-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcriteria.py
184 lines (148 loc) · 5.81 KB
/
criteria.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
# -*- coding: utf-8 -*-
# @Time : 2018/10/23 20:04
# @Author : Wang Xin
# @Email : wangxin_buaa@163.com
import torch
import torch.nn as nn
class MaskedMSELoss(nn.Module):
def __init__(self):
super(MaskedMSELoss, self).__init__()
def forward(self, pred, target):
assert pred.dim() == target.dim(), "inconsistent dimensions"
valid_mask = (target > 0).detach()
diff = target - pred
diff = diff[valid_mask]
self.loss = (diff ** 2).mean()
return self.loss
class MaskedL1Loss(nn.Module):
def __init__(self):
super(MaskedL1Loss, self).__init__()
def forward(self, pred, target):
assert pred.dim() == target.dim(), "inconsistent dimensions"
valid_mask = (target > 0).detach()
diff = target - pred
diff = diff[valid_mask]
self.loss = diff.abs().mean()
return self.loss
class berHuLoss(nn.Module):
def __init__(self):
super(berHuLoss, self).__init__()
def forward(self, pred, target):
assert pred.dim() == target.dim(), "inconsistent dimensions"
huber_c = torch.max(pred - target)
huber_c = 0.2 * huber_c
valid_mask = (target > 0).detach()
diff = target - pred
diff = diff[valid_mask]
diff = diff.abs()
huber_mask = (diff > huber_c).detach()
diff2 = diff[huber_mask]
diff2 = diff2 ** 2
self.loss = torch.cat((diff, diff2)).mean()
return self.loss
class ScaleInvariantError(nn.Module):
"""
Scale invariant error defined in Eigen's paper!
"""
def __init__(self, lamada=0.5):
super(ScaleInvariantError, self).__init__()
self.lamada = lamada
return
def forward(self, y_true, y_pred):
first_log = torch.log(torch.clamp(y_pred, min, max))
second_log = torch.log(torch.clamp(y_true, min, max))
d = first_log - second_log
loss = torch.mean(d * d) - self.lamada * torch.mean(d) * torch.mean(d)
return loss
class probabilisticOrdLoss(nn.SmoothL1Loss):
def __init__(self,args):
super(probabilisticOrdLoss, self).__init__()
self.loss = 0.0
self.args = args
def forward(self,ord_labels,target):
"""
:param ord_labels: ordinal labels for each position of Image I.
:param target: the ground_truth discreted using SID strategy.
:return: ordinal loss
"""
N, C, H, W = ord_labels.size()
ord_num = C
if torch.cuda.is_available() and self.args.gpu:
K = torch.zeros((N, C, H, W), dtype=torch.int).cuda()
for i in range(ord_num):
if i <= target:
K[:, i, :, :] = K[:, i, :, :] + torch.ones((N, H, W), dtype=torch.int).cuda()
else:
K = torch.zeros((N, C, H, W), dtype=torch.int)
for i in range(ord_num):
if i <= target:
K[:, i, :, :] = K[:, i, :, :] + i * torch.ones((N, H, W), dtype=torch.int)
return super().forward(ord_labels,K)
class ordLoss(nn.Module):
"""
Ordinal loss is defined as the average of pixelwise ordinal loss F(h, w, X, O)
over the entire image domain:
"""
def __init__(self,args):
super(ordLoss, self).__init__()
self.loss = 0.0
self.args = args
def forward(self, ord_labels, target):
"""
:param ord_labels: ordinal labels for each position of Image I.
:param target: the ground_truth discreted using SID strategy.
:return: ordinal loss
"""
# assert pred.dim() == target.dim()
# invalid_mask = target < 0
# target[invalid_mask] = 0
N, C, H, W = ord_labels.size()
ord_num = C
# print('ord_num = ', ord_num)
self.loss = 0.0
# for k in range(ord_num):
# '''
# p^k_(w, h) = e^y(w, h, 2k+1) / [e^(w, h, 2k) + e^(w, h, 2k+1)]
# '''
# p_k = ord_labels[:, k, :, :]
# p_k = p_k.view(N, 1, H, W)
#
# '''
# 对每个像素而言,
# 如果k小于l(w, h), log(p_k)
# 如果k大于l(w, h), log(1-p_k)
# 希望分类正确的p_k越大越好
# '''
# mask_0 = (target >= k).detach() # 分类正确
# mask_1 = (target < k).detach() # 分类错误
#
# one = torch.ones(p_k[mask_1].size())
# if torch.cuda.is_available():
# one = one.cuda()
# self.loss += torch.sum(torch.log(torch.clamp(p_k[mask_0], min = 1e-7, max = 1e7))) \
# + torch.sum(torch.log(torch.clamp(one - p_k[mask_1], min = 1e-7, max = 1e7)))
# faster version
if torch.cuda.is_available() and self.args.gpu:
K = torch.zeros((N, C, H, W), dtype=torch.int).cuda()
for i in range(ord_num):
K[:, i, :, :] = K[:, i, :, :] + i * torch.ones((N, H, W), dtype=torch.int).cuda()
else:
K = torch.zeros((N, C, H, W), dtype=torch.int)
for i in range(ord_num):
K[:, i, :, :] = K[:, i, :, :] + i * torch.ones((N, H, W), dtype=torch.int)
mask_0 = (K <= target).detach() # Mask all pixel < rank K as 0
mask_1 = (K > target).detach()
one = torch.ones(ord_labels[mask_1].size())
if torch.cuda.is_available() and self.args.gpu:
one = one.cuda()
# mask_0 = mask_0.detach()
# mask_1 = mask_1.detach()
self.loss += torch.sum(torch.log(torch.clamp(ord_labels[mask_0], min=1e-8, max=1e8))) \
+ torch.sum(torch.log(torch.clamp(one - ord_labels[mask_1], min=1e-8, max=1e8)))
# del K
# del one
# del mask_0
# del mask_1
N = N * H * W
self.loss /= (-N) # negative
return self.loss