOwdp9I6PDtPJ4pKtOyxwQr1dbN3HAAAAKDO2pKUqS9WHdBv246UT1by93TWjb3DdF3PUDX1dLZzQjRE9fVaEwAAAACAxua8CuJl8vLylJOTI39//+rMVK3q400Km82m8KfmyGqT1j01VP5eLvaOBAAAANR5qdn5mrk2UTPWJpavK+5kMuriTkG6rU9LRQWb7ZwQDUl9vNYEAAAAAKAxqvIMwZdeekkJCQmSJDc3tzpdDK+vikpssp58TOHb9Un634oEZeUX2TcUAAAAUMf5e7rooWFttfKJIXrn2s7qHOKtwhKrftx0WGPfW6ErPlyl2VuPqKjEau+oAAAAAAAAqCVV7hDv1KmT4uLi1KtXL9144426+uqr5efnV1P5Llh9fGo/K79I0c//IUlyNBlUVGLTqieHqJm3q52TAQAAAPXL5sTj+mLVAf0em1w+Tj3Ay1k3nRyn7uvBOHWcn/p4rQkAAAAAQGNU5Q7xrVu3atu2bRo0aJDeeOMNNWvWTGPGjNHMmTOVl5dXExkbnfyikvLPy27aOTlU+a8KAAAAaPS6hDbR1Gu7aOUTQ/Tg0Dby83DW0awCvfHHbsW8ukiPztqquMMWe8cEAAAAAABADbmgNcQlaeXKlZo5c6ZmzZql/Px8ZWVlVVe2alEfn9pPyshT/ymL5exgUEFx6V/PtucvkpeLo52TAQAAAPVbQXGJ5sQma9rKA9p66FQhvHtYE93at4VGdAyUo4mHUXFu9fFaEwAAAACAxsjhQk/g7u4uV1dXOTk5KTs7uzoyNXoFxaUd4i6OJhUUF0uSnLgpBwAAAFwwZweTLu8SrMu7BGtz4nFNW3VAv29L1oaDx7Xh4HEFernoppgwXdsjhHHqAAAAAAAADcB5VVkTEhL08ssvq2PHjurevbs2b96sSZMmKSUlpbrzNUr5RVZJFYvgFMQBAACA6tUltIneubaLVj45RA8MbSM/DyelZOXr9fnxinl1kR5jnDoAAAAAAEC9V+UO8d69e2v9+vWKjo7Wbbfdpuuuu07NmzeviWyNVtka4mXrhjsYDTIaDfaMBAAAADRYAV4umjC8rcYPDtfv25L1+coDij1s0ayNhzRr4yH1bOGjW/u20EURAXLgQVUAAAAAAIB6pcoF8aFDh+qzzz5TRERETeSB/tohbir9rwM33QAAAICa5uxg0riuwbq8S3NtSszUtFUHNDc2WesOZGjdgQwFmcvGqYfKx93J3nEBAAAAAABQCVUuiL/88ss1kQN/capD3HDyvxTEAQAAgNpiMBjULayJuoU1UcroDpqx9qBmrk1UsiVfU+bF650Fe3RZ5+a6pU8LRTTzsndcAAAAAAAA/INKFcQnTJigF198Ue7u7powYcI/HvvWW29VS7DGrKC4tEO8bBwj64cDAAAA9hFodtEjF7XT+MGtS8epr0pQ3OEsfbshSd9uSFLPlj66rU8LDWecOgAAAAAAQJ1UqYL45s2bVVRUVP45alZZh7hjWUGcDnEAAADArlwcTbqiW7DGdW2uTYnH9fnKA5obl6J1CRlal5ChZmYX3RTTQtf2CFETxqkDAAAAAADUGZUqiC9evPiMn6Nm5BeXFsQdjIxMBwAAAOqS0nHqPuoW5qNkywnNWJOomesSdcSSr9fm7dLUBbt1eZfSceodghinDgAAAAAAYG9VrrTefvvtys7OPm17bm6ubr/99moJ1djlF5WNTD9ZEGf0IgAAAFDnBJld9eiIdlr15BC9fmW0OjbzUkGxVd+sT9Kod5br2v9brXlxKSousdo7KgAAAAAAQKNV5UrrF198oRMnTpy2/cSJE5o+fXq1hGrsykamOzsY1dzbVQFeLnZOBAAAAOBsXBxNuqp7iH67v59m3ROjMVFBMhkNWrM/Q/d8tVEDX1+ij5buU2Zeob2jAgAAAAAANDqVGpkuSVlZWbLZbLLZbMrOzpaLy6kibUlJiebMmSN/f/8aCdnYFBSXdpCE+rjri9t72TkNAAAAgMowGAzq0cJHPVr46EjmCc1Ye1Az1ybqcOYJvTq34jj19oGMUwcAAAAAAKgNlS6Ie3t7y2AwyGAwqG3btqftNxgMmjRpUrWGa6wKTnaIuzgyKh0AAACoj5p5u+qxEe11/5A2+nXrEX2+8oB2Jmfp63VJ+npdkmJa+erWvi00rEOATEaDveMCAAAAAAA0WJUuiC9evFg2m01DhgzRDz/8IB8fn/J9Tk5OCgsLU7NmzWokZGNzamS6yc5JAAAAAFwIF0eTru4eoqu6BWv9geOatipB87cf1er96Vq9P13BTVx1c0yYrukeKrObo73jAgAAAAAANDgGm81mq8obDh48qJCQEBmN9aN7OSsrS2azWRaLRV5e9WMs4RPfb9O3G5I0NjpIBzPy1Le1n54Y2d7esQAAAABUg8OZJ/TVmoP6el2iMvOKJEmujiZd3rW5bu3TQm0DPO2cEJVRH681AQAAAABojCrdIV4mLCxMkpSXl6fExEQVFhZW2B8dHV09yRqx/OLSDvGCYqu2HbIoxMfNzokAAAAAVJfm3q56YmR7PTi0jX7ZclifrzygXSnZmrk2UTPXJqpPuK9u7dNCQxmnDgAAAAAAcMGqXBBPS0vTbbfdprlz555xf0lJyQWHauzKRqZHNjfr2p4h8vNwtnMiAAAAANXNxdGka3qE6uruIVqXkKFpqw5o/vYUrdqXrlX7Ssep3xLTQld3D2GcOgAAAAAAwHmq8tzzhx56SJmZmVq7dq1cXV01b948ffHFF2rTpo1+/fXXmsjY6BQUWyVJQWYXDWkfoOhgb/sGAgAAAFBjDAaDerXy1Yc3dtOyxwfrnoHh8nZz1KHjJ/TynJ3qPXmhnv4pVnuOZts7KgAAAAAAQL1T5Q7xRYsW6ZdfflH37t1lNBoVFham4cOHy8vLS5MnT9aYMWNqImejUtYh7uxosnMSAAAAALUpuImbnhx1apz6tFWl49RnrE3UjLWJ6tfaT7f2aaHB7f0Zpw4AAAAAAFAJVS6I5+bmyt/fX5LUpEkTpaWlqW3btoqKitKmTZuqPWBjlF9U2iF+5PgJzdqQpA5BXopsbrZzKgAAAAC1xdXJpGt7huqaHiFasz9D01Yl6M8dR7Vi7zGt2HtMoT5uujkmTFd1D5HZlXHqAAAAAAAAZ1Plkent2rVTfHy8JKlTp076+OOPdfjwYX300UcKCgqq9oCNUVmH+KbE43rs+236PTbZzokAAAAA2IPBYFBMuK8+vqm7lj0+WHcPbCWzq6MSM/L00u87FTN5oZ75OVZ7UxmnDgAAAAAAcCZV7hB/8MEHlZxcWqB97rnnNHLkSM2YMUNOTk6aNm1adedrlMrWELedfO1kqvJzCwAAAAAamOAmbpo4qoMeGtpWP285rGkrDyj+aLa+WpOor9Ykqn+bk+PU2/nLyDh1AAAAAAAASedREL/xxhvLP+/WrZsOHjyoXbt2KTQ0VH5+ftUarrEqONkhbrWVlsSdHCiIAwAAACjl6mTSdT1DdW2PEK3en65pKw/oz51HtXzPMS3fc0xhvm66OaaFruoeLC8XxqkDAAAAAIDGrcoF8b9zc3NT165dqyMLTso/2SFutZ4siNMhDgAAAOBvDAaD+oT7qU+4n5Iy8vTlmoP6Zl2iDqbn6cXfdujNP+J1Zbdg3RzTQq39PewdFwAAAAAAwC4qVRCfMGFCpU/41ltvnXcYlMov7xAvfU2HOAAAAIB/EuLjpqdGd9BDw9rop82l49T3pOZo+uqDmr76oAa0barb+rTQwLZNGacOAAAAAAAalUoVxDdv3lypkxkM3Fi5UDab7S8FcUamAwAAAKg8NycH3dArTNf3DNWqfematuqAFuw8qmW707Rsd5pa+Lrplj4tdGW3YHkyTh0AAAAAADQClSqIL168uKZz4KSiElt5Z3hxCSPTAQAAAFSdwWBQ39Z+6tvaT4npefpyzQF9sz5JB9LzNGn2Dr0x/+Q49T4tFN6UceoAAAAAAKDhOu9K6969ezV//nydOHFCUmlnMy5cQXFJ+efF1tK1xOkQBwAAAHC+Qn3d9PSYCK2ZOFQvXRap1v4eyi0s0RerD2rom0t1y2frtDg+VVYr13QAAAAAAKDhqVSH+F+lp6fr6quv1uLFi2UwGLRnzx61atVKd9xxh5o0aaI333yzJnI2GvlF1vLPyzrEHekQBwAAAHCB3J0ddGPvMN3QK1Qr96Zr2qoELdyVqqW707R0d5pa+rnrlpgwXcE4dQAAAAAA0IBUudL68MMPy9HRUYmJiXJzcyvffs0112jevHnVGq4xKls/3NnBqKKTHeLOdIgDAAAAqCYGg0H92vjp01t6aMmjg3RHv5bydHZQwrFcPT97h2ImL9Lzv25XwrFce0cFAAAAAAC4YFXuEP/jjz80f/58BQcHV9jepk0bHTx4sNqCNVZlI9NdHE0qLGZkOgAAAICaE+brrmcvjtCE4W3146ZDmrbqgPal5WraqgOatuqABrdrqlv7tlT/1n4yGg32jgsAAAAAAFBlVS6I5+bmVugML5ORkSFnZ+dqCdWYlY1Md3E0UhAHAAAAUCvcnR10U0wL3dg7TCv2HtO0lQe0KD5Vi+PTtDg+Ta2auuvWPi00rmuwPJyrfBkJAAAAAABgN1WutPbv31/Tp08vf20wGGS1WjVlyhQNHjy4WsM1Rn/tEHdyMMr55AcAAAAA1DSDwaD+bZrqf7f20OJHBun2vqXj1Pen5eo/v2xXzCsLNWn2dh1gnDoAAAAAAKgnDDabzVaVN8TFxWno0KHq2rWrFi1apEsuuUTbt29XRkaGVq5cqfDw8JrKel6ysrJkNptlsVjk5eVl7zjntHLvMd3w6Vq1C/DU/IcH2DsOAAAAgEYup6C4fJz6/rTSQrjBIA1u569b+7RQ/zZ+Mhga3zj1+natCQAAAABAY1XlWXeRkZHavXu33nvvPXl6eionJ0fjxo3T+PHjFRQUVBMZG5X8otIOcWdHusIBAAAA2J+Hs4NujmmhG3uFafneY5q2MkGL49O0aFeqFu1KVfhfxqm7M04dAAAAAADUMVW6W1FUVKSRI0fqo48+0tNPP11TmRq18jXEHUx2TgIAAAAApxiNBg1s21QD2zZVwrFcTV99QLM2HNK+tFw9+8t2TZkXr6t7hOjmmDCF+brbOy4AAAAAAICk8xiZ3rRpU61atUpt2rSpqUzVqr6Nsfth4yE9Mmtr+dhBB6NBb1/dWWY3R3tHAwAAAIAKcgqK9cPGQ/pi1QHtP3ZqnPqQdv66tW8L9WvdcMep17drTQAAAAAAGqsqz+W+8cYb9b///a8mskBSQXFph7iTg1HLdpeOIbRW7ZkFAAAAAKgVHs4OuqVPCy2YMFDTbuuhQe2aymaTFu5K1U3/W6fhby/Tl2sOKreg2N5RAQAAAABAI1XlBd6Ki4v12WefacGCBerWrZvc3SuOwnvrrbeqLVxjVLaGuKujSVOv6azCYivr8AEAAACo04xGgwa189egdv7an5aj6asPataGJO1NzdGzP8dpyrxduqZ7iG6OaaFQXzd7xwUAAAAAAI1IlSutcXFx6tq1qyRp9+7dFfY11FF4tSm/uLQg7uJo0mVdmts5DQAAAABUTaumHnr+ko565KK2pePUVx9UwrFcfboiQf9bmaCh7QN0W98W6hPue9o1ZInVpnUJGUrNzpe/p4t6tvSRych1JgAAAAAAOH9VLogvXry4JnLgpPyi0pHpLo5VnmYPAAAAAHWGp4ujbu3bUjfHtNDSPWmatvKAlu5O04KdR7Vg51G18ffQLX1aaFzX5nJzctC8uGRNmr1DyZb88nMEmV303NgIjYwMsuN3AgAAAAAA6jODzdawF6jOysqS2WyWxWKRl5eXveOc0+Q5O/Xxsv26JSZMfVr7ydXRpAFtm9o7FgAAAABcsH1pOZq+6oC+33hIuYWl07G8XBzUs6WPFuxMPe34st7wD2/sWueK4vXtWhMAAAAAgMaKNuQ6pmwN8WKrTXd/uVHjZ2yycyIAAAAAqB7hTT006dJIrX5qqP5zcYTCfN2UlV98xmK4JJU9vT1p9g6VWBv0s9wAAAAAAKCGUBCvYwqKS0emO5xcJ8/Jgb8iAAAAAA2Ll4ujbu/XUosfGaTHR7T9x2NtkpIt+VqXkFE74QAAAAAAQINCtbWOKesQdzBREAcAAADQsBmNBjVv4lapY1Oz8899EAAAAAAAwN9Qba1j8otKO8SNBgriAAAAABo+f0+Xaj0OAAAAAADgr6i21jH5xaUd4oaygriJvyIAAAAADVfPlj4KMrvIcJb9BklBZhf1bOlTm7EAAAAAAEADQbW1jikbmV7WIe5IQRwAAABAA2YyGvTc2AhJOq0oXvb6ubERMhnPVjIHAAAAAAA4O6qtdUxBcdnI9NLXjEwHAAAA0NCNjAzShzd2VaC54lj0QLOLPryxq0ZGBtkpGQAAAAAAqO8c7B0AFbGGOAAAAIDGaGRkkIZHBGpdQoZSs/Pl71k6Jp3OcAAAAAAAcCHsWm2dPHmyevToIU9PT/n7++uyyy5TfHx8hWMGDRokg8FQ4eOee+6xU+KaV3ByZLpkkyQ5UxAHAAAA0EiYjAbFhPvq0s7NFRPuSzEcAAAAAABcMLtWW5cuXarx48drzZo1+vPPP1VUVKSLLrpIubm5FY7717/+peTk5PKPKVOm2ClxzcsvL4if7BBnDXEAAAAAAAAAAAAAOC92HZk+b968Cq+nTZsmf39/bdy4UQMGDCjf7ubmpsDAwNqOZxf5J9cQL8PIdAAAAAAAAAAAAAA4P3Wq2mqxWCRJPj4+FbbPmDFDfn5+ioyM1MSJE5WXl2ePeLWibGS67eTIdEc6xAEAAAAAAAAAAADgvNi1Q/yvrFarHnroIfXt21eRkZHl26+//nqFhYWpWbNm2rZtm5544gnFx8frxx9/PON5CgoKVFBQUP46KyurxrNXJzrEAQAAAAAAAAAAAKB61JmC+Pjx4xUXF6cVK1ZU2H7XXXeVfx4VFaWgoCANHTpU+/btU3h4+GnnmTx5siZNmlTjeWtCUYlVJdbSzvA7+rXUA0PbyGazcygAAAAAAAAAAAAAqKfqRPvxv//9b/32229avHixgoOD//HYXr16SZL27t17xv0TJ06UxWIp/0hKSqr2vDUl/+S4dElyc3KQs4NJLo4mOyYCAAAAAAAAAAAAgPrLrh3iNptN999/v3766SctWbJELVu2POd7tmzZIkkKCgo6435nZ2c5OztXZ8xak190aly6M6PSAQAAAAAAAAAAAOCC2LUgPn78eM2cOVO//PKLPD09lZKSIkkym81ydXXVvn37NHPmTI0ePVq+vr7atm2bHn74YQ0YMEDR0dH2jF4jCopLO8SdHYyateGQVu07plFRQRrRMdDOyQAAAAAAAAAAAACg/rFrG/KHH34oi8WiQYMGKSgoqPzj/9u79yC5yvNe1L+eqwSSRpaENKONQOIOQQIZY6GAKWLYukCIFYgTOZjboXDMEVQJsEOgCJcdJxBSe8dmA6aSkyCfbEOIdww21DE+GCMR2wLMRWA5tgzaOIKjCyC2rngumunzh5jGYyQBmpFWd+t5qrqqe63Vvd7W+qrVM795v+/+++9PkrS0tOR73/teZs2alaOOOipXX311zj333Dz00ENFlr3H9HeID2tuzPOv/u88uGx1frF2c8FVAQAAAAAAANSmwqdM35VJkyZlyZIle6ma4vWvId7a1JCzpk7MIeNG5KMHf6TgqgAAAAAAAABqU6GBOAP1T5k+rLkxpxw+LqccPq7gigAAAAAAAABqV6FTpjPQu1OmuywAAAAAAAAAg6VDvIr0T5k+rLkxK9ZuztbubZkydv98ZP+WgisDAAAAAAAAqD1akatI17Z3OsSbGvNfHv5pzrnrR3nipTcKrgoAAAAAAACgNgnEq0h/h3hrc0O63wnHWxpdIgAAAAAAAIDdIW2tIv1riLc2NVYC8WaBOAAAAAAAAMBukbZWkXfXEG+oTJ/e0uQSAQAAAAAAAOwOaWsV6dzWH4g3pqdXIA4AAAAAAAAwGNLWKtL1zpTpw5ob0i0QBwAAAAAAABgUaWsVqXSI/9oa4i3WEAcAAAAAAADYLdLWKtLfId7a3FAJxFt1iAMAAAAAAADsFmlrFenseW+HeLMOcQAAAAAAAIDdIm2tIpVAvLkxPb3lJNYQBwAAAAAAANhd0tYq0lWZJr2U7t531hAXiAMAAAAAAADsFmlrFenvEG/6tWnSBeIAAAAAAAAAu0faWkU6e7Z3hTc2lCrbWqwhDgAAAAAAALBbmoougHd1btveIT5qeHOevu70dPf2pVWHOAAAAAAAAMBuEYhXkf4O8f1amjJ+1LCCqwEAAAAAAACobdqPq0jXOx3iw3SFAwAAAAAAAAya5LWKdL3TIf52d29u+vZP898e/UXBFQEAAAAAAADULoF4Fens2d4h/qvu3iz60S/zz0+vKrgiAAAAAAAAgNplDfEq0h+IHzCyNZf/zmEZ3tJYcEUAAAAAAAAAtUsgXkU6t22fMn3SmP3yhdlHFlwNAAAAAAAAQG0zZXqV2Nbbl96+cpJkWLPLAgAAAAAAADBYktcq0d8dniTbestZ+caWrNvUWWBFAAAAAAAAALVNIF4l+tcPT5Knf7k+p//XJVnw9ecKrAgAAAAAAACgtgnEq0R/IN7S1JCe3nLlPgAAAAAAAAC7R+JaJTp7tk+ZPqypId3vTJ8uEAcAAAAAAADYfRLXKtHfIT6suTHdve8E4o0uDwAAAAAAAMDukrhWia53usKHNTfqEAcAAAAAAAAYAhLXKtFV6RD/tSnTdYgDAAAAAAAA7DaJa5Xo3LY9EG9takxPrw5xAAAAAAAAgMGSuFaJzp7+KdMbTJkOAAAAAAAAMAQkrlWiszJlemO6ek2ZDgAAAAAAADBYEtcq0fVOV3hrU6MOcQAAAAAAAIAhIHGtEu92iJsyHQAAAAAAAGAoSFyrxLtriL/bId5synQAAAAAAACA3SZxrRL9HeKtTQ3p6e2r3AcAAAAAAABg9zQVXQDbdW7rnzK9MZd/8rBceuohGT9yWMFVAQAAAAAAANQugXiV6KpMmd6Qjrbh6WgbXnBFAAAAAAAAALXNnNxVoqu/Q7ypseBKAAAAAAAAAOqDDvEq0VnpEG/Mvzzzal7f1Jm5Uzty6AEjCq4MAAAAAAAAoDYJxKtEZ8/2DvHW5obc9/SqPL9qQ46YMFIgDgAAAAAAALCbBOJVoj8QH9bUmFnHtOfICSMzacx+BVcFAAAAAAAAULsE4lWia9v2KdNbmxty2WmHFlwNAAAAAAAAQO1rKLoAtqt0iDc3FlwJAAAAAAAAQH0QiFeJzp7tHeLDmhuzfktXNr7dk96+csFVAQAAAAAAANQugXiV6Ny2vUO8takhs7/8RI77L/9vXnp9c8FVAQAAAAAAANQugXiV6Pq1DvH+9cRbGl0eAAAAAAAAgN0lca0S764h3pDudwLxZoE4AAAAAAAAwG6TuFaJ/q7wYU2N6endfr+1yeUBAAAAAAAA2F0S1yrR3yHe1FhKX3n7thaBOAAAAAAAAMBuk7hWgW29fdn2TgrekFJlu0AcAAAAAAAAYPdJXKvA1u7eyv3nX/3flfst1hAHAAAAAAAA2G0S14I9snxN/vN/W1J5vODe55MkpVLSJBAHAAAAAAAA2G0S1wI9snxNLvsfz+X1zV3v2Vcub98PAAAAAAAAwO4RiBekt6+cmx/695R3cczND/17evt2dQQAAAAAAAAAOyMQL8jTr7yVNRs7d3nMmo2defqVt/ZSRQAAAAAAAAD1RSBekNc37zoM/7DHAQAAAAAAADCQQLwg40cOG9LjAAAAAAAAABhIIF6Qj08Zk462YSnt4piOtmH5+JQxe60mAAAAAAAAgHoiEC9IY0MpN559TJK8JxQvvXO78exj0tiwq8gcAAAAAAAAgJ0RiBdozrEd+epnP5r2toHTore3DctXP/vRzDm2o6DKAAAAAAAAAGpfU9EF7OvmHNuR/3xMe55+5a28vrkzvb3lbOrsSUuTv1UAAAAAAAAAGAypaxVobChl5qFj86nj/1NSSm566N9zzw9/WXRZAAAAAAAAADVNh3iV6WgbnjOntueo9lFFlwIAAAAAAABQ0wTiVWbmoWMz89CxRZcBAAAAAAAAUPNMmQ4AAAAAAABAXRKIV5nevnLK5XLRZQAAAAAAAADUPIF4lfnv338pU679f3Ljt5YXXQoAAAAAAABATROIV5nubX1JkoaGUsGVAAAAAAAAANQ2gXiV6Q/EW5pcGgAAAAAAAIDBkLpWme7e7YF4a6NLAwAAAAAAADAYUtcqo0McAAAAAAAAYGhIXatMfyDerEMcAAAAAAAAYFAKTV1vueWWnHjiiRk5cmTGjx+fefPmZcWKFQOO6ezszIIFCzJ27NiMGDEi5557btatW1dQxXte/5TpOsQBAAAAAAAABqfQ1HXJkiVZsGBBnnzyyTz66KPp6enJrFmzsnXr1soxV155ZR566KF84xvfyJIlS7J69eqcc845BVa9Z5kyHQAAAAAAAGBoNBV58kceeWTA40WLFmX8+PF59tlnc+qpp2bjxo35h3/4h9x777355Cc/mSS55557cvTRR+fJJ5/MSSedVETZe1SlQ9yU6QAAAAAAAACDUlWp68aNG5MkY8aMSZI8++yz6enpyRlnnFE55qijjspBBx2UpUuXFlLjnqZDHAAAAAAAAGBoFNoh/uv6+vqycOHCnHzyyTn22GOTJGvXrk1LS0tGjx494NgJEyZk7dq1O3ydrq6udHV1VR5v2rRpj9W8J/QH4q0CcQAAAAAAAIBBqZrUdcGCBVm+fHn++Z//eVCvc8stt6Stra1ymzRp0hBVuHf0T5nebMp0AAAAAAAAgEGpitT18ssvz8MPP5zHH388Bx54YGV7e3t7uru7s2HDhgHHr1u3Lu3t7Tt8rWuvvTYbN26s3F599dU9WfqQM2U6AAAAAAAAwNAodMr0crmcK664Ig888EAWL16cKVOmDNh/wgknpLm5OY899ljOPffcJMmKFSuyatWqzJw5c4ev2dramtbW1j1e+55y/VnH5K23u3Nk+8iiSwEAAAAAAACoaYUG4gsWLMi9996bb33rWxk5cmRlXfC2trYMHz48bW1tueSSS3LVVVdlzJgxGTVqVK644orMnDkzJ510UpGl7zGnHD6u6BIAAAAAAAAA6kKpXC6XCzt5qbTD7ffcc08uuuiiJElnZ2euvvrq3Hfffenq6srs2bNz11137XTK9N+0adOmtLW1ZePGjRk1atRQlQ4AAMA+zM+aAAAAUBsKDcT3hlr7JcV3frImSXLqEQdk/9ZCG/gBAADYiVr7WRMAAAD2VQ1FF8BAV3/jhVz29eeyfkt30aUAAAAAAAAA1DQtyFXmxMlj8nb3tgxvaSy6FAAAAAAAAICaJhCvMl/7Pz5edAkAAAAAAAAAdcGU6QAAAAAAAADUJYE4AAAAAAAAAHVJIF5F1m/pyrSbvpsT//J7KZfLRZcDAAAAAAAAUNOsIV5Furb1ZVPntrT09KVUKhVdDgAAAAAAAEBN0yFeRbq39SVJmhuF4QAAAAAAAACDJRCvIj292wPxliaXBQAAAAAAAGCwJK9VpGubQBwAAAAAAABgqEheq0i3DnEAAAAAAACAISN5rSL9a4i3NLosAAAAAAAAAIMlea0ilUC8qbHgSgAAAAAAAABqn0C8irzbIV4quBIAAAAAAACA2icQryI91hAHAAAAAAAAGDKS1yrSLRAHAAAAAAAAGDKS1yrSVZky3WUBAAAAAAAAGCzJaxWprCGuQxwAAAAAAABg0JqKLoB3zZgyJl+ad2z+00eGF10KAAAAAAAAQM0TiFeRwyeMzOETRhZdBgAAAAAAAEBdMDc3AAAAAAAAAHVJh3gV+V9vbMmajZ058CPDc/DY/YsuBwAAAAAAAKCm6RCvIvf/+NWc9389lX9a+h9FlwIAAAAAAABQ8wTiVWTsiJYcOWFk2tuGFV0KAAAAAAAAQM0rlcvlctFF7EmbNm1KW1tbNm7cmFGjRhVdDgAAAHXAz5oAAABQG3SIAwAAAAAAAFCXBOIAAAAAAAAA1CWBeBX58weX55P/dXG+/cLqoksBAAAAAAAAqHkC8SqyesOv8r/e2Jq3u7YVXQoAAAAAAABAzROIV5Hu3r4kSUuTywIAAAAAAAAwWJLXKtK1TSAOAAAAAAAAMFQkr1Wkuz8Qb3RZAAAAAAAAAAZL8lpF+gPxZh3iAAAAAAAAAIMmea0iPe+sId6qQxwAAAAAAABg0CSvVaS71xriAAAAAAAAAENF8lpFKmuIC8QBAAAAAAAABk3yWkUE4gAAAAAAAABDR/JaRSqBuDXEAQAAAAAAAAZN8lpFut5ZQ7xZIA4AAAAAAAAwaJLXKlEul9PzTiDeasp0AAAAAAAAgEFrKroAtiuXky/OPjLd2/oyclhz0eUAAAAAAAAA1DyBeJVoaCjl/zztsKLLAAAAAAAAAKgb5uYGAAAAAAAAoC4JxKtE97a+/OS1jfnFus1FlwIAAAAAAABQFwTiVWLdps6cfccP8nt3/KDoUgAAAAAAAADqgjXEq0S5nLSPGpbWZn+jAAAAAAAAADAUBOJV4qCx++XJ604vugwAAAAAAACAuqEdGQAAAAAAAIC6JBAHAAAAAAAAoC4JxKvEC69uyLw7f5gvfOOFoksBAAAAAAAAqAvWEK8Sb73dnWWvbsi2vr6iSwEAAAAAAACoCzrEq0T3tu1BeHOjSwIAAAAAAAAwFKSvVaKnd3sg3iIQBwAAAAAAABgS0tcq0d8h3tLkkgAAAAAAAAAMBelrlegPxFsF4gAAAAAAAABDQvpaJbp7dYgDAAAAAAAADCXpa5WoTJluDXEAAAAAAACAISF9rRJd7wTizQJxAAAAAAAAgCEhfa0SPaZMBwAAAAAAABhS0tcqUZkyXSAOAAAAAAAAMCSkr1VCIA4AAAAAAAAwtKSvVaL7nSnTW60hDgAAAAAAADAkmoougO1mHjI2jQ2lTD/4I0WXAgAAAAAAAFAXBOJVYu7Ujsyd2lF0GQAAAAAAAAB1w/zcAAAAAAAAANQlHeJV4o3NXentK2f0fs0Z1txYdDkAAAAAAAAANU+HeJX44v98ISfd8lgeemF10aUAAAAAAAAA1AWBeJUoJWlqKKWlySUBAAAAAAAAGAqmTK8S91z88SRJuVwuuBIAAAAAAACA+qAducqUSqWiSwAAAAAAAACoCwJxAAAAAAAAAOqSQLxKXPvNF3Pp//1MXn59c9GlAAAAAAAAANQFgXiV+LeX3syj/74umzu3FV0KAAAAAAAAQF0QiFeJ7m19SZKWJpcEAAAAAAAAYChIX6tEd+/2QLxVIA4AAAAAAAAwJApNX5944omcffbZmThxYkqlUh588MEB+y+66KKUSqUBtzlz5hRT7B5W6RBvbCy4EgAAAAAAAID6UGggvnXr1hx33HG58847d3rMnDlzsmbNmsrtvvvu24sV7j39gXhzU6ngSgAAAAAAAADqQ1ORJ587d27mzp27y2NaW1vT3t6+lyoqRl9fOdv6ykmSlkZTpgMAAAAAAAAMhapPXxcvXpzx48fnyCOPzGWXXZb169cXXdKQ618/PElarCEOAAAAAAAAMCQK7RB/P3PmzMk555yTKVOmZOXKlbnuuusyd+7cLF26NI07WWu7q6srXV1dlcebNm3aW+XuNoE4AAAAAAAAwNCr6kB8/vz5lftTp07NtGnTcuihh2bx4sU5/fTTd/icW265JTfffPPeKnFI9K8fnpgyHQAAAAAAAGCo1FT6esghh2TcuHF5+eWXd3rMtddem40bN1Zur7766l6scPf0B+LNjaWUSqWCqwEAAAAAAACoD1XdIf6bXnvttaxfvz4dHR07Paa1tTWtra17sarB6w/EG0ulrNn4q3S0DS+4IgAAAAAAAIDaV2iH+JYtW7Js2bIsW7YsSfLKK69k2bJlWbVqVbZs2ZIvfvGLefLJJ/PLX/4yjz32WD71qU/lsMMOy+zZs4sse8h9+4X/L0nSua0vJ9/6/dz/41UFVwQAAAAAAABQ+woNxJ955plMnz4906dPT5JcddVVmT59em644YY0NjbmxRdfzO/93u/liCOOyCWXXJITTjgh//Zv/1ZzHeC7smbjr/Ll771UedxXTq775vKs2firAqsCAAAAAAAAqH2FTpl+2mmnpVwu73T/d7/73b1YTTFeeXNr+n7jn6C3XM4v33zb1OkAAAAAAAAAg1BohzjJlHH7p6E0cFtjqZTJ4/YrpiAAAAAAAACAOiEQL1hH2/Dccs7UNJa2p+KNpVL+6pxjdYcDAAAAAAAADFKhU6az3R+deFBOPeKA/PLNtzN53H7CcAAAAAAAAIAhIBCvEh1twwXhAAAAAAAAAEPIlOkAAAAAAAAA1CWBOAAAAAAAAAB1SSAOAAAAAAAAQF0SiAMAAAAAAABQlwTiAAAAAAAAANQlgTgAAAAAAAAAdUkgDgAAAAAAAEBdEogDAAAAAAAAUJcE4gAAAAAAAADUJYE4AAAAAAAAAHVJIA4AAAAAAABAXRKIAwAAAAAAAFCXBOIAAAAAAAAA1CWBOAAAAAAAAAB1SSAOAAAAAAAAQF0SiAMAAAAAAABQlwTiAAAAAAAAANQlgTgAAAAAAAAAdUkgDgAAAAAAAEBdEogDAAAAAAAAUJcE4gAAAAAAAADUJYE4AAAAAAAAAHVJIA4AAAAAAABAXRKIAwAAAAAAAFCXmoouYE8rl8tJkk2bNhVcCQAAAPWi/2fM/p85AQAAgOpU94H45s2bkySTJk0quBIAAADqzebNm9PW1lZ0GQAAAMBOlMp1/ufsfX19Wb16dUaOHJlSqVR0OTu1adOmTJo0Ka+++mpGjRpVdDnwgRm71CLjllpl7FKrjF1q1a7GbrlczubNmzNx4sQ0NFiNDAAAAKpV3XeINzQ05MADDyy6jA9s1KhRfklITTJ2qUXGLbXK2KVWGbvUqp2NXZ3hAAAAUP38GTsAAAAAAAAAdUkgDgAAAAAAAEBdEohXidbW1tx4441pbW0tuhT4UIxdapFxS60ydqlVxi61ytgFAACA2lcql8vloosAAAAAAAAAgKGmQxwAAAAAAACAuiQQBwAAAAAAAKAuCcQBAAAAAAAAqEsC8Spw5513ZvLkyRk2bFhmzJiRp59+uuiSYICbbroppVJpwO2oo46q7O/s7MyCBQsyduzYjBgxIueee27WrVtXYMXsq5544omcffbZmThxYkqlUh588MEB+8vlcm644YZ0dHRk+PDhOeOMM/LSSy8NOOatt97Keeedl1GjRmX06NG55JJLsmXLlr34LtgXvd/Yveiii97zOTxnzpwBxxi77G233HJLTjzxxIwcOTLjx4/PvHnzsmLFigHHfJDvCKtWrcpZZ52V/fbbL+PHj88Xv/jFbNu2bW++FfYxH2Tsnnbaae/53P385z8/4BhjFwAAAGqDQLxg999/f6666qrceOONee6553Lcccdl9uzZef3114suDQb4rd/6raxZs6Zy+8EPflDZd+WVV+ahhx7KN77xjSxZsiSrV6/OOeecU2C17Ku2bt2a4447LnfeeecO99922225/fbbc/fdd+epp57K/vvvn9mzZ6ezs7NyzHnnnZef/vSnefTRR/Pwww/niSeeyOc+97m99RbYR73f2E2SOXPmDPgcvu+++wbsN3bZ25YsWZIFCxbkySefzKOPPpqenp7MmjUrW7durRzzft8Rent7c9ZZZ6W7uzs/+tGP8rWvfS2LFi3KDTfcUMRbYh/xQcZuklx66aUDPndvu+22yj5jFwAAAGpHqVwul4suYl82Y8aMnHjiibnjjjuSJH19fZk0aVKuuOKK/Nmf/VnB1cF2N910Ux588MEsW7bsPfs2btyYAw44IPfee2/+4A/+IEny85//PEcffXSWLl2ak046aS9XC9uVSqU88MADmTdvXpLt3eETJ07M1VdfnS984QtJto/fCRMmZNGiRZk/f35+9rOf5ZhjjsmPf/zjfOxjH0uSPPLIIznzzDPz2muvZeLEiUW9HfYhvzl2k+0d4hs2bHhP53g/Y5dq8MYbb2T8+PFZsmRJTj311A/0HeE73/lOfvd3fzerV6/OhAkTkiR33313rrnmmrzxxhtpaWkp8i2xj/jNsZts7xA//vjj8+Uvf3mHzzF2AQAAoHboEC9Qd3d3nn322ZxxxhmVbQ0NDTnjjDOydOnSAiuD93rppZcyceLEHHLIITnvvPOyatWqJMmzzz6bnp6eAeP4qKOOykEHHWQcU1VeeeWVrF27dsBYbWtry4wZMypjdenSpRk9enQlUEySM844Iw0NDXnqqaf2es3w6xYvXpzx48fnyCOPzGWXXZb169dX9hm7VIONGzcmScaMGZPkg31HWLp0aaZOnVoJFJNk9uzZ2bRpU37605/uxerZl/3m2O339a9/PePGjcuxxx6ba6+9Nm+//XZln7ELAAAAtaOp6AL2ZW+++WZ6e3sH/BIlSSZMmJCf//znBVUF7zVjxowsWrQoRx55ZNasWZObb745n/jEJ7J8+fKsXbs2LS0tGT169IDnTJgwIWvXri2mYNiB/vG4o8/c/n1r167N+PHjB+xvamrKmDFjjGcKNWfOnJxzzjmZMmVKVq5cmeuuuy5z587N0qVL09jYaOxSuL6+vixcuDAnn3xyjj322CT5QN8R1q5du8PP5f59sKftaOwmyR//8R/n4IMPzsSJE/Piiy/mmmuuyYoVK/LNb34zibELAAAAtUQgDryvuXPnVu5PmzYtM2bMyMEHH5x/+Zd/yfDhwwusDGDfMH/+/Mr9qVOnZtq0aTn00EOzePHinH766QVWBtstWLAgy5cvzw9+8IOiS4EPZWdj93Of+1zl/tSpU9PR0ZHTTz89K1euzKGHHrq3ywQAAAAGwZTpBRo3blwaGxuzbt26AdvXrVuX9vb2gqqC9zd69OgcccQRefnll9Pe3p7u7u5s2LBhwDHGMdWmfzzu6jO3vb09r7/++oD927Zty1tvvWU8U1UOOeSQjBs3Li+//HISY5diXX755Xn44Yfz+OOP58ADD6xs/yDfEdrb23f4udy/D/aknY3dHZkxY0aSDPjcNXYBAACgNgjEC9TS0pITTjghjz32WGVbX19fHnvsscycObPAymDXtmzZkpUrV6ajoyMnnHBCmpubB4zjFStWZNWqVcYxVWXKlClpb28fMFY3bdqUp556qjJWZ86cmQ0bNuTZZ5+tHPP9738/fX19lV+EQzV47bXXsn79+nR0dCQxdilGuVzO5ZdfngceeCDf//73M2XKlAH7P8h3hJkzZ+YnP/nJgD/oePTRRzNq1Kgcc8wxe+eNsM95v7G7I8uWLUuSAZ+7xi4AAADUBlOmF+yqq67KhRdemI997GP5+Mc/ni9/+cvZunVrLr744qJLg4ovfOELOfvss3PwwQdn9erVufHGG9PY2JjPfOYzaWtryyWXXJKrrroqY8aMyahRo3LFFVdk5syZOemkk4ounX3Mli1bKp1bSfLKK69k2bJlGTNmTA466KAsXLgwX/rSl3L44YdnypQp+fM///NMnDgx8+bNS5IcffTRmTNnTi699NLcfffd6enpyeWXX5758+dn4sSJBb0r9gW7GrtjxozJzTffnHPPPTft7e1ZuXJl/vRP/zSHHXZYZs+encTYpRgLFizIvffem29961sZOXJkZd3ktra2DB8+/AN9R5g1a1aOOeaYnH/++bntttuydu3aXH/99VmwYEFaW1uLfHvUsfcbuytXrsy9996bM888M2PHjs2LL76YK6+8MqeeemqmTZuWxNgFAACAWlIql8vloovY191xxx35m7/5m6xduzbHH398br/9dt1cVJX58+fniSeeyPr163PAAQfklFNOyV/+5V9W1k/s7OzM1Vdfnfvuuy9dXV2ZPXt27rrrLtNFstctXrw4v/M7v/Oe7RdeeGEWLVqUcrmcG2+8MX/3d3+XDRs25JRTTsldd92VI444onLsW2+9lcsvvzwPPfRQGhoacu655+b222/PiBEj9uZbYR+zq7H71a9+NfPmzcvzzz+fDRs2ZOLEiZk1a1b+4i/+IhMmTKgca+yyt5VKpR1uv+eee3LRRRcl+WDfEf7jP/4jl112WRYvXpz9998/F154YW699dY0NfnbXfaM9xu7r776aj772c9m+fLl2bp1ayZNmpTf//3fz/XXX59Ro0ZVjjd2AQAAoDYIxAEAAAAAAACoS9YQBwAAAAAAAKAuCcQBAAAAAAAAqEsCcQAAAAAAAADqkkAcAAAAAAAAgLokEAcAAAAAAACgLgnEAQAAAAAAAKhLAnEAAAAAAAAA6pJAHAAAAAAAAIC6JBAHgCp20UUXZd68eXv9vIsWLUqpVEqpVMrChQsH/VqjR4/+UM+56KKLKud/8MEHB3V+AAAAAAD2XU1FFwAA+6pSqbTL/TfeeGO+8pWvpFwu76WKBho1alRWrFiR/ffff1Cv80d/9Ec588wzP9RzvvKVr+TWW29NR0fHoM4NAAAAAMC+TSAOAAVZs2ZN5f7999+fG264IStWrKhsGzFiREaMGFFEaUm2B/bt7e2Dfp3hw4dn+PDhH+o5bW1taWtrG/S5AQAAAADYt5kyHQAK0t7eXrm1tbVVAuj+24gRI94zZfppp52WK664IgsXLsxHPvKRTJgwIX//93+frVu35uKLL87IkSNz2GGH5Tvf+c6Acy1fvjxz587NiBEjMmHChJx//vl58803P3TNkydPzpe+9KVccMEFGTFiRA4++OB8+9vfzhtvvJFPfepTGTFiRKZNm5Znnnmm8pzfnDL9pptuyvHHH59/+qd/yuTJk9PW1pb58+dn8+bNH7oeAAAAAADYFYE4ANSYr33taxk3blyefvrpXHHFFbnsssvy6U9/Or/927+d5557LrNmzcr555+ft99+O0myYcOGfPKTn8z06dPzzDPP5JFHHsm6devyh3/4h7t1/r/927/NySefnOeffz5nnXVWzj///FxwwQX57Gc/m+eeey6HHnpoLrjggl1O9b5y5co8+OCDefjhh/Pwww9nyZIlufXWW3erHgAAAAAA2BmBOADUmOOOOy7XX399Dj/88Fx77bUZNmxYxo0bl0svvTSHH354brjhhqxfvz4vvvhikuSOO+7I9OnT81d/9Vc56qijMn369PzjP/5jHn/88fziF7/40Oc/88wz8yd/8ieVc23atCknnnhiPv3pT+eII47INddck5/97GdZt27dTl+jr68vixYtyrHHHptPfOITOf/88/PYY4/t9r8JAAAAAADsiDXEAaDGTJs2rXK/sbExY8eOzdSpUyvbJkyYkCR5/fXXkyQvvPBCHn/88R2uR75y5cocccQRu33+/nPt7Pw7W4N88uTJGTlyZOVxR0dHpV4AAAAAABgqAnEAqDHNzc0DHpdKpQHbSqVSku1d2EmyZcuWnH322fnrv/7r97xWR0fHoM7ff65dnf/9XqP/Obs6HgAAAAAAdodAHADq3Ec/+tH867/+ayZPnpymJv/1AwAAAACw77CGOADUuQULFuStt97KZz7zmfz4xz/OypUr893vfjcXX3xxent7iy4PAAAAAAD2GIE4ANS5iRMn5oc//GF6e3sza9asTJ06NQsXLszo0aPT0OCrAAAAAAAA9atULpfLRRcBAFSXRYsWZeHChdmwYUOhdZRKpTzwwAOZN29eoXUAAAAAAFCbtIUBADu0cePGjBgxItdcc81eP/fnP//5jBgxYq+fFwAAAACA+qJDHAB4j82bN2fdunVJktGjR2fcuHF79fyvv/56Nm3alCTp6OjI/vvvv1fPDwAAAABAfRCIAwAAAAAAAFCXTJkOAAAAAAAAQF0SiAMAAAAAAABQlwTiAAAAAAAAANQlgTgAAAAAAAAAdUkgDgAAAAAAAEBdEogDAAAAAAAAUJcE4gAAAAAAAADUJYE4AAAAAAAAAHVJIA4AAAAAAABAXfr/AfGBXY0SlJaPAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -560,7 +594,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3.10.2 64-bit", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -574,7 +608,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.8.10" + "version": "3.10.2" }, "toc": { "base_numbering": 1, diff --git a/doc/how_to_cite.rst b/doc/how_to_cite.rst new file mode 100644 index 000000000..53054abd8 --- /dev/null +++ b/doc/how_to_cite.rst @@ -0,0 +1,28 @@ +How to cite pyPESTO +=================== + +**Citeable DOI for the latest pyPESTO release:** + +.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.2553546.svg + :target: https://doi.org/10.5281/zenodo.2553546 + :alt: pyPESTO release DOI + + +There is a list of `publications using pyPESTO `_. +If you used pyPESTO in your work, we are happy to include +your project, please let us know via a GitHub issue. + +When using pyPESTO in your project, please cite + +- Schälte, Y., Fröhlich, F., Jost, P. J., Vanhoefer, J., Pathirana, D., Stapor, P., + Lakrisenko, P., Wang, D., Raimúndez, E., Merkt, S., Schmiester, L., Städter, P., + Grein, S., Dudkin, E., Doresic, D., Weindl, D., & Hasenauer, J. (2023). pyPESTO: A + modular and scalable tool for parameter estimation for dynamic models `arXiv:2305.01821 `_. + +When presenting work that employs pyPESTO, feel free to use one of the icons in +`doc/logo/ `_: + +.. image:: https://raw.githubusercontent.com/ICB-DCM/pyPESTO/master/doc/logo/logo.png + :target: https://raw.githubusercontent.com/ICB-DCM/pyPESTO/master/doc/logo/logo.png + :height: 75 + :alt: pyPESTO LOGO diff --git a/doc/index.rst b/doc/index.rst index 062f4c034..5035172d0 100644 --- a/doc/index.rst +++ b/doc/index.rst @@ -45,6 +45,7 @@ pyPESTO - Parameter EStimation TOolbox for python references contact license + how_to_cite logo diff --git a/doc/references.rst b/doc/references.rst index 79742222b..c8cb861c0 100644 --- a/doc/references.rst +++ b/doc/references.rst @@ -1,7 +1,7 @@ -Publications using pypesto +Publications using pyPESTO ========================== -pypesto was used in the following publications: +pyPESTO was used in the following publications: .. bibliography:: using_pypesto.bib :list: enumerated diff --git a/pypesto/ensemble/ensemble.py b/pypesto/ensemble/ensemble.py index d2ab53df9..d3bd07687 100644 --- a/pypesto/ensemble/ensemble.py +++ b/pypesto/ensemble/ensemble.py @@ -670,7 +670,7 @@ def from_optimization_endpoints( # did not reach maximum size and the next value is still # lower than the cutoff value if start['fval'] <= abs_cutoff and len(x_vectors) < max_size: - x_vectors.append(start['x']) + x_vectors.append(start['x'][result.problem.x_free_indices]) # the vector tag will be a -1 to indicate it is the last step vector_tags.append((int(start['id']), -1)) diff --git a/pypesto/hierarchical/calculator.py b/pypesto/hierarchical/calculator.py index 59151c623..fd49fa71c 100644 --- a/pypesto/hierarchical/calculator.py +++ b/pypesto/hierarchical/calculator.py @@ -15,6 +15,7 @@ AMICI_SIGMAY, AMICI_Y, GRAD, + HESS, INNER_PARAMETERS, INNER_RDATAS, RDATAS, @@ -115,9 +116,12 @@ def __call__( if any(rdata.status != amici.AMICI_SUCCESS for rdata in inner_rdatas): # if the gradient was requested, we need to provide some value # for it + dim = len(x_ids) if 1 in sensi_orders: - inner_result[GRAD] = np.full( - shape=len(x_ids), fill_value=np.nan + inner_result[GRAD] = np.full(shape=dim, fill_value=np.nan) + if 2 in sensi_orders: + inner_result[HESS] = np.full( + shape=(dim, dim), fill_value=np.nan ) return inner_result diff --git a/pypesto/history/optimizer.py b/pypesto/history/optimizer.py index a4876b111..46524a0c1 100644 --- a/pypesto/history/optimizer.py +++ b/pypesto/history/optimizer.py @@ -134,7 +134,7 @@ def finalize(self, message: str = None, exitflag: int = None): and not allclose(result[X], self.x_min) ): # issue a warning, as if this happens, then something may be wrong - logger.warn( + logger.warning( f"History has a better point {fval} than the current best " "point {self.fval_min}." ) diff --git a/pypesto/objective/julia/petabJl.py b/pypesto/objective/julia/petabJl.py index 344c78f71..bceca4a60 100644 --- a/pypesto/objective/julia/petabJl.py +++ b/pypesto/objective/julia/petabJl.py @@ -61,10 +61,10 @@ def __init__( self.petab_jl_problem = petab_jl_problem # get functions - fun = self.petab_jl_problem.computeCost - grad = self.petab_jl_problem.computeGradient - hess = self.petab_jl_problem.computeHessian - x_names = np.asarray(self.petab_jl_problem.θ_estNames) + fun = self.petab_jl_problem.compute_cost + grad = self.petab_jl_problem.compute_gradient + hess = self.petab_jl_problem.compute_hessian + x_names = np.asarray(self.petab_jl_problem.θ_names) # call the super super super constructor super(JuliaObjective, self).__init__( @@ -102,10 +102,10 @@ def __setstate__(self, state): self.petab_jl_problem = petab_jl_problem # get functions - fun = self.petab_jl_problem.computeCost - grad = self.petab_jl_problem.computeGradient - hess = self.petab_jl_problem.computeHessian - x_names = np.asarray(self.petab_jl_problem.θ_estNames) + fun = self.petab_jl_problem.compute_cost + grad = self.petab_jl_problem.compute_gradient + hess = self.petab_jl_problem.compute_hessian + x_names = np.asarray(self.petab_jl_problem.θ_names) # call the super super constructor super(JuliaObjective, self).__init__(fun, grad, hess, x_names) diff --git a/pypesto/objective/julia/petab_jl_importer.py b/pypesto/objective/julia/petab_jl_importer.py index 3b8f2c1d2..06aa8bdf1 100644 --- a/pypesto/objective/julia/petab_jl_importer.py +++ b/pypesto/objective/julia/petab_jl_importer.py @@ -50,10 +50,10 @@ def __init__( @staticmethod def from_yaml( yaml_file: str, - odeSolverOptions: Optional[dict] = None, - gradientMethod: Optional[str] = None, - hessianMethod: Optional[str] = None, - sparseJacobian: Optional[bool] = None, + ode_solver_options: Optional[dict] = None, + gradient_method: Optional[str] = None, + hessian_method: Optional[str] = None, + sparse_jacobian: Optional[bool] = None, verbose: Optional[bool] = None, directory: Optional[str] = None, ) -> PetabJlImporter: @@ -67,11 +67,11 @@ def from_yaml( ---------- yaml_file: The yaml file of the PEtab problem - odeSolverOptions: + ode_solver_options: Dictionary like options for the ode solver in julia - gradientMethod, hessianMethod: + gradient_method, hessian_method: Julia methods to compute gradient and hessian - sparseJacobian: + sparse_jacobian: Whether to compute sparse Jacobians verbose: Whether to have a more informative log. @@ -81,10 +81,10 @@ def from_yaml( """ # get default values options = _get_default_options( - odeSolverOptions=odeSolverOptions, - gradientMethod=gradientMethod, - hessianMethod=hessianMethod, - sparseJacobian=sparseJacobian, + ode_solver_options=ode_solver_options, + gradient_method=gradient_method, + hessian_method=hessian_method, + sparse_jacobian=sparse_jacobian, verbose=verbose, ) @@ -166,8 +166,8 @@ def create_problem( multistart optimization. """ obj = self.create_objective(precompile=precompile) - lb = np.asarray(self.petab_jl_problem.lowerBounds) - ub = np.asarray(self.petab_jl_problem.upperBounds) + lb = np.asarray(self.petab_jl_problem.lower_bounds) + ub = np.asarray(self.petab_jl_problem.upper_bounds) return Problem( objective=obj, @@ -181,10 +181,10 @@ def create_problem( def _get_default_options( - odeSolverOptions: Union[dict, None] = None, - gradientMethod: Union[str, None] = None, - hessianMethod: Union[str, None] = None, - sparseJacobian: Union[str, None] = None, + ode_solver_options: Union[dict, None] = None, + gradient_method: Union[str, None] = None, + hessian_method: Union[str, None] = None, + sparse_jacobian: Union[str, None] = None, verbose: Union[str, None] = None, ) -> dict: """ @@ -194,13 +194,13 @@ def _get_default_options( Parameters ---------- - odeSolverOptions: + ode_solver_options: Options for the ODE solver. - gradientMethod: + gradient_method: Method for gradient calculation. - hessianMethod: + hessian_method: Method for hessian calculation. - sparseJacobian: + sparse_jacobian: Whether the jacobian should be sparse. verbose: Whether to print verbose output. @@ -211,51 +211,51 @@ def _get_default_options( The options. """ # get default values - if odeSolverOptions is None: - odeSolverOptions = { + if ode_solver_options is None: + ode_solver_options = { "solver": "Rodas5P", "abstol": 1e-8, "reltol": 1e-8, "maxiters": "Int64(1e4)", } - if not odeSolverOptions["solver"].endswith("()"): - odeSolverOptions["solver"] += "()" # add parentheses - if gradientMethod is None: - gradientMethod = "nothing" - if hessianMethod is None: - hessianMethod = "nothing" - if sparseJacobian is None: - sparseJacobian = "nothing" + if not ode_solver_options["solver"].endswith("()"): + ode_solver_options["solver"] += "()" # add parentheses + if gradient_method is None: + gradient_method = "nothing" + if hessian_method is None: + hessian_method = "nothing" + if sparse_jacobian is None: + sparse_jacobian = "nothing" if verbose is None: verbose = "true" - # check values for gradientMethod and hessianMethod + # check values for gradient_method and hessian_method allowed_gradient_methods = [ "ForwardDiff", "ForwardEquations", "Adjoint", "Zygote", ] - if gradientMethod not in allowed_gradient_methods: + if gradient_method not in allowed_gradient_methods: logger.warning( - f"gradientMethod {gradientMethod} is not in " + f"gradient_method {gradient_method} is not in " f"{allowed_gradient_methods}. Defaulting to ForwardDiff." ) - gradientMethod = "ForwardDiff" + gradient_method = "ForwardDiff" allowed_hessian_methods = ["ForwardDiff", "BlocForwardDiff", "GaussNewton"] - if hessianMethod not in allowed_hessian_methods: + if hessian_method not in allowed_hessian_methods: logger.warning( - f"hessianMethod {hessianMethod} is not in " + f"hessian_method {hessian_method} is not in " f"{allowed_hessian_methods}. Defaulting to ForwardDiff." ) - hessianMethod = "ForwardDiff" + hessian_method = "ForwardDiff" # fill options options = { - "odeSolverOptions": odeSolverOptions, - "gradientMethod": gradientMethod, - "hessianMethod": hessianMethod, - "sparseJacobian": sparseJacobian, + "ode_solver_options": ode_solver_options, + "gradient_method": gradient_method, + "hessian_method": hessian_method, + "sparse_jacobian": sparse_jacobian, "verbose": verbose, } return options @@ -293,7 +293,7 @@ def _write_julia_file( "PEtab.jl/dev/API_choosen/#PEtab.setupPEtabODEProblem" ) odeSolvOpt_str = ", ".join( - [f"{k}={v}" for k, v in options["odeSolverOptions"].items()] + [f"{k}={v}" for k, v in options["ode_solver_options"].items()] ) # delete "solver=" from string odeSolvOpt_str = odeSolvOpt_str.replace("solver=", "") @@ -304,15 +304,15 @@ def _write_julia_file( f"using Sundials\n" f"using PEtab\n\n" f"pathYaml = \"{yaml_file}\"\n" - f"petabModel = readPEtabModel(pathYaml, verbose=true)\n\n" - f"# A full list of options for createPEtabODEProblem can be " + f"petabModel = PEtabModel(pathYaml, verbose=true)\n\n" + f"# A full list of options for PEtabODEProblem can be " f"found at {link_to_options}\n" - f"petabProblem = createPEtabODEProblem(\n\t" + f"petabProblem = PEtabODEProblem(\n\t" f"petabModel,\n\t" - f"odeSolverOptions=ODESolverOptions({odeSolvOpt_str}),\n\t" - f"gradientMethod=:{options['gradientMethod']},\n\t" - f"hessianMethod=:{options['hessianMethod']},\n\t" - f"sparseJacobian={options['sparseJacobian']},\n\t" + f"ode_solver=ODESolver({odeSolvOpt_str}),\n\t" + f"gradient_method=:{options['gradient_method']},\n\t" + f"hessian_method=:{options['hessian_method']},\n\t" + f"sparse_jacobian={options['sparse_jacobian']},\n\t" f"verbose={options['verbose']}\n)\n\nend\n" ) # write file diff --git a/pypesto/optimize/optimizer.py b/pypesto/optimize/optimizer.py index b808a9333..b589afd0e 100644 --- a/pypesto/optimize/optimizer.py +++ b/pypesto/optimize/optimizer.py @@ -94,7 +94,12 @@ def wrapped_minimize( ) except Exception as err: if optimize_options.allow_failed_starts: - logger.error(f'start {id} failed: {err}') + import sys + import traceback + + trace = "\n".join(traceback.format_exception(*sys.exc_info())) + + logger.error(f'start {id} failed:\n{trace}') result = OptimizerResult( x0=x0, exitflag=-1, message=str(err), id=id ) @@ -608,7 +613,7 @@ def get_default_options(self): def check_x0_support(self, x_guesses: np.ndarray = None) -> bool: """Check whether optimizer supports x0.""" if x_guesses is not None and x_guesses.size > 0: - logger.warn("The Dlib optimizer does not support x0.") + logger.warning("The Dlib optimizer does not support x0.") return False @@ -666,7 +671,7 @@ def is_least_squares(self): def check_x0_support(self, x_guesses: np.ndarray = None) -> bool: """Check whether optimizer supports x0.""" if x_guesses is not None and x_guesses.size > 0: - logger.warn("The pyswarm optimizer does not support x0.") + logger.warning("The pyswarm optimizer does not support x0.") return False @@ -940,7 +945,7 @@ def is_least_squares(self): def check_x0_support(self, x_guesses: np.ndarray = None) -> bool: """Check whether optimizer supports x0.""" if x_guesses is not None and x_guesses.size > 0: - logger.warn("The pyswarms optimizer does not support x0.") + logger.warning("The pyswarms optimizer does not support x0.") return False @@ -1186,7 +1191,7 @@ def check_x0_support(self, x_guesses: np.ndarray = None) -> bool: nlopt.GN_DIRECT_L_RAND_NOSCAL, ): if x_guesses is not None and x_guesses.size > 0: - logger.warn( + logger.warning( f"The NLopt optimizer method {self.method} does " "not support x0." ) @@ -1215,10 +1220,11 @@ def __init__( Parameters ---------- options: - Optimizer options. + Optimizer options. See :meth:`fides.minimize.Optimizer.minimize` + and :class:`fides.constants.Options` for details. hessian_update: - Hessian update strategy. If this is None, a hybrid approximation - that switches from the problem.objective provided Hessian ( + Hessian update strategy. If this is ``None``, a hybrid approximation + that switches from the ``problem.objective`` provided Hessian ( approximation) to a BFGS approximation will be used. """ super().__init__() diff --git a/pypesto/optimize/util.py b/pypesto/optimize/util.py index a620ae37d..4e2e86383 100644 --- a/pypesto/optimize/util.py +++ b/pypesto/optimize/util.py @@ -61,9 +61,16 @@ def preprocess_hdf5_history( return False # create directory with same name as original file stem - template_path = ( - path.parent / path.stem / (path.stem + "_{id}" + path.suffix) - ) + if "{id}" in path.stem: + template_path = ( + path.parent + / path.stem.replace("{id}", "") + / (path.stem + path.suffix) + ) + else: + template_path = ( + path.parent / path.stem / (path.stem + "_{id}" + path.suffix) + ) template_path.parent.mkdir(parents=True, exist_ok=True) # set history file to template path history_options.storage_file = str(template_path) @@ -92,6 +99,8 @@ def postprocess_hdf5_history( History options used in the optimization. """ # create hdf5 file that gathers the others within history group + if "{id}" in storage_file: + storage_file = storage_file.replace("{id}", "") with h5py.File(storage_file, mode='w') as f: # create file and group f.require_group("history") diff --git a/pypesto/petab/importer.py b/pypesto/petab/importer.py index 5c536128b..ce4337794 100644 --- a/pypesto/petab/importer.py +++ b/pypesto/petab/importer.py @@ -9,6 +9,7 @@ import tempfile import warnings from dataclasses import dataclass +from functools import partial from typing import ( Any, Callable, @@ -17,6 +18,7 @@ List, Optional, Sequence, + Tuple, Union, ) @@ -44,7 +46,7 @@ from ..predict import AmiciPredictor from ..problem import Problem from ..result import PredictionResult -from ..startpoint import FunctionStartpoints, StartpointMethod +from ..startpoint import CheckedStartpoints, StartpointMethod try: import amici @@ -52,7 +54,12 @@ import amici.petab_import import amici.petab_objective import petab - from petab.C import PREEQUILIBRATION_CONDITION_ID, SIMULATION_CONDITION_ID + from petab.C import ( + ESTIMATE, + PREEQUILIBRATION_CONDITION_ID, + SIMULATION_CONDITION_ID, + ) + from petab.models import MODEL_TYPE_SBML except ImportError: pass @@ -128,7 +135,8 @@ def __init__( self.validate_inner_options() - if validate_petab: + self.validate_petab = validate_petab + if self.validate_petab: if petab.lint_problem(petab_problem): raise ValueError("Invalid PEtab problem.") if self._hierarchical and validate_petab_hierarchical: @@ -280,7 +288,13 @@ def create_model( logger.info( f"Compiling amici model to folder " f"{self.output_folder}." ) - self.compile_model(**kwargs) + if self.petab_problem.model.type_id == MODEL_TYPE_SBML: + self.compile_model( + validate=self.validate_petab, + **kwargs, + ) + else: + self.compile_model(**kwargs) else: logger.debug( f"Using existing amici model in folder " @@ -635,45 +649,23 @@ def create_prior(self) -> Union[NegLogParameterPriors, None]: else: return None - def create_startpoint_method( - self, x_ids: Sequence[str] = None, **kwargs - ) -> StartpointMethod: + def create_startpoint_method(self, **kwargs) -> StartpointMethod: """Create a startpoint method. Parameters ---------- - x_ids: - If provided, create a startpoint method that only samples the - parameters with the given IDs. **kwargs: Additional keyword arguments passed on to :meth:`pypesto.startpoint.FunctionStartpoints.__init__`. """ - - def startpoint_method(n_starts: int, **kwargs): - startpoints = petab.sample_parameter_startpoints( - self.petab_problem.parameter_df, n_starts=n_starts - ) - if x_ids is None: - return startpoints - - # subset parameters according to the provided parameter IDs - from petab.C import ESTIMATE - - parameter_df = self.petab_problem.parameter_df - pars_to_estimate = list( - parameter_df.index[parameter_df[ESTIMATE] == 1] - ) - x_idxs = [pars_to_estimate.index(x_id) for x_id in x_ids] - return startpoints[:, x_idxs] - - return FunctionStartpoints(function=startpoint_method, **kwargs) + return PetabStartpoints(petab_problem=self.petab_problem, **kwargs) def create_problem( self, objective: AmiciObjective = None, x_guesses: Optional[Iterable[float]] = None, problem_kwargs: Dict[str, Any] = None, + startpoint_kwargs: Dict[str, Any] = None, **kwargs, ) -> Problem: """Create a :class:`pypesto.Problem`. @@ -688,6 +680,9 @@ def create_problem( optimization. problem_kwargs: Passed to the `pypesto.Problem` constructor. + startpoint_kwargs: + Keyword arguments forwarded to + :meth:`PetabImporter.create_startpoint_method`. **kwargs: Additional key word arguments passed on to the objective, if not provided. @@ -741,6 +736,9 @@ def create_problem( if problem_kwargs is None: problem_kwargs = {} + if startpoint_kwargs is None: + startpoint_kwargs = {} + prior = self.create_prior() if prior is not None: @@ -762,7 +760,7 @@ def create_problem( x_scales=x_scales, x_priors_defs=prior, startpoint_method=self.create_startpoint_method( - x_ids=np.delete(x_ids, x_fixed_indices) + **startpoint_kwargs ), **problem_kwargs, ) @@ -956,3 +954,78 @@ def get_petab_non_quantitative_data_types( if len(non_quantitative_data_types) == 0: return None return non_quantitative_data_types + + +class PetabStartpoints(CheckedStartpoints): + """Startpoint method for PEtab problems. + + Samples optimization startpoints from the distributions defined in the + provided PEtab problem. The PEtab-problem is copied. + """ + + def __init__(self, petab_problem: petab.Problem, **kwargs): + super().__init__(**kwargs) + self._parameter_df = petab_problem.parameter_df.copy() + self._priors: Optional[List[Tuple]] = None + self._free_ids: Optional[List[str]] = None + + def _setup( + self, + pypesto_problem: Problem, + ): + """Update priors if necessary. + + Check if ``problem.x_free_indices`` changed since last call, and if so, + get the corresponding priors from PEtab. + """ + current_free_ids = np.asarray(pypesto_problem.x_names)[ + pypesto_problem.x_free_indices + ] + + if ( + self._priors is not None + and len(current_free_ids) == len(self._free_ids) + and np.all(current_free_ids == self._free_ids) + ): + # no need to update + return + + # update priors + self._free_ids = current_free_ids + id_to_prior = dict( + zip( + self._parameter_df.index[self._parameter_df[ESTIMATE] == 1], + petab.parameters.get_priors_from_df( + self._parameter_df, mode=petab.INITIALIZATION + ), + ) + ) + + self._priors = list(map(id_to_prior.__getitem__, current_free_ids)) + + def __call__( + self, + n_starts: int, + problem: Problem, + ) -> np.ndarray: + """Call the startpoint method.""" + # Update the list of priors if needed + self._setup(pypesto_problem=problem) + + return super().__call__(n_starts, problem) + + def sample( + self, + n_starts: int, + lb: np.ndarray, + ub: np.ndarray, + ) -> np.ndarray: + """Actual startpoint sampling. + + Must only be called through `self.__call__` to ensure that the list of priors + matches the currently free parameters in the :class:`pypesto.Problem`. + """ + sampler = partial(petab.sample_from_prior, n_starts=n_starts) + startpoints = list(map(sampler, self._priors)) + + return np.array(startpoints).T diff --git a/pypesto/profile/options.py b/pypesto/profile/options.py index 9867c4fa5..f3784db7d 100644 --- a/pypesto/profile/options.py +++ b/pypesto/profile/options.py @@ -5,7 +5,7 @@ class ProfileOptions(dict): """ Options for optimization based profiling. - Parameters + Attributes ---------- default_step_size: Default step size of the profiling routine along the profile path @@ -66,6 +66,8 @@ def __init__( self.magic_factor_obj_value = magic_factor_obj_value self.whole_path = whole_path + self.validate() + def __getattr__(self, key): """Allow usage of keys like attributes.""" try: @@ -91,3 +93,24 @@ def create_instance( return maybe_options options = ProfileOptions(**maybe_options) return options + + def validate(self): + """Check if options are valid. + + Raises ``ValueError`` if current settings aren't valid. + """ + if self.min_step_size <= 0: + raise ValueError("min_step_size must be > 0.") + if self.max_step_size <= 0: + raise ValueError("max_step_size must be > 0.") + if self.min_step_size > self.max_step_size: + raise ValueError("min_step_size must be <= max_step_size.") + if self.default_step_size <= 0: + raise ValueError("default_step_size must be > 0.") + if self.default_step_size > self.max_step_size: + raise ValueError("default_step_size must be <= max_step_size.") + if self.default_step_size < self.min_step_size: + raise ValueError("default_step_size must be >= min_step_size.") + + if self.magic_factor_obj_value < 0 or self.magic_factor_obj_value >= 1: + raise ValueError("magic_factor_obj_value must be >= 0 and < 1.") diff --git a/pypesto/profile/profile.py b/pypesto/profile/profile.py index 174e6561d..116ef21d8 100644 --- a/pypesto/profile/profile.py +++ b/pypesto/profile/profile.py @@ -1,3 +1,4 @@ +import copy import logging from typing import Callable, Iterable, Union @@ -55,8 +56,9 @@ def parameter_profile( Index from which optimization result profiling should be started (default: global optimum, i.e., index = 0). next_guess_method: - Function handle to a method that creates the next starting point for - optimization in profiling. + Method that creates the next starting point for optimization in profiling. + One of the ``update_type`` options supported by + :func:`pypesto.profile.profile_next_guess.next_guess`. profile_options: Various options applied to the profile optimization. progress_bar: @@ -65,8 +67,8 @@ def parameter_profile( Name of the hdf5 file, where the result will be saved. Default is None, which deactivates automatic saving. If set to "Auto" it will automatically generate a file named - `year_month_day_profiling_result.hdf5`. - Optionally a method, see docs for `pypesto.store.auto.autosave`. + ``year_month_day_profiling_result.hdf5``. + Optionally a method, see docs for :func:`pypesto.store.auto.autosave`. overwrite: Whether to overwrite `result/profiling` in the autosave file if it already exists. @@ -76,6 +78,8 @@ def parameter_profile( result: The profile results are filled into `result.profile_result`. """ + # Copy the problem to avoid side effects + problem = copy.deepcopy(problem) # Handling defaults # profiling indices if profile_index is None: @@ -85,6 +89,7 @@ def parameter_profile( if profile_options is None: profile_options = ProfileOptions() profile_options = ProfileOptions.create_instance(profile_options) + profile_options.validate() # create a function handle that will be called later to get the next point if isinstance(next_guess_method, str): @@ -110,12 +115,12 @@ def create_next_guess( ) elif callable(next_guess_method): - raise Exception( + raise NotImplementedError( 'Passing function handles for computation of next ' 'profiling point is not yet supported.' ) else: - raise Exception('Unsupported input for next_guess_method.') + raise ValueError('Unsupported input for next_guess_method.') # create the profile result object (retrieve global optimum) or append to # existing list of profiles @@ -132,6 +137,10 @@ def create_next_guess( for i_par in profile_index: # only compute profiles for free parameters if i_par in problem.x_fixed_indices: + # log a warning + logger.warning( + f"Parameter {i_par} is fixed and will not be profiled." + ) continue current_profile = result.profile_result.get_profiler_result( diff --git a/pypesto/profile/profile_next_guess.py b/pypesto/profile/profile_next_guess.py index dc792903c..7a2cf5364 100644 --- a/pypesto/profile/profile_next_guess.py +++ b/pypesto/profile/profile_next_guess.py @@ -1,5 +1,5 @@ import copy -from typing import Callable, List, Tuple, Union +from typing import Callable, List, Literal, Tuple, Union import numpy as np @@ -7,13 +7,20 @@ from ..result import ProfilerResult from .options import ProfileOptions +__all__ = ['next_guess', 'fixed_step', 'adaptive_step'] + def next_guess( x: np.ndarray, par_index: int, - par_direction: int, + par_direction: Literal[1, -1], profile_options: ProfileOptions, - update_type: str, + update_type: Literal[ + 'fixed_step', + 'adaptive_step_order_0', + 'adaptive_step_order_1', + 'adaptive_step_regression', + ], current_profile: ProfilerResult, problem: Problem, global_opt: float, @@ -31,11 +38,14 @@ def next_guess( par_index: The index of the parameter of the current profile. par_direction: - The direction, in which the profiling is done (1 or -1). + The direction, in which the profiling is done (``1`` or ``-1``). profile_options: Various options applied to the profile optimization. update_type: - Type of update for next profile point. + Type of update for next profile point: + ``fixed_step`` (see :func:`fixed_step`), + ``adaptive_step_order_0``, ``adaptive_step_order_1``, or ``adaptive_step_regression`` + (see :func:`adaptive_step`). current_profile: The profile which should be computed. problem: @@ -52,15 +62,16 @@ def next_guess( return fixed_step( x, par_index, par_direction, profile_options, problem ) - elif update_type == 'adaptive_step_order_0': + + if update_type == 'adaptive_step_order_0': order = 0 elif update_type == 'adaptive_step_order_1': order = 1 elif update_type == 'adaptive_step_regression': order = np.nan else: - raise Exception( - 'Unsupported update_type for ' 'create_next_startpoint.' + raise ValueError( + f'Unsupported `update_type` {update_type} for `next_guess`.' ) return adaptive_step( @@ -78,12 +89,15 @@ def next_guess( def fixed_step( x: np.ndarray, par_index: int, - par_direction: int, + par_direction: Literal[1, -1], options: ProfileOptions, problem: Problem, ) -> np.ndarray: """Most simple method to create the next guess. + Computes the next point based on the fixed step size given by + ``default_step_size`` in :class:`ProfileOptions`. + Parameters ---------- x: @@ -91,7 +105,7 @@ def fixed_step( par_index: The index of the parameter of the current profile par_direction: - The direction, in which the profiling is done (1 or -1) + The direction, in which the profiling is done (``1`` or ``-1``) options: Various options applied to the profile optimization. problem: @@ -119,7 +133,7 @@ def fixed_step( def adaptive_step( x: np.ndarray, par_index: int, - par_direction: int, + par_direction: Literal[1, -1], options: ProfileOptions, current_profile: ProfilerResult, problem: Problem, @@ -148,9 +162,9 @@ def adaptive_step( global_opt: log-posterior value of the global optimum order: - Specifies the precise algorithm for extrapolation: can be 0 ( - just one parameter is updated), 1 (last two points used to - extrapolate all parameters), and np.nan (indicates that a more + Specifies the precise algorithm for extrapolation: can be ``0`` ( + just one parameter is updated), ``1`` (last two points used to + extrapolate all parameters), and ``np.nan`` (indicates that a more complex regression should be used) Returns @@ -194,14 +208,12 @@ def clip_to_bounds(step_proposal): # check whether we must make a minimum step anyway, since we're close to # the next bound min_delta_x = x[par_index] + par_direction * options.min_step_size - if par_direction == -1: - if min_delta_x < problem.lb_full[par_index]: - step_length = problem.lb_full[par_index] - x[par_index] - return x + step_length * delta_x_dir - else: - if min_delta_x > problem.ub_full[par_index]: - step_length = problem.ub_full[par_index] - x[par_index] - return x + step_length * delta_x_dir + if par_direction == -1 and (min_delta_x < problem.lb_full[par_index]): + step_length = problem.lb_full[par_index] - x[par_index] + return x + step_length * delta_x_dir + elif par_direction == 1 and (min_delta_x > problem.ub_full[par_index]): + step_length = problem.ub_full[par_index] - x[par_index] + return x + step_length * delta_x_dir # parameter extrapolation function def par_extrapol(step_length): @@ -250,37 +262,19 @@ def par_extrapol(step_length): next_obj = problem.objective(problem.get_reduced_vector(next_x)) # iterate until good step size is found - if next_obj_target < next_obj: - # The step is rather too long - return do_line_seach( - next_x, - step_size_guess, - 'decrease', - par_extrapol, - next_obj, - next_obj_target, - clip_to_minmax, - clip_to_bounds, - par_index, - problem, - options, - ) - - else: - # The step is rather too short - return do_line_seach( - next_x, - step_size_guess, - 'increase', - par_extrapol, - next_obj, - next_obj_target, - clip_to_minmax, - clip_to_bounds, - par_index, - problem, - options, - ) + return do_line_search( + next_x, + step_size_guess, + "decrease" if next_obj_target < next_obj else "increase", + par_extrapol, + next_obj, + next_obj_target, + clip_to_minmax, + clip_to_bounds, + par_index, + problem, + options, + ) def handle_profile_history( @@ -323,10 +317,6 @@ def handle_profile_history( last_delta_x = ( current_profile.x_path[:, -1] - current_profile.x_path[:, -2] ) - step_size_guess = np.abs( - current_profile.x_path[par_index, -1] - - current_profile.x_path[par_index, -2] - ) delta_x_dir = last_delta_x / step_size_guess elif np.isnan(order): # compute the regression polynomial for parameter extrapolation @@ -359,7 +349,7 @@ def get_reg_polynomial( for i_par in range(problem.dim_full): if i_par in problem.x_fixed_indices: # if we meet the current profiling parameter or a fixed parameter, - # there is nothing to do, so pass an np.nan + # there is nothing to do, so pass a np.nan reg_par.append(np.nan) else: # Do polynomial interpolation of profile path @@ -387,10 +377,10 @@ def get_reg_polynomial( return reg_par -def do_line_seach( +def do_line_search( next_x: np.ndarray, step_size_guess: float, - direction: str, + direction: Literal['increase', 'decrease'], par_extrapol: Callable, next_obj: float, next_obj_target: float, @@ -430,21 +420,19 @@ def do_line_seach( if hit_bounds: return next_x - else: - # compute new objective value - problem.fix_parameters(par_index, next_x[par_index]) - last_obj = copy.copy(next_obj) - next_obj = problem.objective(problem.get_reduced_vector(next_x)) - - # check for root crossing and compute correct step size in case - if direction == 'decrease' and next_obj_target >= next_obj: - return next_x_interpolate( - next_obj, last_obj, next_x, last_x, next_obj_target - ) - elif direction == 'increase' and next_obj_target <= next_obj: - return next_x_interpolate( - next_obj, last_obj, next_x, last_x, next_obj_target - ) + + # compute new objective value + problem.fix_parameters(par_index, next_x[par_index]) + last_obj = copy.copy(next_obj) + next_obj = problem.objective(problem.get_reduced_vector(next_x)) + + # check for root crossing and compute correct step size in case + if (direction == 'decrease' and next_obj_target >= next_obj) or ( + direction == 'increase' and next_obj_target <= next_obj + ): + return next_x_interpolate( + next_obj, last_obj, next_x, last_x, next_obj_target + ) def next_x_interpolate( @@ -467,12 +455,15 @@ def clip( lower: Union[float, np.ndarray], upper: Union[float, np.ndarray], ) -> Union[float, np.ndarray]: - """Restrict a scalar or a vector to given bounds.""" + """Restrict a scalar or a vector to given bounds. + + ``vector_guess`` is modified in-place if it is an array. + """ if isinstance(vector_guess, float): - vector_guess = np.max([np.min([vector_guess, upper]), lower]) - else: - for i_par, i_guess in enumerate(vector_guess): - vector_guess[i_par] = np.max( - [np.min([i_guess, upper[i_par]]), lower[i_par]] - ) + return np.max([np.min([vector_guess, upper]), lower]) + + for i_par, i_guess in enumerate(vector_guess): + vector_guess[i_par] = np.max( + [np.min([i_guess, upper[i_par]]), lower[i_par]] + ) return vector_guess diff --git a/pypesto/profile/walk_along_profile.py b/pypesto/profile/walk_along_profile.py index 909863cd8..729bb2c35 100644 --- a/pypesto/profile/walk_along_profile.py +++ b/pypesto/profile/walk_along_profile.py @@ -62,14 +62,15 @@ def walk_along_profile( x_now = current_profile.x_path[:, -1] # check if the next profile point needs to be computed - if options.whole_path: - stop_profile = ( - x_now[i_par] * par_direction >= problem.ub_full[[i_par]] - ) + # ... check bounds + if par_direction == -1: + stop_profile = x_now[i_par] <= problem.lb_full[[i_par]] + elif par_direction == 1: + stop_profile = x_now[i_par] >= problem.ub_full[[i_par]] else: - stop_profile = ( - x_now[i_par] * par_direction >= problem.ub_full[[i_par]] - ) or (current_profile.ratio_path[-1] < options.ratio_min) + raise AssertionError("par_direction must be -1 or 1") + if not options.whole_path: + stop_profile |= current_profile.ratio_path[-1] < options.ratio_min if stop_profile: break diff --git a/pypesto/result/optimize.py b/pypesto/result/optimize.py index c77a57460..30d08454d 100644 --- a/pypesto/result/optimize.py +++ b/pypesto/result/optimize.py @@ -126,7 +126,7 @@ def __getattr__(self, key): __setattr__ = dict.__setitem__ __delattr__ = dict.__delitem__ - def summary(self, full: bool = False) -> str: + def summary(self, full: bool = False, show_hess: bool = True) -> str: """ Get summary of the object. @@ -134,6 +134,8 @@ def summary(self, full: bool = False) -> str: ---------- full: If True, print full vectors including fixed parameters. + show_hess: + If True, display the Hessian of the result. Returns ------- @@ -164,7 +166,7 @@ def summary(self, full: bool = False) -> str: f"* final gradient value: " f"{self.grad if full else self.grad[self.free_indices]}\n" ) - if self.hess is not None: + if self.hess is not None and show_hess: hess = self.hess if not full: hess = self.hess[np.ix_(self.free_indices, self.free_indices)] @@ -239,6 +241,7 @@ def summary( disp_best: bool = True, disp_worst: bool = False, full: bool = False, + show_hess: bool = True, ) -> str: """ Get summary of the object. @@ -251,6 +254,8 @@ def summary( Whether to display a detailed summary of the worst run. full: If True, print full vectors including fixed parameters. + show_hess: + If True, display the Hessian of the OptimizerResult. """ if len(self) == 0: return "## Optimization Result \n\n*empty*\n" @@ -295,7 +300,8 @@ def summary( ) if disp_best: summary += ( - f"\nA summary of the best run:\n\n{self[0].summary(full)}" + f"\nA summary of the best run:\n\n" + f"{self[0].summary(full, show_hess=show_hess)}" ) if disp_worst: summary += ( diff --git a/pypesto/result/result.py b/pypesto/result/result.py index a2ba81dac..e85bbcde4 100644 --- a/pypesto/result/result.py +++ b/pypesto/result/result.py @@ -36,7 +36,7 @@ def __init__( self.profile_result = profile_result or ProfileResult() self.sample_result = sample_result or SampleResult() - def summary(self, full: bool = False) -> str: + def summary(self, full: bool = False, show_hess: bool = True) -> str: """ Get summary of the object. @@ -44,5 +44,7 @@ def summary(self, full: bool = False) -> str: ---------- full: If True, print full vectors including fixed parameters. + show_hess: + If True, display the Hessian of the OptimizeResult. """ - return self.optimize_result.summary(full=full) + return self.optimize_result.summary(full=full, show_hess=show_hess) diff --git a/pypesto/select/model_problem.py b/pypesto/select/model_problem.py index c1775f0b9..3718ab515 100644 --- a/pypesto/select/model_problem.py +++ b/pypesto/select/model_problem.py @@ -32,7 +32,7 @@ class ModelProblem: calibrated. minimize_options: Keyword argument options that will be passed on to - `pypesto.optimize.minimize`. + :func:`pypesto.optimize.minimize`. minimize_result: A pyPESTO result with an optimize result. model: @@ -40,13 +40,13 @@ class ModelProblem: model_id: The ID of the PEtab Select model. objective_customizer: - A method that takes a `pypesto.objective.AmiciObjective` as + A method that takes a :class:`pypesto.objective.AmiciObjective` as input, and makes changes to the objective in-place. postprocessor: - A method that takes a `ModelSelectionProblem` as input. For + A method that takes a :class:`ModelSelectionProblem` as input. For example, this can be a function that generates a waterfall plot. This postprocessor is applied at the end of the - `ModelProblem.set_result` method. + :meth:`ModelProblem.set_result` method. pypesto_problem: The pyPESTO problem for the model. valid: @@ -75,9 +75,9 @@ def __init__( Parameters ---------- autorun: - If `False`, the model parameters will not be estimated. Allows - users to manually call pypesto.minimize with custom options, - then`set_result()`. + If ``False``, the model parameters will not be estimated. Allows + users to manually call ``pypesto.minimize`` with custom options, + then :meth:`set_result()`. TODO: constraints """ diff --git a/pypesto/select/postprocessors.py b/pypesto/select/postprocessors.py index 9896f62de..4e904344c 100644 --- a/pypesto/select/postprocessors.py +++ b/pypesto/select/postprocessors.py @@ -10,6 +10,14 @@ from ..C import TYPE_POSTPROCESSOR from .model_problem import ModelProblem +__all__ = [ + 'model_id_binary_postprocessor', + 'multi_postprocessor', + 'report_postprocessor', + 'save_postprocessor', + 'waterfall_plot_postprocessor', +] + def multi_postprocessor( problem: ModelProblem, @@ -17,7 +25,7 @@ def multi_postprocessor( ): """Combine multiple postprocessors into a single postprocessor. - See `save_postprocessor` for usage hints. + See :meth:`save_postprocessor` for usage hints. Parameters ---------- @@ -25,7 +33,7 @@ def multi_postprocessor( A model selection :class:`ModelProblem` that has been optimized. postprocessors: A list of postprocessors, which will be sequentially applied to the - optimized model `problem`. + optimized model ``problem``. The location where results will be stored. """ for postprocessor in postprocessors: @@ -38,7 +46,7 @@ def waterfall_plot_postprocessor( ): """Produce a waterfall plot. - See `save_postprocessor` for usage hints and argument documentation. + See :meth:`save_postprocessor` for usage hints and argument documentation. """ visualize.waterfall(problem.minimize_result) plot_output_path = Path(output_path) / (problem.model.model_hash + ".png") @@ -53,9 +61,11 @@ def save_postprocessor( """Save the parameter estimation result. When used, first set the output folder for results, e.g. with - `functools.partial`. This is because postprocessors should take only a + :func:`functools.partial`. This is because postprocessors should take only a single parameter: an optimized model. + .. code-block:: python + from functools import partial output_path = 'results' pp = partial(save_postprocessor, output_path=output_path) @@ -71,7 +81,7 @@ def save_postprocessor( output_path: The location where output will be stored. use_model_hash: - Whether the filename should use the model hash. Defaults to `False`, + Whether the filename should use the model hash. Defaults to ``False``, in which case the model ID is used instead. """ stem = problem.model.model_id @@ -86,14 +96,14 @@ def save_postprocessor( def model_id_binary_postprocessor(problem: ModelProblem): """Change a PEtab Select model ID to a binary string. - Changes the model ID in-place to be a string like `M_ijk`, where - `i`, `j`, `k`, etc. are `1` if the parameter in that position is estimated, - or `0` if the parameter is fixed. + Changes the model ID in-place to be a string like ``M_ijk``, where + ``i``, ``j``, ``k``, etc. are ``1`` if the parameter in that position is estimated, + or ``0`` if the parameter is fixed. - To ensure that other postprocessors (e.g. `report_postprocessor`) use this - new model ID, when in use with a `multi_postprocessor`, ensure this is - before the other postprocessors in the `postprocessors` argument of - `multi_postprocessor`. + To ensure that other postprocessors (e.g. :func:`report_postprocessor`) use this + new model ID, when in use with a :func:`multi_postprocessor`, ensure this is + before the other postprocessors in the ``postprocessors`` argument of + :func:`multi_postprocessor`. Parameters ---------- diff --git a/pypesto/select/problem.py b/pypesto/select/problem.py index 969ac1307..8314ac6d0 100644 --- a/pypesto/select/problem.py +++ b/pypesto/select/problem.py @@ -12,19 +12,19 @@ class Problem: """Handles use of a model selection algorithm. Handles model selection. Usage involves initialisation with a model - specifications file, and then calling the `select()` method to perform + specifications file, and then calling the :meth:`select` method to perform model selection with a specified algorithm and criterion. Attributes ---------- calibrated_models: Storage for all calibrated models. A dictionary, where keys are - model hashes, and values are `petab_select.Model` objects. + model hashes, and values are :class:`petab_select.Model` objects. newly_calibrated_models: Storage for models that were calibrated in the previous iteration of - model selection. Same type as `calibrated_models`. + model selection. Same type as ``calibrated_models``. method_caller: - A `MethodCaller`, used to run a single iteration of a model + A :class:`MethodCaller`, used to run a single iteration of a model selection method. model_postprocessor: A method that is applied to each model after calibration. @@ -53,7 +53,7 @@ def __init__( def create_method_caller(self, **kwargs) -> MethodCaller: """Create a method caller. - `args` and `kwargs` are passed to the `MethodCaller` constructor. + ``kwargs`` are passed to the :class:`MethodCaller` constructor. Returns ------- @@ -117,7 +117,7 @@ def select( The result is the selected model for the current run, independent of previous selected models. - `kwargs` are passed to the `MethodCaller` constructor. + ``kwargs`` are passed to the :class:`MethodCaller` constructor. Returns ------- @@ -162,10 +162,10 @@ def select_to_completion( ) -> List[Model]: """Run an algorithm until an exception `StopIteration` is raised. - `kwargs` are passed to the `MethodCaller` constructor. + ``kwargs`` are passed to the :class:`MethodCaller` constructor. - An exception `StopIteration` is raised by - `pypesto.select.method.MethodCaller.__call__` when no candidate models + An exception ``StopIteration`` is raised by + :meth:`pypesto.select.method.MethodCaller.__call__` when no candidate models are found. Returns @@ -218,7 +218,7 @@ def multistart_select( (but then the same model could be repeatedly calibrated, if the calibrations start before any have stopped). - `kwargs` are passed to the `MethodCaller` constructor. + ``kwargs`` are passed to the :class:`MethodCaller` constructor. Parameters ---------- diff --git a/pypesto/version.py b/pypesto/version.py index f9aa3e110..e19434e2e 100644 --- a/pypesto/version.py +++ b/pypesto/version.py @@ -1 +1 @@ -__version__ = "0.3.2" +__version__ = "0.3.3" diff --git a/pypesto/visualize/misc.py b/pypesto/visualize/misc.py index d2fbbe348..739ae5e35 100644 --- a/pypesto/visualize/misc.py +++ b/pypesto/visualize/misc.py @@ -49,7 +49,7 @@ def process_result_list( """ # check how many results were passed single_result = False - legend_error = False + legend_type_error = False if isinstance(results, list): if len(results) == 1: single_result = True @@ -68,6 +68,10 @@ def process_result_list( # create list of legends for later handling if not isinstance(legends, list): legends = [legends] + try: + str(legends[0]) + except TypeError: + legend_type_error = True else: # if more than one result is passed, we use one color per result colors = assign_colors_for_list(len(results), colors) @@ -80,18 +84,19 @@ def process_result_list( legends.append('Result ' + str(i_leg)) else: # legends were passed by user: check length - if isinstance(legends, list): + try: + if isinstance(legends, str): + legends = [legends] if len(legends) != len(results): - legend_error = True - else: - legend_error = True - - # size of legend list and size of results does not match - if legend_error: - raise ValueError( - 'List of results passed and list of labels do ' - 'not have the same length but should. Stopping.' - ) + raise ValueError( + 'List of results passed and list of labels do ' + 'not have the same length.' + ) + except TypeError: + legend_type_error = True + + if legend_type_error: + raise TypeError("Unexpected legend type.") return results, colors, legends diff --git a/pypesto/visualize/select.py b/pypesto/visualize/select.py index 0377fda33..f1980c9b0 100644 --- a/pypesto/visualize/select.py +++ b/pypesto/visualize/select.py @@ -21,7 +21,7 @@ def default_label_maker(model: Model) -> str: def plot_selected_models( selected_models: List[Model], criterion: str = Criterion.AIC, - relative: str = True, + relative: bool = True, fz: int = 14, size: Tuple[float, float] = (5, 4), labels: Dict[str, str] = None, diff --git a/test/base/test_engine.py b/test/base/test_engine.py index c3e5979e5..d4d045c20 100644 --- a/test/base/test_engine.py +++ b/test/base/test_engine.py @@ -36,12 +36,12 @@ def _test_basic(engine): optimizer = pypesto.optimize.ScipyOptimizer(options={'maxiter': 10}) result = pypesto.optimize.minimize( problem=problem, - n_starts=5, + n_starts=2, engine=engine, optimizer=optimizer, progress_bar=False, ) - assert len(result.optimize_result) == 5 + assert len(result.optimize_result) == 2 def test_petab(): @@ -59,7 +59,9 @@ def test_petab(): def _test_petab(engine): petab_importer = pypesto.petab.PetabImporter.from_yaml( os.path.join( - models.MODELS_DIR, "Zheng_PNAS2012", "Zheng_PNAS2012.yaml" + models.MODELS_DIR, + "Boehm_JProteomeRes2014", + "Boehm_JProteomeRes2014.yaml", ) ) objective = petab_importer.create_objective() @@ -79,7 +81,9 @@ def test_deepcopy_objective(): """Test copying objectives (needed for MultiProcessEngine).""" petab_importer = pypesto.petab.PetabImporter.from_yaml( os.path.join( - models.MODELS_DIR, "Zheng_PNAS2012", "Zheng_PNAS2012.yaml" + models.MODELS_DIR, + "Boehm_JProteomeRes2014", + "Boehm_JProteomeRes2014.yaml", ) ) objective = petab_importer.create_objective() @@ -114,7 +118,9 @@ def test_pickle_objective(): """Test serializing objectives (needed for MultiThreadEngine).""" petab_importer = pypesto.petab.PetabImporter.from_yaml( os.path.join( - models.MODELS_DIR, "Zheng_PNAS2012", "Zheng_PNAS2012.yaml" + models.MODELS_DIR, + "Boehm_JProteomeRes2014", + "Boehm_JProteomeRes2014.yaml", ) ) objective = petab_importer.create_objective() diff --git a/test/petab/test_petab_import.py b/test/petab/test_petab_import.py index 5f305a98d..2c56abb64 100644 --- a/test/petab/test_petab_import.py +++ b/test/petab/test_petab_import.py @@ -72,7 +72,28 @@ def test_2_simulate(self): self.assertTrue(np.isfinite(ret)) - def test_3_optimize(self): + def test_3_startpoints(self): + # test startpoint sampling + for obj_edatas, importer in zip(self.obj_edatas, self.petab_importers): + obj = obj_edatas[0] + problem = importer.create_problem(obj) + + # test for original problem + original_dim = problem.dim + startpoints = problem.startpoint_method( + n_starts=2, problem=problem + ) + self.assertEqual(startpoints.shape, (2, problem.dim)) + + # test with fixed parameters + problem.fix_parameters(0, 1) + self.assertEqual(problem.dim, original_dim - 1) + startpoints = problem.startpoint_method( + n_starts=2, problem=problem + ) + self.assertEqual(startpoints.shape, (2, problem.dim)) + + def test_4_optimize(self): # run optimization for obj_edatas, importer in zip(self.obj_edatas, self.petab_importers): obj = obj_edatas[0] diff --git a/test/profile/test_profile.py b/test/profile/test_profile.py index 855af1ada..a1371c948 100644 --- a/test/profile/test_profile.py +++ b/test/profile/test_profile.py @@ -7,6 +7,7 @@ from copy import deepcopy import numpy as np +import pytest from numpy.testing import assert_almost_equal import pypesto @@ -412,3 +413,73 @@ def test_approximate_ci(): # bound value assert np.isclose(lb, -3) assert np.isclose(ub, 9) + + +def test_options_valid(): + """Test ProfileOptions validity checks.""" + # default settings are valid + profile.ProfileOptions() + + # try to set invalid values + with pytest.raises(ValueError): + profile.ProfileOptions(default_step_size=-1) + with pytest.raises(ValueError): + profile.ProfileOptions(default_step_size=1, min_step_size=2) + with pytest.raises(ValueError): + profile.ProfileOptions( + default_step_size=2, + min_step_size=1, + ) + with pytest.raises(ValueError): + profile.ProfileOptions( + min_step_size=2, + max_step_size=1, + ) + + +@pytest.mark.parametrize( + "lb,ub", + [(6 * np.ones(5), 10 * np.ones(5)), (-4 * np.ones(5), 1 * np.ones(5))], +) +def test_gh1165(lb, ub): + """Regression test for https://github.com/ICB-DCM/pyPESTO/issues/1165 + + Check profiles with non-symmetric bounds and whole_path=True span the full parameter domain. + """ + obj = rosen_for_sensi(max_sensi_order=1)['obj'] + + problem = pypesto.Problem( + objective=obj, + lb=lb, + ub=ub, + ) + + optimizer = optimize.ScipyOptimizer(options={'maxiter': 10}) + result = optimize.minimize( + problem=problem, + optimizer=optimizer, + n_starts=2, + progress_bar=False, + ) + # just any parameter + par_idx = 1 + profile.parameter_profile( + problem=problem, + result=result, + optimizer=optimizer, + next_guess_method='fixed_step', + profile_index=[par_idx], + progress_bar=False, + profile_options=profile.ProfileOptions( + min_step_size=0.1, + delta_ratio_max=0.05, + default_step_size=0.5, + ratio_min=0.01, + whole_path=True, + ), + ) + # parameter value of the profiled parameter + x_path = result.profile_result.list[0][par_idx]['x_path'][par_idx, :] + # ensure we cover lb..ub + assert x_path[0] == lb[par_idx], (x_path.min(), lb[par_idx]) + assert x_path[-1] == ub[par_idx], (x_path.max(), ub[par_idx]) diff --git a/test/sample/test_sample.py b/test/sample/test_sample.py index d972f4afa..dc31748e9 100644 --- a/test/sample/test_sample.py +++ b/test/sample/test_sample.py @@ -18,7 +18,7 @@ def gaussian_llh(x): - return float(norm.logpdf(x)) + return float(norm.logpdf(x).item()) def gaussian_problem(): diff --git a/tox.ini b/tox.ini index 9477f90f0..791c0553c 100644 --- a/tox.ini +++ b/tox.ini @@ -29,6 +29,7 @@ envlist = # Base-environment [testenv] +passenv = AMICI_PARALLEL_COMPILE # Sub-environments # inherit settings defined in the base @@ -53,10 +54,10 @@ deps = git+https://github.com/Benchmarking-Initiative/Benchmark-Models-PEtab.git@master\#subdirectory=src/python commands = pytest --cov=pypesto --cov-report=xml --cov-append \ - test/base \ - test/profile \ - test/sample \ - test/visualize \ + test/base --durations=0 \ + test/profile --durations=0 \ + test/sample --durations=0 \ + test/visualize --durations=0 \ -s description = Test basic functionality