This repository has been archived by the owner on Jul 22, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathscorer.py
217 lines (179 loc) · 12.4 KB
/
scorer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import torch
import torch.nn as nn
from models import PretrainedEmbeddings, GAT, CQAttention, SelfAttention, Attention
from utils.generic import masked_softmax
class CommandScorerWithKG(nn.Module):
def __init__(self, word_emb, graph_emb, graph_type, hidden_size,device):
super(CommandScorerWithKG, self).__init__()
self.device = device
self.hidden_size = hidden_size
self.dropout_ratio = 0.0 # *
self.n_heads = 1 # *
self.use_hints = True # *
self.bidirectional = True
self.graph_type = graph_type
n_factor = 2 # command
bi_factor = (2 if self.bidirectional else 1) # hidden size multiplier when bidirectional is used
self.word_embedding = PretrainedEmbeddings(word_emb)
self.word_embedding_size = self.word_embedding.dim # *
self.word_embedding_prj = torch.nn.Linear(self.word_embedding_size, self.hidden_size, bias=False)
if not self.bidirectional:
self.word_hint_prj = torch.nn.Linear(self.hidden_size * 2, self.hidden_size, bias=False)
self.graph_embedding = None
if graph_emb is not None and ('local' in self.graph_type or 'world' in self.graph_type):
self.graph_embedding = PretrainedEmbeddings(graph_emb, True)
self.graph_embedding_size = self.graph_embedding.dim
self.graph_embedding_prj = torch.nn.Linear(self.graph_embedding_size, self.hidden_size, bias=False)
if not self.bidirectional:
self.graph_hint_prj = torch.nn.Linear(self.hidden_size*2, self.hidden_size, bias=False)
# Encoder for th observation
self.encoder_gru = nn.GRU(hidden_size, hidden_size, batch_first=True, bidirectional= self.bidirectional)
# Encoder for the commands
self.cmd_encoder_gru = nn.GRU(hidden_size, hidden_size, batch_first=True, bidirectional= self.bidirectional)
# RNN that keeps track of the encoded state over time
self.state_gru = nn.GRU(hidden_size*bi_factor, hidden_size*bi_factor, batch_first=True)
self.kg_word_encoder_gru = nn.GRU(hidden_size, hidden_size, batch_first=True)
self.kg_graph_encoder_gru = nn.GRU(hidden_size, hidden_size, batch_first=True)
if 'local' in self.graph_type or 'world' in graph_type:
self.attention = CQAttention(block_hidden_dim=hidden_size*bi_factor, dropout=self.dropout_ratio)
self.attention_prj = torch.nn.Linear(hidden_size * bi_factor * 4, hidden_size * bi_factor, bias=False)
if 'world' in self.graph_type:
n_factor += 1
self.worldkg_gat = GAT(hidden_size, hidden_size, self.dropout_ratio, alpha=0.2, nheads=self.n_heads)
self.worldkg_attention_prj = torch.nn.Linear(hidden_size*bi_factor * 4, hidden_size*bi_factor, bias=False)
self.world_self_attention = SelfAttention(hidden_size*bi_factor, hidden_size*bi_factor, self.n_heads, self.dropout_ratio)
if 'local' in graph_type:
n_factor += 1
self.localkg_gat = GAT(hidden_size, hidden_size, self.dropout_ratio, alpha=0.2, nheads=self.n_heads)
self.localkg_attention_prj = torch.nn.Linear(hidden_size * bi_factor * 4, hidden_size * bi_factor, bias=False)
self.local_self_attention = SelfAttention(hidden_size*bi_factor, hidden_size*bi_factor, self.n_heads, self.dropout_ratio)
self.state_hidden = []
self.general_attention = Attention(hidden_size * bi_factor*2,hidden_size * bi_factor) # General attention from [cmd + obs ==> graph_nodes]
self.world_attention = None
self.local_attention = None
self.obs2kg_attention = torch.nn.Linear(hidden_size * bi_factor, hidden_size * bi_factor, bias=False)
self.critic = nn.Linear(hidden_size*bi_factor, 1)
self.att_cmd = nn.Sequential(nn.Linear(hidden_size * bi_factor * n_factor, hidden_size * bi_factor),
nn.ReLU(),
nn.Linear(hidden_size * bi_factor,1))
self.count = 1
def forward(self, obs, commands, local_graph, local_hints, local_adj, world_graph, world_hints, world_adj, **kwargs):
input_length = obs.size(1)
batch_size = obs.size(0)
nb_cmds = commands.size(1)
cmd_selector_input = []
# Observed State
embedded = self.word_embedding(obs) # batch x word x emb_size
embedded = self.word_embedding_prj(embedded) # batch x word x hidden
encoder_output, encoder_hidden = self.encoder_gru(embedded) # encoder_hidden 1/2 x batch x hidden
encoder_hidden = encoder_hidden.permute(1, 0, 2).reshape(encoder_hidden.shape[1], 1, -1) if \
encoder_hidden.shape[0] == 2 else encoder_hidden
if self.state_hidden is None:
self.state_hidden = torch.zeros_like(encoder_hidden)
state_output, state_hidden = self.state_gru(encoder_hidden, self.state_hidden)
self.state_hidden = state_hidden.detach()
value = self.critic(state_output)
state_hidden = state_hidden.transpose(0, 1).contiguous().squeeze(1) # batch x hidden
# Commands/Actions
cmds_embedding = self.word_embedding(commands)
cmds_embedding = self.word_embedding_prj(cmds_embedding)
cmds_embedding = cmds_embedding.view(batch_size * nb_cmds, commands.size(2),
self.hidden_size) # [batch-ncmds] x nentities x hidden_size
_, cmds_encoding = self.cmd_encoder_gru.forward(cmds_embedding) # 1/2 x [batch-ncmds] x hidden
cmds_encoding = cmds_encoding.permute(1, 0, 2).reshape(1, cmds_encoding.shape[1], -1) if \
cmds_encoding.shape[0] == 2 else cmds_encoding
cmds_encoding = cmds_encoding.squeeze(0)
cmds_encoding = cmds_encoding.view(batch_size, nb_cmds, self.hidden_size * (2 if self.bidirectional else 1))
cmd_selector_input.append(cmds_encoding) # batch x cmds x hidden
query_encoding = torch.cat(
[cmds_encoding, torch.stack([state_hidden] * nb_cmds, dim=1)], dim=-1) # batch x cmds x hidden*2
if torch.any(torch.isnan(encoder_hidden)):
print("error")
# Local Graph
localkg_encoding = torch.FloatTensor()
worldkg_encoding = torch.FloatTensor()
if 'local' in self.graph_type and local_graph.nelement() > 0:
# graph # num_nodes x entities
localkg_embedded = self.word_embedding(local_graph) # nodes x entities x hidden+
localkg_embedded = self.word_embedding_prj(localkg_embedded) # nodes x entities x hidden
localkg_embedded = localkg_embedded.mean(1) # nodes x hidden
localkg_embedded = torch.stack([localkg_embedded]*batch_size,0) # batch x nodes x hidden
localkg_encoding = self.localkg_gat(localkg_embedded, local_adj.float())
if self.use_hints:
# Get hint with word_embedding ids tensor
hints_embedded = self.word_embedding(local_hints)
hints_embedded = self.word_embedding_prj(hints_embedded)
_, hint_encoding = self.kg_word_encoder_gru(hints_embedded)
hint_encoding = hint_encoding.squeeze(0)
localkg_encoding = torch.cat(
[localkg_encoding, torch.stack([hint_encoding.squeeze(1)] * local_graph.shape[0], dim=1)], dim=-1)
if not self.bidirectional:
localkg_encoding = self.word_hint_prj(localkg_encoding)
# World Graph
if 'world' in self.graph_type and self.graph_embedding and world_graph.nelement() > 0:
# graph # num_nodes x entities
worldkg_embedded = self.graph_embedding(world_graph) # nodes x entities x hidden+
worldkg_embedded = self.graph_embedding_prj(worldkg_embedded) # nodes x entities x hidden
worldkg_embedded = worldkg_embedded.mean(1) # nodes x hidden
worldkg_embedded = torch.stack([worldkg_embedded]*batch_size,0) # batch x nodes x hidden
worldkg_encoding = self.worldkg_gat(worldkg_embedded, world_adj.float())
if self.use_hints:
# Get hint with graph_embedding ids tensor
hints_embedded = self.graph_embedding(world_hints)
hints_embedded = self.graph_embedding_prj(hints_embedded)
_, hint_encoding = self.kg_graph_encoder_gru(hints_embedded)
hint_encoding = hint_encoding.squeeze(0)
worldkg_encoding = torch.cat(
[worldkg_encoding, torch.stack([hint_encoding.squeeze(1)] * world_graph.shape[0], dim=1)], dim=-1)
if not self.bidirectional:
worldkg_encoding = self.graph_hint_prj(worldkg_encoding)
if 'local' in self.graph_type and localkg_encoding.nelement() > 0: # graphtype = local
mask = torch.ones((batch_size,1), device=self.device, requires_grad=False).byte()
state_hidden = state_hidden.unsqueeze(1) # batch x 1 x hidden
obs_encoding = self.attention(state_hidden, localkg_encoding, mask, local_adj.sum(dim=2) > 0)
obs_encoding = self.attention_prj(obs_encoding)
localkg_encoding = self.attention(localkg_encoding, state_hidden, local_adj.sum(dim=2) > 0, mask)
localkg_encoding = self.localkg_attention_prj(localkg_encoding)
state_hidden = obs_encoding.squeeze(1) # batch x hidden
local_nodes = local_adj.sum(dim=2)
m1 = local_nodes.unsqueeze(-1)
m2 = local_nodes.unsqueeze(1)
mask_squared = torch.bmm(m1, m2).byte()
local2obs_encoding, _ = self.local_self_attention(
localkg_encoding, mask_squared, localkg_encoding, localkg_encoding)
localkg_representation, local_attention = self.general_attention(query_encoding, local2obs_encoding)
self.local_attention = local_attention.clone().detach()
localkg_representation = localkg_representation.squeeze(1)
cmd_selector_input.append(localkg_representation)
elif 'world' in self.graph_type and worldkg_encoding.nelement() > 0: # graphtype = world
mask = torch.ones((batch_size, 1), device=self.device, requires_grad=False).byte()
state_hidden = state_hidden.unsqueeze(1)
obs_encoding = self.attention(state_hidden, worldkg_encoding,mask,world_adj.sum(dim=2)>0)
obs_encoding = self.attention_prj(obs_encoding)
worldkg_encoding = self.attention(worldkg_encoding, state_hidden,world_adj.sum(dim=2)>0, mask)
worldkg_encoding = self.worldkg_attention_prj(worldkg_encoding)
state_hidden = obs_encoding.squeeze(1) # batch x hidden
world_nodes = world_adj.sum(dim=2) # batch x nworld
m1 = world_nodes.unsqueeze(-1)
m2 = world_nodes.unsqueeze(1)
mask_squared = torch.bmm(m1, m2).byte()
world2obs_encoding, _ = self.world_self_attention(
worldkg_encoding, mask_squared, worldkg_encoding, worldkg_encoding)
worldkg_representation, world_attention = self.general_attention(query_encoding, world2obs_encoding)
self.world_attention = world_attention.clone().detach()
cmd_selector_input.append(worldkg_representation)
self.count += 1
# Concatenate the observed state (required) and command (required) and scored command history (optional) encodings
# with kg-based encodings for commnads (optional) and scored command history (optional).
# State rpresentaton for all types of agents
cmd_selector_input.append(torch.stack([state_hidden] * nb_cmds, 1)) # batch x cmds x hidden
cmd_selector_new_input = torch.cat(cmd_selector_input, dim=-1) # batch x ncmds x [hidden*nfactor]
# Compute one score per command.
scores = self.att_cmd(cmd_selector_new_input).squeeze(-1) # batch x ncmds
probs = masked_softmax(scores, commands.sum(dim=2) > 0, dim=1) # batch x cmds
index = probs.multinomial(num_samples=1).unsqueeze(0) # batch x indx
return scores, index, value
def reset_hidden(self, batch_size):
self.state_hidden = torch.zeros(1, batch_size, self.hidden_size * (2 if self.bidirectional else 1), device=self.device)
def reset_hidden_per_batch(self, batch_id):
self.state_hidden[:,batch_id,:] = torch.zeros(1, 1, self.hidden_size * (2 if self.bidirectional else 1), device=self.device)