We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
1、使用run_extractive_unified_ie.sh启动训练,运行正常,结果如下: ***** eval metrics ***** epoch = 2.0 eval_ = 0.0 eval_loss = 8.7072 eval_macro_f1 = 0.0 eval_micro_f1 = 0.0 eval_num = 16 eval_runtime = 0:00:01.11 eval_samples = 16 eval_samples_per_second = 14.409 eval_steps_per_second = 1.801
2、将hugnlp_runner.py文件中parser.parse_args_into_dataclasses()改为 parser.parse_json_file(‘config.json'),训练结果如下: ***** eval metrics ***** epoch = 2.0 eval_runtime = 0:00:01.05 eval_samples = 16 eval_samples_per_second = 15.134 eval_steps_per_second = 1.892
eval_macro_f1属性不见了。请问是什么原因?
config.json结构如下: { "model_name_or_path": "/chinese-macbert-large", "data_dir": "/dataset", "output_dir": "/output", "seed": 42, "exp_name": "unified-ie-wjn", "max_seq_length": 512, "max_eval_seq_length": 512, "do_train": true, "do_eval": true, "per_device_train_batch_size": 8, "per_device_eval_batch_size": 8, "gradient_accumulation_steps": 1, "evaluation_strategy": "steps", "learning_rate": 2e-05, "num_train_epochs": 20, "logging_steps": 100000000, "eval_steps": 500, "save_steps": 500, "save_total_limit": 1, "warmup_steps": 200, "load_best_model_at_end": true, "report_to": "none", "task_name": "zh_mrc_instruction", "task_type": "global_pointer", "model_type": "bert", "metric_for_best_model": "macro_f1", "pad_to_max_length": true, "remove_unused_columns": false, "overwrite_output_dir": true, "fp16": true, "label_names": "short_labels", "keep_predict_labels": true, "cache_dir": "/cache" }
The text was updated successfully, but these errors were encountered:
No branches or pull requests
1、使用run_extractive_unified_ie.sh启动训练,运行正常,结果如下:
***** eval metrics *****
epoch = 2.0
eval_ = 0.0
eval_loss = 8.7072
eval_macro_f1 = 0.0
eval_micro_f1 = 0.0
eval_num = 16
eval_runtime = 0:00:01.11
eval_samples = 16
eval_samples_per_second = 14.409
eval_steps_per_second = 1.801
2、将hugnlp_runner.py文件中parser.parse_args_into_dataclasses()改为 parser.parse_json_file(‘config.json'),训练结果如下:
***** eval metrics *****
epoch = 2.0
eval_runtime = 0:00:01.05
eval_samples = 16
eval_samples_per_second = 15.134
eval_steps_per_second = 1.892
eval_macro_f1属性不见了。请问是什么原因?
config.json结构如下:
{
"model_name_or_path": "/chinese-macbert-large",
"data_dir": "/dataset",
"output_dir": "/output",
"seed": 42,
"exp_name": "unified-ie-wjn",
"max_seq_length": 512,
"max_eval_seq_length": 512,
"do_train": true,
"do_eval": true,
"per_device_train_batch_size": 8,
"per_device_eval_batch_size": 8,
"gradient_accumulation_steps": 1,
"evaluation_strategy": "steps",
"learning_rate": 2e-05,
"num_train_epochs": 20,
"logging_steps": 100000000,
"eval_steps": 500,
"save_steps": 500,
"save_total_limit": 1,
"warmup_steps": 200,
"load_best_model_at_end": true,
"report_to": "none",
"task_name": "zh_mrc_instruction",
"task_type": "global_pointer",
"model_type": "bert",
"metric_for_best_model": "macro_f1",
"pad_to_max_length": true,
"remove_unused_columns": false,
"overwrite_output_dir": true,
"fp16": true,
"label_names": "short_labels",
"keep_predict_labels": true,
"cache_dir": "/cache"
}
The text was updated successfully, but these errors were encountered: