This repository has been archived by the owner on Jul 22, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathapp.py
444 lines (375 loc) · 17.7 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
from flask import Flask, render_template
from bs4 import BeautifulSoup
import requests
import time
from random import randint
import ibm_watson
from ibm_watson import NaturalLanguageUnderstandingV1
from ibm_watson.natural_language_understanding_v1 \
import Features, EntitiesOptions, KeywordsOptions, SemanticRolesOptions, SentimentOptions, EmotionOptions, ConceptsOptions, CategoriesOptions
import json
import sys
import time
import ast
import os
import operator
from functools import reduce
from io import StringIO
import numpy as np
from os.path import join, dirname
import requests
import re
import nltk
from nltk import word_tokenize,sent_tokenize,ne_chunk
app = Flask(__name__)
natural_language_understanding = NaturalLanguageUnderstandingV1(
version='2018-08-14',
)
@app.route("/")
def indexpage():
news_details=dict()
result = '{"name":"Bank EWS","children":[{"name":"Management Default","children":[]},{"name":"Management Change","children":[]},{"name":"Credit Rating","children":[]},{"name":"Financial Analysis","children":[]},{"name":"Capital Adequacy","children":[]},{"name":"Legal Action","children":[]},{"name":"Strike","children":[]},{"name":"Loan Servicing","children":[]},{"name":"Share Price Deviation","children":[]},{"name":"Auditors Change","children":[]},{"name":"Terminal Disablement","children":[]},{"name":"Security Related","children":[]}]}'
config_file = open("config.json","r")
config = config_file.read()
news_details,rel=discover_news_related_entities('director resign','Management Change',news_details,result, config, 'NO','NO')
news_details,rel=discover_news_related_entities('loan default','Management Default',news_details,result, config, 'NO','NO')
news_details,rel=discover_news_related_entities('rating downgrade','Credit Rating',news_details,json.dumps(rel), config, 'NO','NO')
news_details,rel=discover_news_related_entities('worker or employee strike','Strike',news_details,json.dumps(rel), config, 'NO','NO')
news_details,rel=discover_news_related_entities('stocks news','Share Price Deviation',news_details,json.dumps(rel), config, 'NO','NO')
#msg=(open("client_network.json","r")).read()
#msg=ast.literal_eval(msg)
#print(msg['children'])
client_network_list= extract_client_info(rel)
return render_template("client_network_banking.html", news_details = news_details, client_details= client_network_list)
def DisplayHtml(htmlText):
htmlTxt = HTML(htmlText)
display(htmlTxt)
def scrape_news_summaries(s):
time.sleep(randint(0, 2)) # relax and don't let google be angry
r = requests.get("https://www.google.co.in/search?q="+s+"&num=100&cr=countryIN&dcr=0&source=lnms&tbm=nws&sa=X&ved=0ahUKEwim2-36-OfXAhVIs48KHX1fABsQ_AUICygC&biw=1280&bih=623")
print(r.status_code) # Print the status code
content = r.text
news_summaries = []
news_links = []
soup = BeautifulSoup(content, "html.parser")
for item in soup.find_all('h3',{'class':'r'}):
for post in item.find_all('a'):
news_summaries.append(post.text)
news_links.append(post)
return news_summaries,news_links
def scrape_stocknews_summaries(s):
time.sleep(randint(0, 2)) # relax and don't let google be angry
r = requests.get("https://www.indiainfoline.com/top-news")
print(r.status_code) # Print the status code
content = r.text
news_summaries = []
news_links = []
soup = BeautifulSoup(content, "html.parser")
for item in soup.find_all('p',{'class':'heading'}):
for post in item.find_all('a'):
news_summaries.append(post.text)
news_links.append(post)
return news_summaries,news_links
def discover_news_related_entities(searchterm,eventType,res,Eventsjson,configjson,refeshValue,verboseFlag):
""" Extract news from popular websites
"""
news_file_name = "newsfile_"+eventType+".txt"
news_entity_file_name = "newsentityfile_"+eventType+".txt"
news_link_file_name = "newslinkfile_"+eventType+".txt"
newsfile = open(news_file_name,"w")
linkfile = open(news_link_file_name,"w")
if(eventType == 'Share Price Deviation'):
l = scrape_stocknews_summaries(searchterm)
else:
l = scrape_news_summaries(searchterm)
res[eventType]= dict(zip(l[0],l[1]))
for n in l[0]:
regexstr = '[ ][\.][\.][\.]'
cleantext = re.sub(regexstr,'',n)
newsfile.write(cleantext+'\n')
newsfile.close()
for m in l[1]:
linkfile.write(str(m)+'\n')
linkfile.close()
""" Find entities in news items
"""
news_file = open(news_file_name,"r")
news_entity_file = open(news_entity_file_name,"w")
newsText = news_file.read()
'''print ('============= NEWS TEXT===============')
print(newsText)
print ('======================================')'''
nluresponse = analyze_using_NLU(newsText)
'''print ('==============NLU RESPONSE==============')
print(nluresponse)
print ('=========================================')'''
#print ('==============ENTITY TEXT==============')
disambiguated_text = disambiguate_entities(newsText,nluresponse,configjson,verboseFlag)
#print(disambiguated_text)
#print ('=========================================')
news_entity_file.write(disambiguated_text)
news_file.close()
news_entity_file.close()
""" Find events and its related entities in news items
"""
news_file = open(news_file_name,"r")
newsText = news_file.read()
relationships=[]
disambiguated_entity_file = open(news_entity_file_name,"r")
entityText = disambiguated_entity_file.read()
links_file = open(news_link_file_name,"r")
linksText = links_file.read()
resultjson = json.loads(Eventsjson)
relationships = extract_event_related_entities(eventType,newsText,entityText,linksText,configjson,resultjson,verboseFlag)
return res,relationships
def extract_event_related_entities(evtType,newstext,entitytext,linkstext,config,relations,verboseValue):
""" Extract entity relationships in a sentence
"""
sentenceList = split_sentences(entitytext)
newsList = split_sentences(newstext)
nlinkList = split_sentences(linkstext)
configjson = json.loads(config)
for event_type in relations['children']:
if event_type['name'] == evtType:
event_List = event_type['children']
for indx,sentences in enumerate(sentenceList):
if verboseValue == 'YES':
print ('>> '+sentences+' <<')
for rules in configjson['configuration']['relations']['rules']:
if (rules['type'] == 'd_regex'):
for regex in rules['d_regex']:
if ('event' in regex) and (regex['event'] == evtType):
if verboseValue == 'YES':
print ('EVENT REGEX:',regex)
regextags = regex_tagging(regex['tag'],regex['pattern'],sentences)
if verboseValue == 'YES':
print(regextags)
if (len(regextags)>0):
if verboseValue == 'YES':
print("EVENT")
print("INDEX",indx)
print("NEWS ITEM",newsList[indx])
print("LINK",nlinkList[indx])
for events in regextags:
if verboseValue == 'YES':
print(events)
newEvent = {"name": newsList[indx],"children": [ ],"sentence":sentences,"newslink":nlinkList[indx],"status": ''}
if verboseValue == 'YES':
print("EVENT JSON:",newEvent)
event_List.append(newEvent)
for entity in regex['related_entity']:
if (entity['type'] == 'd_regex'):
if verboseValue == 'YES':
print(entity['pattern'])
entitytags = regex_tagging(entity['tag'],entity['pattern'],sentences)
if (len(entitytags)>0):
if verboseValue == 'YES':
print("ENTITY")
for words in entitytags:
newEntity = {"name": words,"status": entity['status']}
event_List[-1]['children'].append(newEntity)
if(entity['status']=='Verified'):
event_List[-1]['status']= entity['status']
if verboseValue == 'YES':
print(event_List[0])
if verboseValue == 'YES':
print(relations)
return relations
def disambiguate_entities(text,NLUresponse,config,verboseValue):
""" Resolve disambiguity in the text using entities and entity resolution performed using Watson NLU
"""
name_tagged_text = []
taggedtext = text
configjson = json.loads(config)
sentenceList = split_sentences(taggedtext)
for sentences in sentenceList:
tokens = split_into_tokens(sentences)
postags = POS_tagging(tokens)
if verboseValue == 'YES':
print(postags)
name_list = chunk_tagging('NAME','NAME:{<NNP>+}',postags)
for names in name_list:
if verboseValue == 'YES':
print('Adding NAME-',names)
name_tagged_text.append(names)
if verboseValue == 'YES':
print('NAMES :',name_tagged_text)
if (NLUresponse == ''):
if verboseValue == 'YES':
print('NO JSON')
response = analyze_using_NLU(text)
else:
if verboseValue == 'YES':
print('YES JSON')
response = NLUresponse
responsejson = json.loads(str(response['results']))
for stages in configjson['configuration']['classification']['stages']:
if verboseValue == 'YES':
print('Stage - Performing ' + stages['name']+':')
for steps in stages['steps']:
if verboseValue == 'YES':
print(' Step - ' + steps['type']+':')
if (steps['type'] == 'keywords'):
for keyword in steps['keywords']:
for word in sentenceList:
wordtag = keyword_tagging(keyword['tag'],keyword['text'],word)
if(wordtag != 'UNKNOWN'):
if verboseValue == 'YES':
print(' '+keyword['tag']+':'+wordtag)
augument_NLUResponse(responsejson,'entities',wordtag,keyword['tag'])
elif(steps['type'] == 'd_regex'):
for regex in steps['d_regex']:
for word in sentenceList:
regextags = regex_tagging(regex['tag'],regex['pattern'],word)
if (len(regextags)>0):
for words in regextags:
if verboseValue == 'YES':
print(' '+regex['tag']+':'+words)
augument_NLUResponse(responsejson,'entities',words,regex['tag'])
elif(steps['type'] == 'chunking'):
for chunk in steps['chunk']:
chunktags = chunk_tagging(chunk['tag'],chunk['pattern'],postags)
if (len(chunktags)>0):
for words in chunktags:
if verboseValue == 'YES':
print(' '+chunk['tag']+':'+words)
augument_NLUResponse(responsejson,'entities',words,chunk['tag'])
else:
if verboseValue == 'YES':
print('UNKNOWN STEP')
for entities in responsejson['result']['entities']:
entities['text']=entities['text'].replace(")","")
regexstr = entities['text']+'(?!>)'
print(entities['text'], regexstr)
taggedtext = re.sub(regexstr,'<'+entities['type']+':'+entities['text']+'>',taggedtext)
for roles in responsejson['result']['semantic_roles']:
if 'entities' not in roles['subject']:
if verboseValue == 'YES':
print('NO ENTITY')
else:
for entity in roles['subject']['entities']:
if 'disambiguation' not in entity:
if verboseValue == 'YES':
print('NO DISAMBIGUATION')
else:
regexstr = roles['subject']['text']+'(?!>)'
regex = re.compile(regexstr, re.IGNORECASE)
taggedtext = re.sub(regexstr,'<'+entity['type']+':'+entity['text']+'>',taggedtext)
for name in name_tagged_text:
regexstr = name+'(?!>)'
regex = re.compile(regexstr, re.IGNORECASE)
taggedtext = re.sub(regexstr,'<NAME:'+name+'>',taggedtext)
if verboseValue == 'YES':
print(taggedtext)
return taggedtext
def split_sentences(text):
""" Split text into sentences.
"""
sentence_delimiters = re.compile(u'[\n]')
sentences = sentence_delimiters.split(text)
return sentences
def split_into_tokens(text):
""" Split text into tokens.
"""
tokens = nltk.word_tokenize(text)
return tokens
def POS_tagging(text):
""" Generate Part of speech tagging of the text.
"""
POSofText = nltk.tag.pos_tag(text)
return POSofText
def chunk_tagging(tag,chunk,text):
""" Tag the text using chunking.
"""
parsed_cp = nltk.RegexpParser(chunk)
pos_cp = parsed_cp.parse(text)
chunk_list=[]
for root in pos_cp:
if isinstance(root, nltk.tree.Tree):
if root.label() == tag:
chunk_word = ''
for child_root in root:
chunk_word = chunk_word +' '+ child_root[0]
chunk_list.append(chunk_word)
return chunk_list
def keyword_tagging(tag,tagtext,text):
""" Tag the text matching keywords.
"""
if (text.lower().find(tagtext.lower()) != -1):
return text[text.lower().find(tagtext.lower()):text.lower().find(tagtext.lower())+len(tagtext)]
else:
return 'UNKNOWN'
def augument_NLUResponse(responsejson,updateType,text,tag):
""" Update the NLU response JSON with augumented classifications.
"""
if(updateType == 'keyword'):
if not any(d.get('text', None) == text for d in responsejson['result']['keywords']):
responsejson['keywords'].append({"text":text,"relevance":0.5})
else:
print('-----response-----')
print(responsejson)
if not any(d.get('text', None) == text for d in responsejson['result']['entities']):
responsejson['result']['entities'].append({"type":tag,"text":text,"relevance":0.5,"count":1})
def regex_tagging(tag,regex,text):
""" Tag the text matching REGEX.
"""
p = re.compile(regex, re.IGNORECASE)
matchtext = p.findall(text)
regex_list=[]
if (len(matchtext)>0):
for regword in matchtext:
regex_list.append(regword)
return regex_list
def analyze_using_NLU(analysistext):
""" Extract results from Watson Natural Language Understanding for each news item
"""
res=dict()
response = natural_language_understanding.analyze(
text=analysistext,
features=Features(
sentiment=SentimentOptions(),
entities=EntitiesOptions(),
keywords=KeywordsOptions(),
emotion=EmotionOptions(),
concepts=ConceptsOptions(),
categories=CategoriesOptions(),
semantic_roles=SemanticRolesOptions()))
res['results']=response
return res
def extract_client_info(msg):
""" Builds json to send to the HTML page
"""
client_network_list=list()
for m in msg['children']:
for k,v in m.items():
'''print(m['name'])
print("-------------------------------------------")'''
for x in m['children']:
client_network=dict()
client_network['Event_Type']=m['name']
#print(x['newslink'])
if "<a" in x['newslink']:
if (client_network['Event_Type'] != 'Share Price Deviation'):
soup=BeautifulSoup(x['newslink'], 'lxml')
mylink = soup.find('a')
trim=mylink.attrs['href']
trim=trim.split('/url?q=')[1]
mylink.attrs['href']=trim
client_network['href']= str(mylink)
else:
soup=BeautifulSoup(x['newslink'], 'lxml')
mylink = soup.find('a')
trim=mylink.attrs['href']
trim='https://www.indiainfoline.com/top-news'+trim
mylink.attrs['href']=trim
client_network['href']= str(mylink)
client_network['news_summary']=x['name']
clients=list()
for c in x['children']:
clients.append(c['name'])
client_network['Client_Names']=clients
client_network_list.append(client_network)
return client_network_list
port = os.getenv('VCAP_APP_PORT', '8080')
if __name__ == "__main__":
app.run(host='0.0.0.0', port=int(port))