-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlogic.py
946 lines (834 loc) · 40.6 KB
/
logic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
# Simple logical inference system: resolution and model checking for first-order logic.
# @author Percy Liang
import collections
# Recursively apply str inside map
def rstr(x):
if isinstance(x, tuple): return str(tuple(map(rstr, x)))
if isinstance(x, list): return str(list(map(rstr, x)))
if isinstance(x, set): return str(set(map(rstr, x)))
if isinstance(x, dict):
newx = {}
for k, v in list(x.items()):
newx[rstr(k)] = rstr(v)
return str(newx)
return str(x)
class Expression:
# Helper functions used by subclasses.
def ensureType(self, arg, wantedType):
if not isinstance(arg, wantedType):
raise Exception('%s: wanted %s, but got %s' % (self.__class__.__name__, wantedType, arg))
return arg
def ensureFormula(self, arg): return self.ensureType(arg, Formula)
def ensureFormulas(self, args):
for arg in args: self.ensureFormula(arg)
return args
def isa(self, wantedType): return isinstance(self, wantedType)
def join(self, args): return ','.join(str(arg) for arg in args)
def __eq__(self, other): return str(self) == str(other)
def __hash__(self): return hash(str(self))
# Cache the string to be more efficient
def __repr__(self):
if not self.strRepn: self.strRepn = self.computeStrRepn()
return self.strRepn
# A Formula represents a truth value.
class Formula(Expression): pass
# A Term coresponds to an object.
class Term(Expression): pass
# Variable symbol (must start with '$')
# Example: $x
class Variable(Term):
def __init__(self, name):
if not name.startswith('$'): raise Exception('Variable must start with "$", but got %s' % name)
self.name = name
self.strRepn = None
def computeStrRepn(self): return self.name
# Constant symbol (must be uncapitalized)
# Example: john
class Constant(Term):
def __init__(self, name):
if not name[0].islower(): raise Exception('Constants must start with a lowercase letter, but got %s' % name)
self.name = name
self.strRepn = None
def computeStrRepn(self): return self.name
# Predicate symbol (must be capitalized) applied to arguments.
# Example: LivesIn(john, palo_alto)
class Atom(Formula):
def __init__(self, name, *args):
if not name[0].isupper(): raise Exception('Predicates must start with a uppercase letter, but got %s' % name)
self.name = name
self.args = list(map(toExpr, args))
self.strRepn = None
def computeStrRepn(self):
if len(self.args) == 0: return self.name
return self.name + '(' + self.join(self.args) + ')'
def toExpr(x):
if isinstance(x, str):
if x.startswith('$'): return Variable(x)
return Constant(x)
return x
AtomFalse = False
AtomTrue = True
# Example: Not(Rain)
class Not(Formula):
def __init__(self, arg):
self.arg = self.ensureFormula(arg)
self.strRepn = None
def computeStrRepn(self): return 'Not(' + str(self.arg) + ')'
# Example: And(Rain,Snow)
class And(Formula):
def __init__(self, arg1, arg2):
self.arg1 = self.ensureFormula(arg1)
self.arg2 = self.ensureFormula(arg2)
self.strRepn = None
def computeStrRepn(self): return 'And(' + str(self.arg1) + ',' + str(self.arg2) + ')'
# Example: Or(Rain,Snow)
class Or(Formula):
def __init__(self, arg1, arg2):
self.arg1 = self.ensureFormula(arg1)
self.arg2 = self.ensureFormula(arg2)
self.strRepn = None
def computeStrRepn(self): return 'Or(' + str(self.arg1) + ',' + str(self.arg2) + ')'
# Example: Implies(Rain,Wet)
class Implies(Formula):
def __init__(self, arg1, arg2):
self.arg1 = self.ensureFormula(arg1)
self.arg2 = self.ensureFormula(arg2)
self.strRepn = None
def computeStrRepn(self): return 'Implies(' + str(self.arg1) + ',' + str(self.arg2) + ')'
# Example: Exists($x,Lives(john, $x))
class Exists(Formula):
def __init__(self, var, body):
self.var = self.ensureType(toExpr(var), Variable)
self.body = self.ensureFormula(body)
self.strRepn = None
def computeStrRepn(self): return 'Exists(' + str(self.var) + ',' + str(self.body) + ')'
# Example: Forall($x,Implies(Human($x),Alive($x)))
class Forall(Formula):
def __init__(self, var, body):
self.var = self.ensureType(toExpr(var), Variable)
self.body = self.ensureFormula(body)
self.strRepn = None
def computeStrRepn(self): return 'Forall(' + str(self.var) + ',' + str(self.body) + ')'
# Take a list of conjuncts / disjuncts and return a formula
def AndList(forms):
result = AtomTrue
for form in forms:
result = And(result, form) if result != AtomTrue else form
return result
def OrList(forms):
result = AtomFalse
for form in forms:
result = Or(result, form) if result != AtomFalse else form
return result
# Return list of conjuncts of |form|.
# Example: And(And(A, Or(B, C)), Not(D)) => [A, Or(B, C), Not(D)]
def flattenAnd(form):
if form.isa(And): return flattenAnd(form.arg1) + flattenAnd(form.arg2)
else: return [form]
# Return list of disjuncts of |form|.
# Example: Or(Or(A, And(B, C)), D) => [A, And(B, C), Not(D)]
def flattenOr(form):
if form.isa(Or): return flattenOr(form.arg1) + flattenOr(form.arg2)
else: return [form]
# Syntactic sugar
def Equiv(a, b): return And(Implies(a, b), Implies(b, a))
def Xor(a, b): return And(Or(a, b), Not(And(a, b)))
# Special predicate which is used internally (e.g., in propositionalization).
def Equals(x, y): return Atom('Equals', x, y)
# Given a predicate name (e.g., Parent), return a formula that asserts that
# that predicate is anti-reflexive
# (e.g., Not(Parent(x,x))).
def AntiReflexive(predicate):
#return Forall('$x', Not(Atom(predicate, '$x', '$x')))
# Force Equals() to be used and show up in the models.
return Forall('$x', Forall('$y', Implies(Atom(predicate, '$x', '$y'),
Not(Equals('$x', '$y')))))
############################################################
# Simple inference rules
# A Rule takes a sequence of argument Formulas and produces a set of result
# Formulas (possibly [] if the rule doesn't apply).
class Rule:
pass
class UnaryRule(Rule):
def applyRule(self, form): raise Exception('Override me')
class BinaryRule(Rule):
def applyRule(self, form1, form2): raise Exception('Override me')
# Override if rule is symmetric to save a factor of 2.
def symmetric(self): return False
############################################################
# Unification
# Mutate |subst| with variable => bindings
# Return whether unification was successful
# Assume forms are in CNF.
# Note: we don't do occurs check because we don't have function symbols.
def unify(form1, form2, subst):
if form1.isa(Variable): return unifyTerms(form1, form2, subst)
if form1.isa(Constant): return unifyTerms(form1, form2, subst)
if form1.isa(Atom):
return form2.isa(Atom) and form1.name == form2.name and len(form1.args) == len(form2.args) and \
all(unify(form1.args[i], form2.args[i], subst) for i in range(len(form1.args)))
if form1.isa(Not):
return form2.isa(Not) and unify(form1.arg, form2.arg, subst)
if form1.isa(And):
return form2.isa(And) and unify(form1.arg1, form2.arg1, subst) and unify(form1.arg2, form2.arg2, subst)
if form1.isa(Or):
return form2.isa(Or) and unify(form1.arg1, form2.arg1, subst) and unify(form1.arg2, form2.arg2, subst)
raise Exception('Unhandled: %s' % form1)
# Follow multiple links to get to x
def getSubst(subst, x):
while True:
y = subst.get(x)
if y == None: return x
x = y
def unifyTerms(a, b, subst):
#print 'unifyTerms', a, b, rstr(subst)
a = getSubst(subst, a)
b = getSubst(subst, b)
if a == b: return True
if a.isa(Variable): subst[a] = b
elif b.isa(Variable): subst[b] = a
else: return False
return True
# Assume form in CNF.
def applySubst(form, subst):
if len(subst) == 0: return form
if form.isa(Variable):
#print 'applySubst', rstr(form), rstr(subst), rstr(subst.get(form, form))
#return subst.get(form, form)
return getSubst(subst, form)
if form.isa(Constant): return form
if form.isa(Atom): return Atom(*[form.name] + [applySubst(arg, subst) for arg in form.args])
if form.isa(Not): return Not(applySubst(form.arg, subst))
if form.isa(And): return And(applySubst(form.arg1, subst), applySubst(form.arg2, subst))
if form.isa(Or): return Or(applySubst(form.arg1, subst), applySubst(form.arg2, subst))
raise Exception('Unhandled: %s' % form)
############################################################
# Convert to CNF, Resolution rules
def withoutElementAt(items, i): return items[0:i] + items[i+1:]
def negateFormula(item):
return item.arg if item.isa(Not) else Not(item)
# Given a list of Formulas, return a new list with:
# - If A and Not(A) exists, return [AtomFalse] for conjunction, [AtomTrue] for disjunction
# - Remove duplicates
# - Sort the list
def reduceFormulas(items, mode):
for i in range(len(items)):
for j in range(i+1, len(items)):
if negateFormula(items[i]) == items[j]:
if mode == And: return [AtomFalse]
elif mode == Or: return [AtomTrue]
else: raise Exception("Invalid mode: %s" % mode)
items = sorted(set(items), key=str)
return items
# Generate a list of all subexpressions of a formula (including terms).
# Example:
# - Input: And(Atom('A', Constant('a')), Atom('B'))
# - Output: [And(Atom('A', Constant('a')), Atom('B')), Atom('A', Constant('a')), Constant('a'), Atom('B')]
def allSubexpressions(form):
subforms = []
def recurse(form):
subforms.append(form)
if form.isa(Variable): pass
elif form.isa(Constant): pass
elif form.isa(Atom):
for arg in form.args: recurse(arg)
elif form.isa(Not): recurse(form.arg)
elif form.isa(And): recurse(form.arg1); recurse(form.arg2)
elif form.isa(Or): recurse(form.arg1); recurse(form.arg2)
elif form.isa(Implies): recurse(form.arg1); recurse(form.arg2)
elif form.isa(Exists): recurse(form.body)
elif form.isa(Forall): recurse(form.body)
else: raise Exception("Unhandled: %s" % form)
recurse(form)
return subforms
# Return a list of the free variables in |form|.
def allFreeVars(form):
variables = []
def recurse(form, boundVars):
if form.isa(Variable):
if form not in boundVars: variables.append(form)
elif form.isa(Constant): pass
elif form.isa(Atom):
for arg in form.args: recurse(arg, boundVars)
elif form.isa(Not): recurse(form.arg, boundVars)
elif form.isa(And): recurse(form.arg1, boundVars); recurse(form.arg2, boundVars)
elif form.isa(Or): recurse(form.arg1, boundVars); recurse(form.arg2, boundVars)
elif form.isa(Implies): recurse(form.arg1, boundVars); recurse(form.arg2, boundVars)
elif form.isa(Exists): recurse(form.body, boundVars + [form.var])
elif form.isa(Forall): recurse(form.body, boundVars + [form.var])
else: raise Exception("Unhandled: %s" % form)
recurse(form, [])
return variables
# Return |form| with all free occurrences of |var| replaced with |obj|.
def substituteFreeVars(form, var, obj):
def recurse(form, boundVars):
if form.isa(Variable):
if form == var: return obj
return form
elif form.isa(Constant): return form
elif form.isa(Atom):
return Atom(*[form.name] + [recurse(arg, boundVars) for arg in form.args])
elif form.isa(Not): return Not(recurse(form.arg, boundVars))
elif form.isa(And): return And(recurse(form.arg1, boundVars), recurse(form.arg2, boundVars))
elif form.isa(Or): return Or(recurse(form.arg1, boundVars), recurse(form.arg2, boundVars))
elif form.isa(Implies): return Implies(recurse(form.arg1, boundVars), recurse(form.arg2, boundVars))
elif form.isa(Exists):
if form.var == var: return form # Don't substitute inside
return Exists(form.var, recurse(form.body, boundVars + [form.var]))
elif form.isa(Forall):
if form.var == var: return form # Don't substitute inside
return Forall(form.var, recurse(form.body, boundVars + [form.var]))
else: raise Exception("Unhandled: %s" % form)
return recurse(form, [])
def allConstants(form):
return [x for x in allSubexpressions(form) if x.isa(Constant)]
class ToCNFRule(UnaryRule):
def __init__(self):
# For standardizing variables.
# For each existing variable name, the number of times it has occurred
self.varCounts = collections.Counter()
def applyRule(self, form):
newForm = form
# Step 1: remove implications
def removeImplications(form):
if form.isa(Atom): return form
if form.isa(Not): return Not(removeImplications(form.arg))
if form.isa(And): return And(removeImplications(form.arg1), removeImplications(form.arg2))
if form.isa(Or): return Or(removeImplications(form.arg1), removeImplications(form.arg2))
if form.isa(Implies): return Or(Not(removeImplications(form.arg1)), removeImplications(form.arg2))
if form.isa(Exists): return Exists(form.var, removeImplications(form.body))
if form.isa(Forall): return Forall(form.var, removeImplications(form.body))
raise Exception("Unhandled: %s" % form)
newForm = removeImplications(newForm)
# Step 2: push negation inwards (de Morgan)
def pushNegationInwards(form):
if form.isa(Atom): return form
if form.isa(Not):
if form.arg.isa(Not): # Double negation
return pushNegationInwards(form.arg.arg)
if form.arg.isa(And): # De Morgan
return Or(pushNegationInwards(Not(form.arg.arg1)), pushNegationInwards(Not(form.arg.arg2)))
if form.arg.isa(Or): # De Morgan
return And(pushNegationInwards(Not(form.arg.arg1)), pushNegationInwards(Not(form.arg.arg2)))
if form.arg.isa(Exists):
return Forall(form.arg.var, pushNegationInwards(Not(form.arg.body)))
if form.arg.isa(Forall):
return Exists(form.arg.var, pushNegationInwards(Not(form.arg.body)))
return form
if form.isa(And): return And(pushNegationInwards(form.arg1), pushNegationInwards(form.arg2))
if form.isa(Or): return Or(pushNegationInwards(form.arg1), pushNegationInwards(form.arg2))
if form.isa(Implies): return Or(Not(pushNegationInwards(form.arg1)), pushNegationInwards(form.arg2))
if form.isa(Exists): return Exists(form.var, pushNegationInwards(form.body))
if form.isa(Forall): return Forall(form.var, pushNegationInwards(form.body))
raise Exception("Unhandled: %s" % form)
newForm = pushNegationInwards(newForm)
# Step 3: standardize variables: make sure all variables are different
# Don't modify subst; return a new version where var is mapped onto
# something that hasn't been seen before.
def updateSubst(subst, var):
self.varCounts[var.name] += 1
newVar = Variable(var.name + str(self.varCounts[var.name]))
return dict(list(subst.items()) + [(var, newVar)])
def standardizeVariables(form, subst):
if form.isa(Variable):
if form not in subst: raise Exception("Free variable found: %s" % form)
return subst[form]
if form.isa(Constant): return form
if form.isa(Atom): return Atom(*([form.name] + [standardizeVariables(arg, subst) for arg in form.args]))
if form.isa(Not): return Not(standardizeVariables(form.arg, subst))
if form.isa(And): return And(standardizeVariables(form.arg1, subst), standardizeVariables(form.arg2, subst))
if form.isa(Or): return Or(standardizeVariables(form.arg1, subst), standardizeVariables(form.arg2, subst))
if form.isa(Exists):
newSubst = updateSubst(subst, form.var)
return Exists(newSubst[form.var], standardizeVariables(form.body, newSubst))
if form.isa(Forall):
newSubst = updateSubst(subst, form.var)
return Forall(newSubst[form.var], standardizeVariables(form.body, newSubst))
raise Exception("Unhandled: %s" % form)
newForm = standardizeVariables(newForm, {})
# Step 4: replace existentially quantified variables with Skolem functions
def skolemize(form, subst, scope):
if form.isa(Variable): return subst.get(form, form)
if form.isa(Constant): return form
if form.isa(Atom): return Atom(*[form.name] + [skolemize(arg, subst, scope) for arg in form.args])
if form.isa(Not): return Not(skolemize(form.arg, subst, scope))
if form.isa(And): return And(skolemize(form.arg1, subst, scope), skolemize(form.arg2, subst, scope))
if form.isa(Or): return Or(skolemize(form.arg1, subst, scope), skolemize(form.arg2, subst, scope))
if form.isa(Exists):
# Create a Skolem function that depends on the variables in the scope (list of variables)
# Example:
# - Suppose scope = [$x, $y] and form = Exists($z,F($z)).
# - Normally, we would return F(Z($x,$y)), where Z is a brand new Skolem function.
# - But since we don't have function symbols, we replace with a Skolem predicate:
# Forall($z,Implies(Z($z,$x,$y),F($z)))
# Important: when doing resolution, need to catch Not(Z($z,*,*)) as a contradiction.
if len(scope) == 0:
subst[form.var] = Constant('skolem' + form.var.name)
return skolemize(form.body, subst, scope)
else:
skolem = Atom(*['Skolem' + form.var.name, form.var] + scope)
return Forall(form.var, Or(Not(skolem), skolemize(form.body, subst, scope)))
if form.isa(Forall):
return Forall(form.var, skolemize(form.body, subst, scope + [form.var]))
raise Exception("Unhandled: %s" % form)
newForm = skolemize(newForm, {}, [])
# Step 5: remove universal quantifiers [note: need to do this before distribute, unlike Russell/Norvig book]
def removeUniversalQuantifiers(form):
if form.isa(Atom): return form
if form.isa(Not): return Not(removeUniversalQuantifiers(form.arg))
if form.isa(And): return And(removeUniversalQuantifiers(form.arg1), removeUniversalQuantifiers(form.arg2))
if form.isa(Or): return Or(removeUniversalQuantifiers(form.arg1), removeUniversalQuantifiers(form.arg2))
if form.isa(Forall): return removeUniversalQuantifiers(form.body)
raise Exception("Unhandled: %s" % form)
newForm = removeUniversalQuantifiers(newForm)
# Step 6: distribute Or over And (want And on the outside): Or(And(A,B),C) becomes And(Or(A,C),Or(B,C))
def distribute(form):
if form.isa(Atom): return form
if form.isa(Not): return Not(distribute(form.arg))
if form.isa(And): return And(distribute(form.arg1), distribute(form.arg2))
if form.isa(Or):
# First need to distribute as much as possible
f1 = distribute(form.arg1)
f2 = distribute(form.arg2)
if f1.isa(And):
return And(distribute(Or(f1.arg1, f2)), distribute(Or(f1.arg2, f2)))
if f2.isa(And):
return And(distribute(Or(f1, f2.arg1)), distribute(Or(f1, f2.arg2)))
return Or(f1, f2)
if form.isa(Exists): return Exists(form.var, distribute(form.body))
if form.isa(Forall): return Forall(form.var, distribute(form.body))
raise Exception("Unhandled: %s" % form)
newForm = distribute(newForm)
# Post-processing: break up conjuncts into conjuncts and sort the disjuncts in each conjunct
# Remove instances of A and Not(A)
conjuncts = [OrList(reduceFormulas(flattenOr(f), Or)) for f in flattenAnd(newForm)]
#print rstr(form), rstr(conjuncts)
assert len(conjuncts) > 0
if any(x == AtomFalse for x in conjuncts): return [AtomFalse]
if all(x == AtomTrue for x in conjuncts): return [AtomTrue]
conjuncts = [x for x in conjuncts if x != AtomTrue]
results = reduceFormulas(conjuncts, And)
if len(results) == 0: results = [AtomFalse]
#print 'CNF', form, rstr(results)
return results
class ResolutionRule(BinaryRule):
# Assume formulas are in CNF
# Assume A and Not(A) don't both exist in a form (taken care of by CNF conversion)
def applyRule(self, form1, form2):
items1 = flattenOr(form1)
items2 = flattenOr(form2)
results = []
#print 'RESOLVE', form1, form2
for i, item1 in enumerate(items1):
for j, item2 in enumerate(items2):
subst = {}
if unify(negateFormula(item1), item2, subst):
newItems1 = withoutElementAt(items1, i)
newItems2 = withoutElementAt(items2, j)
newItems = [applySubst(item, subst) for item in newItems1 + newItems2]
if len(newItems) == 0: # Contradiction: False
results = [AtomFalse]
break
#print 'STEP: %s %s => %s %s' % (form1, form2, rstr(newItems), rstr(subst))
result = OrList(reduceFormulas(newItems, Or))
# Not(Skolem$x($x,...)) is a contradiction
if isinstance(result, Not) and result.arg.name.startswith('Skolem'):
results = [AtomFalse]
break
# Don't add redundant stuff
if result == AtomTrue: continue
if result in results: continue
results.append(result)
if results == [AtomFalse]: break
#print 'RESOLUTION: %s %s => %s' % (form1, form2, rstr(results))
return results
def symmetric(self): return True
############################################################
# Model checking
# Return the set of models
def performModelChecking(allForms, findAll, objects=None, verbose=0):
if verbose >= 3:
print(('performModelChecking', rstr(allForms)))
# Propositionalize, convert to CNF, dedup
allForms = propositionalize(allForms, objects)
# Convert to CNF: actually makes things slower
#allForms = [f for form in allForms for f in ToCNFRule().applyRule(form)]
#if any(x == AtomFalse for x in allForms): return []
#if all(x == AtomTrue for x in allForms): return [set()]
#allForms = [x for x in allForms if x != AtomTrue]
#allForms = reduceFormulas(allForms, And)
allForms = [universalInterpret(form) for form in allForms]
allForms = list(set(allForms) - set([AtomTrue, AtomFalse]))
if verbose >= 3:
print(('All Forms:', rstr(allForms)))
if allForms == []: return [set()] # One model
if allForms == [AtomFalse]: return [] # No models
# Atoms are the variables
atoms = set()
for form in allForms:
for f in allSubexpressions(form):
if f.isa(Atom): atoms.add(f)
atoms = list(atoms)
if verbose >= 3:
print(('Atoms:', rstr(atoms)))
print(('Constraints:', rstr(allForms)))
# For each atom, list the set of formulas
# atom index => list of formulas
atomForms = [
(atom, [form for form in allForms if atom in allSubexpressions(form)]) \
for atom in atoms \
]
# Degree heuristic
atomForms.sort(key = lambda x : -len(x[1]))
atoms = [atom for atom, form in atomForms]
# Keep only the forms for an atom if it only uses atoms up until that point.
atomPrefixForms = []
for i, (atom, forms) in enumerate(atomForms):
prefixForms = []
for form in forms:
useAtoms = set(x for x in allSubexpressions(form) if x.isa(Atom))
if useAtoms <= set(atoms[0:i+1]):
prefixForms.append(form)
atomPrefixForms.append((atom, prefixForms))
if verbose >= 3:
print('Plan:')
for atom, forms in atomForms:
print((" %s: %s" % (rstr(atom), rstr(forms))))
assert sum(len(forms) for atom, forms in atomPrefixForms) == len(allForms)
# Build up an interpretation
N = len(atoms)
models = [] # List of models which are true
model = set() # Set of true atoms, mutated over time
def recurse(i): # i: atom index
if not findAll and len(models) > 0: return
if i == N: # Found a model on which the formulas are true
models.append(set(model))
return
atom, forms = atomPrefixForms[i]
result = universalInterpretAtom(atom)
if result == None or result == False:
if interpretForms(forms, model): recurse(i+1)
if result == None or result == True:
model.add(atom)
if interpretForms(forms, model): recurse(i+1)
model.remove(atom)
recurse(0)
if verbose >= 5:
print('Models:')
for model in models:
print((" %s" % rstr(model)))
return models
# A model is a set of atoms.
def printModel(model):
for x in sorted(map(str, model)):
print(('*', x, '=', 'True'))
print(('*', '(other atoms if any)', '=', 'False'))
# Convert a first-order logic formula into a propositional formula, assuming
# database semantics.
# Example: Forall becomes And over all objects
# - Input: form = Forall('$x', Atom('Alive', '$x')), objects = ['alice', 'bob']
# - Output: And(Atom('Alive', 'alice'), Atom('Alive', 'bob'))
# Example: Exists becomes Or over all objects
# - Input: form = Exists('$x', Atom('Alive', '$x')), objects = ['alice', 'bob']
# - Output: Or(Atom('Alive', 'alice'), Atom('Alive', 'bob'))
def propositionalize(forms, objects=None):
# If not specified, set objects to all constants mentioned in in |form|.
if objects == None:
objects = set()
for form in forms:
objects |= set(allConstants(form))
objects = list(objects)
else:
# Make sure objects are expressions: Convert ['a', 'b'] to [Constant('a'), Constant('b')]
objects = [toExpr(obj) for obj in objects]
# Recursively convert |form|, which could contain Exists and Forall, to forms that don't contain these quantifiers.
# |subst| is a map from variables to constants.
def convert(form, subst):
if form.isa(Variable):
if form not in subst: raise Exception("Free variable found: %s" % form)
return subst[form]
if form.isa(Constant): return form
if form.isa(Atom):
return Atom(*[form.name] + [convert(arg, subst) for arg in form.args])
if form.isa(Not): return Not(convert(form.arg, subst))
if form.isa(And): return And(convert(form.arg1, subst), convert(form.arg2, subst))
if form.isa(Or): return Or(convert(form.arg1, subst), convert(form.arg2, subst))
if form.isa(Implies): return Implies(convert(form.arg1, subst), convert(form.arg2, subst))
if form.isa(Exists):
return OrList([convert(form.body, dict(list(subst.items()) + [(form.var, obj)])) for obj in objects])
if form.isa(Forall):
return AndList([convert(form.body, dict(list(subst.items()) + [(form.var, obj)])) for obj in objects])
raise Exception("Unhandled: %s" % form)
# Think of newForms as conjoined
newForms = []
# Convert all the forms
for form in forms:
newForm = convert(form, {})
if newForm == AtomFalse: return [AtomFalse]
if newForm == AtomTrue: continue
newForms.extend(flattenAnd(newForm))
return newForms
# Some atoms have a fixed value, so we should just evaluate them.
# Assumption: atom is propositional logic.
def universalInterpretAtom(atom):
if atom.name == 'Equals':
return AtomTrue if atom.args[0] == atom.args[1] else AtomFalse
return None
# Reduce the expression (e.g., Equals(a,a) => True)
# Assumption: atom is propositional logic.
def universalInterpret(form):
if form.isa(Variable): return form
if form.isa(Constant): return form
if form.isa(Atom):
result = universalInterpretAtom(form)
if result != None: return result
return Atom(*[form.name] + [universalInterpret(arg) for arg in form.args])
if form.isa(Not):
arg = universalInterpret(form.arg)
if arg == AtomTrue: return AtomFalse
if arg == AtomFalse: return AtomTrue
return Not(arg)
if form.isa(And):
arg1 = universalInterpret(form.arg1)
arg2 = universalInterpret(form.arg2)
if arg1 == AtomFalse: return AtomFalse
if arg2 == AtomFalse: return AtomFalse
if arg1 == AtomTrue: return arg2
if arg2 == AtomTrue: return arg1
return And(arg1, arg2)
if form.isa(Or):
arg1 = universalInterpret(form.arg1)
arg2 = universalInterpret(form.arg2)
if arg1 == AtomTrue: return AtomTrue
if arg2 == AtomTrue: return AtomTrue
if arg1 == AtomFalse: return arg2
if arg2 == AtomFalse: return arg1
return Or(arg1, arg2)
if form.isa(Implies):
arg1 = universalInterpret(form.arg1)
arg2 = universalInterpret(form.arg2)
if arg1 == AtomFalse: return AtomTrue
if arg2 == AtomTrue: return AtomTrue
if arg1 == AtomTrue: return arg2
if arg2 == AtomFalse: return Not(arg1)
return Implies(arg1, arg2)
raise Exception("Unhandled: %s" % form)
def interpretForm(form, model):
if form.isa(Atom): return form in model
if form.isa(Not): return not interpretForm(form.arg, model)
if form.isa(And): return interpretForm(form.arg1, model) and interpretForm(form.arg2, model)
if form.isa(Or): return interpretForm(form.arg1, model) or interpretForm(form.arg2, model)
if form.isa(Implies): return not interpretForm(form.arg1, model) or interpretForm(form.arg2, model)
raise Exception("Unhandled: %s" % form)
# Conjunction
def interpretForms(forms, model):
return all(interpretForm(form, model) for form in forms)
############################################################
# A Derivation is a tree where each node corresponds to the application of a rule.
# For any Formula, we can extract a set of categories.
# Rule arguments are labeled with category.
class Derivation:
def __init__(self, form, children, cost, derived):
self.form = form
self.children = children
self.cost = cost
self.permanent = False # Marker for being able to extract.
self.derived = derived # Whether this was derived (as opposed to added by the user).
def __repr__(self): return 'Derivation(%s, cost=%s, permanent=%s, derived=%s)' % (self.form, self.cost, self.permanent, self.derived)
# Possible responses to queries to the knowledge base
ENTAILMENT = "ENTAILMENT"
CONTINGENT = "CONTINGENT"
CONTRADICTION = "CONTRADICTION"
# A response to a KB query
class KBResponse:
# query: what the query is (just a string description for printing)
# modify: whether we modified the knowledge base
# status: one of the ENTAILMENT, CONTINGENT, CONTRADICTION
# trueModel: if available, a model consistent with the KB for which the the query is true
# falseModel: if available, a model consistent with the KB for which the the query is false
def __init__(self, query, modify, status, trueModel, falseModel):
self.query = query
self.modify = modify
self.status = status
self.trueModel = trueModel
self.falseModel = falseModel
def show(self, verbose=1):
padding = '>>>>>'
print(padding + ' ' + self.responseStr())
if verbose >= 1:
print(('Query: %s[%s]' % ('TELL' if self.modify else 'ASK', self.query)))
if self.trueModel:
print('An example of a model where query is TRUE:')
printModel(self.trueModel)
if self.falseModel:
print('An example of a model where query is FALSE:')
printModel(self.falseModel)
def responseStr(self):
if self.status == ENTAILMENT:
if self.modify: return 'I already knew that.'
else: return 'Yes.'
elif self.status == CONTINGENT:
if self.modify: return 'I learned something.'
else: return 'I don\'t know.'
elif self.status == CONTRADICTION:
if self.modify: return 'I don\'t buy that.'
else: return 'No.'
else:
raise Exception("Invalid status: %s" % self.status)
def __repr__(self): return self.responseStr()
def showKBResponse(response, verbose=1):
if isinstance(response, KBResponse):
response.show(verbose)
else:
items = [(obj, r.status) for ((var, obj), r) in list(response.items())]
print(('Yes: %s' % rstr([obj for obj, status in items if status == ENTAILMENT])))
print(('Maybe: %s' % rstr([obj for obj, status in items if status == CONTINGENT])))
print(('No: %s' % rstr([obj for obj, status in items if status == CONTRADICTION])))
# A KnowledgeBase is a set collection of Formulas.
# Interact with it using
# - addRule: add inference rules
# - tell: modify the KB with a new formula.
# - ask: query the KB about
class KnowledgeBase:
def __init__(self, standardizationRule, rules, modelChecking, verbose=0):
# Rule to apply to each formula that's added to the KB (None is possible).
self.standardizationRule = standardizationRule
# Set of inference rules
self.rules = rules
# Use model checking as opposed to applying rules.
self.modelChecking = modelChecking
# For debugging
self.verbose = verbose
# Formulas that we believe are true (used when not doing model checking).
self.derivations = {} # Map from Derivation key (logical form) to Derivation
# Add a formula |form| to the KB if it doesn't contradict. Returns a KBResponse.
def tell(self, form):
return self.query(form, modify=True)
# Ask whether the logical formula |form| is True, False, or unknown based
# on the KB. Returns a KBResponse.
def ask(self, form):
return self.query(form, modify=False)
def dump(self):
print(('==== Knowledge base [%d derivations] ===' % len(self.derivations)))
for deriv in list(self.derivations.values()):
print((('-' if deriv.derived else '*'), deriv if self.verbose >= 2 else deriv.form))
####### Internal functions
# Returns a KBResponse or if there are free variables, a mapping from (var, obj) => query without that variable.
def query(self, form, modify):
#print 'QUERY', form
# Handle wh-queries: try all possible values of the free variable, and recurse on query().
freeVars = allFreeVars(form)
if len(freeVars) > 0:
if modify:
raise Exception("Can't modify database with a query with free variables: %s" % form)
var = freeVars[0]
allForms = AndList([deriv.form for deriv in list(self.derivations.values())])
if allForms == AtomTrue: return {} # Weird corner case
objects = allConstants(allForms)
# Try binding |var| to |obj|
response = {}
for obj in objects:
response[(var, obj)] = self.query(substituteFreeVars(form, var, obj), modify)
return response
# Assume no free variables from here on...
formStr = '%s, standardized: %s' % (form, rstr(self.standardize(form)))
# Models to serve as supporting evidence
falseModel = None # Makes the query false
trueModel = None # Makes the query true
# Add Not(form)
if not self.addAxiom(Not(form)):
self.removeTemporary()
status = ENTAILMENT
else:
# Inconclusive...
falseModel = self.consistentModel
self.removeTemporary()
# Add form
if self.addAxiom(form):
if modify:
self.makeTemporaryPermanent()
else:
self.removeTemporary()
trueModel = self.consistentModel
status = CONTINGENT
else:
self.removeTemporary()
status = CONTRADICTION
return KBResponse(query = formStr, modify = modify, status = status, trueModel = trueModel, falseModel = falseModel)
# Apply the standardization rule to |form|.
def standardize(self, form):
if self.standardizationRule:
return self.standardizationRule.applyRule(form)
return [form]
# Return whether adding |form| is consistent with the current knowledge base.
# Add |form| to the knowledge base if we can. Note: this is done temporarily!
# Just calls addDerivation.
def addAxiom(self, form):
self.consistentModel = None
for f in self.standardize(form):
if f == AtomFalse: return False
if f == AtomTrue: continue
deriv = Derivation(f, children = [], cost = 0, derived = False)
if not self.addDerivation(deriv): return False
return True
# Return whether the Derivation is consistent with the KB.
def addDerivation(self, deriv):
# Derived a contradiction
if deriv.form == AtomFalse: return False
key = deriv.form
oldDeriv = self.derivations.get(key)
maxCost = 100
if oldDeriv == None and deriv.cost <= maxCost:
#if oldDeriv == None or (deriv.cost < oldDeriv.cost and (deriv.permanent >= oldDeriv.permanent)):
#print 'UPDATE %s %s' % (deriv, oldDeriv)
#self.dump()
# Something worth updating
self.derivations[key] = deriv
if self.verbose >= 3: print(('add %s [%s derivations]' % (deriv, len(self.derivations))))
if self.modelChecking:
allForms = [deriv.form for deriv in list(self.derivations.values())]
models = performModelChecking(allForms, findAll=False, verbose=self.verbose)
if len(models) == 0: return False
else: self.consistentModel = models[0]
# Apply rules forward
if not self.applyUnaryRules(deriv): return False
for key2, deriv2 in list(self.derivations.items()):
if not self.applyBinaryRules(deriv, deriv2): return False
if not self.applyBinaryRules(deriv2, deriv): return False
return True
# Raise an exception if |formulas| is not a list of Formulas.
def ensureFormulas(self, rule, formulas):
if isinstance(formulas, list) and all(formula == False or isinstance(formula, Formula) for formula in formulas):
return formulas
raise Exception('Expected list of Formulas, but %s returned %s' % (rule, formulas))
# Return whether everything is okay (no contradiction).
def applyUnaryRules(self, deriv):
for rule in self.rules:
if not isinstance(rule, UnaryRule): continue
for newForm in self.ensureFormulas(rule, rule.applyRule(deriv.form)):
if not self.addDerivation(Derivation(newForm, children = [deriv], cost = deriv.cost + 1, derived = True)):
return False
return True
# Return whether everything is okay (no contradiction).
def applyBinaryRules(self, deriv1, deriv2):
for rule in self.rules:
if not isinstance(rule, BinaryRule): continue
if rule.symmetric() and str(deriv1.form) >= str(deriv2.form): continue # Optimization
for newForm in self.ensureFormulas(rule, rule.applyRule(deriv1.form, deriv2.form)):
if not self.addDerivation(Derivation(newForm, children = [deriv1, deriv2], cost = deriv1.cost + deriv2.cost + 1, derived = True)):
return False
return True
# Remove all the temporary derivations from the KB.
def removeTemporary(self):
for key, value in list(self.derivations.items()):
if not value.permanent:
del self.derivations[key]
# Mark all the derivations marked temporary to permanent.
def makeTemporaryPermanent(self):
for deriv in list(self.derivations.values()):
deriv.permanent = True
# Create an empty knowledge base equipped with the usual inference rules.
def createResolutionKB():
return KnowledgeBase(standardizationRule = ToCNFRule(), rules = [ResolutionRule()], modelChecking = False)
def createModelCheckingKB():
return KnowledgeBase(standardizationRule = None, rules = [], modelChecking = True)