-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
48 lines (40 loc) · 2.14 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
# Saliency map predictor network
class SalPreNet(nn.Module):
def __init__(self):
super(SalPreNet, self).__init__()
self.conv1 = nn.Conv2d(in_channels=3, out_channels=48, kernel_size=7, stride=1, padding=3)
self.conv2 = nn.Conv2d(in_channels=48, out_channels=128, kernel_size=5, stride=1, padding=2)
self.conv3 = nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, stride=1, padding=1)
self.conv4 = nn.Conv2d(in_channels=256, out_channels=256, kernel_size=5, stride=1, padding=2)
self.conv5 = nn.Conv2d(in_channels=256, out_channels=256, kernel_size=5, stride=1, padding=2)
self.conv6 = nn.Conv2d(in_channels=256, out_channels=128, kernel_size=7, stride=1, padding=3)
self.conv7 = nn.Conv2d(in_channels=128, out_channels=64, kernel_size=11, stride=1, padding=5)
self.conv8 = nn.Conv2d(in_channels=64, out_channels=32, kernel_size=11, stride=1, padding=5)
self.conv9 = nn.Conv2d(in_channels=32, out_channels=1, kernel_size=13, stride=1, padding=6)
self.maxpool2 = nn.MaxPool2d(kernel_size=3, stride=2)
self.maxpool1 = nn.MaxPool2d(kernel_size=3, stride=2)
self.lrn = nn.LocalResponseNorm(5)
self.deconv = nn.ConvTranspose2d(in_channels=1, out_channels=1, kernel_size=8, stride=4, padding=2,
output_padding=1, bias=False)
self.init_weights()
def forward(self, x):
x = self.maxpool1(self.lrn(F.relu(self.conv1(x))))
x = self.maxpool2(F.relu(self.conv2(x)))
x = F.relu(self.conv3(x))
x = F.relu(self.conv4(x))
x = F.relu(self.conv5(x))
x = F.relu(self.conv6(x))
x = F.relu(self.conv7(x))
x = F.relu(self.conv8(x))
x = self.conv9(x)
x = self.deconv(x)
return x
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
init.kaiming_normal_(m.weight, nonlinearity='relu')
elif isinstance(m, nn.ConvTranspose2d):
init.normal_(m.weight, 0.01, 0.00001)