-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathalphaCB.py
138 lines (121 loc) · 5.68 KB
/
alphaCB.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
from alphanet import AlphaNetV3, load_model
from alphanet.data import TrainValData, TimeSeriesData
from alphanet.metrics import UpDownAccuracy
import pandas as pd
import numpy as np
import tensorflow as tf
import sys,os,pickle,copy
sys.path.append(os.path.dirname(__file__) + os.sep + '../')
os.chdir(os.path.split(os.path.abspath(__file__))[0])
from bt_utils import standard,MaxDrawdown
class AlphaCB:
def __init__(self,data_path='./data210917b.pkl',begin:int=0):
self.begin_index=begin#从第几日开始——涉及一些需要历史数据的指标
self.data_load(data_path)
self.bond_metric_DF=self.get_bond_metric_DF()
def data_load(self,data_path):
data_file = open(data_path, 'rb')
self.allData=pickle.load(data_file).reset_index(drop=True)
# 只要能成功构造包含date,code,price和所需因子的dataframe:raw就能进行回测
raw=pd.DataFrame()
raw['date']=self.allData['base_date']
raw['code']=self.allData['转债代码']
raw['price']=self.allData['转债价格']
raw['remain']=self.allData['转债余额']
raw['convert_premium_ratio']=self.allData['转股溢价率'].apply(lambda x:float(x.strip("%")))
raw['cb_rt']=self.allData['涨跌'].apply(lambda x:float(x.strip("%")))
raw['st_rt']=self.allData['涨跌.1'].apply(lambda x:float(x.strip("%")))
raw['zfdb']=(raw['cb_rt']-raw['st_rt'])/(100+raw['convert_premium_ratio'])
raw['turn_rt']=self.allData['转债换手率'].apply(lambda x:float(x.strip("%")))
raw['avg_cpr']=self.allData['avg_cpr']
raw['dev']=raw['avg_cpr']-raw['convert_premium_ratio']
raw['cv']=self.allData['cv']
raw['dblow']=raw['price']+raw['convert_premium_ratio']
# raw['cp_BE']=self.allData['cp_BE']
# raw['cpr_BE']=raw['cp_BE']-raw['price']#光大法修正的溢价率
raw['st_trend']=self.allData['st_trend'].astype(int)
raw['ma20']=self.allData['MA20乖离'].apply(lambda x:float(x.strip("%")))
raw['slope']=self.allData['slope']
self.raw=raw.iloc[self.begin_index:,:]
def compute_future_return(self,n:int=5):
grouped=self.bond_metric_DF.groupby('code')
df_list=[]
for group_name, group_df in grouped:
group_df=group_df.sort_values('date', ascending=True,ignore_index=True)
group_df['future_return']=group_df['price'].pct_change(periods=n).shift(-n)
group_df=group_df.iloc[:-n]
df_list.append(group_df)
result=pd.concat(df_list,ignore_index=True)
return result
def get_bond_metric_DF(self) ->pd.DataFrame:
rawdf=self.raw
metrics2mad=['convert_premium_ratio','zfdb','remain','price','dev','cv','dblow','st_trend','ma20','slope']#这里是要用到的因子
bond_metric_DF=standard(metrics2mad,rawdf)
return bond_metric_DF
def test(dotrain=False):
anet =AlphaCB()
# compute label (future return)
df=anet.compute_future_return(10)
df['int_date']=df["date"].apply(lambda x:int(x.strftime('%Y%m%d')))
# create an empty list
stock_data_list = []
# put each stock into the list using TimeSeriesData() class
# codes = df["code"].unique()
test_df=df[df.code==128144]
# for code in codes:
# table_part = df.loc[df["code"] == code, :]
# print(table_part)
# break
grouped=df.groupby('code')
# metrics_std=['convert_premium_ratio_std','zfdb_std','remain_std',
# 'price_std','dev_std','cv_std','ma20_std','slope_std'
# ]
metrics_std=['convert_premium_ratio','zfdb','remain',
'price','dev','cv','ma20','slope'
]
for group_name, group_df in grouped:
stock_data_list.append(TimeSeriesData(
dates=group_df["int_date"].values, # date column
data=group_df[metrics_std].values, # data columns
labels=group_df["future_return"].values # label column
))
# put stock list into TrainValData() class, specify dataset lengths
train_val_data = TrainValData(time_series_list=stock_data_list,
train_length=300, # 1200 trading days for training
validate_length=100, # 150 trading days for validation
history_length=20, # each input contains 30 days of history
sample_step=1, # jump to days forward for each sampling
train_val_gap=10 # leave a 10-day gap between training and validation
)
# get one training period that start from
train, val, dates_info = train_val_data.get(20190918, order="by_date")
# test_set,test_dateinfo=train_val_data.get
# print(dates_info)
if dotrain:
# get an AlphaNetV3 instance
model = AlphaNetV3(l2=0.001, dropout=0.0)
# you may use UpDownAccuracy() here to evaluate performance
model.compile(metrics=[tf.keras.metrics.RootMeanSquaredError(),
UpDownAccuracy()]
)
# train
model.fit(train.batch(500).cache(),
validation_data=val.batch(500).cache(),
epochs=300)
# save model by save method
model.save("model.bt")
# or just save weights
model.save_weights("weights.bt")
# load entire model using load_model() from alphanet module
model = load_model("model.bt")
# only load weights by first creating a model instance
model = AlphaNetV3(l2=0.001, dropout=0.0)
model.load_weights("weights.bt")
print(val.batch(500).cache())
# test_data=tf.convert_to_tensor()
# test_data=test_df[metrics_std].values[:20,:]
# print(test_data.shape)
output=model.predict(val.batch(500).cache())
print(output)
if __name__ == '__main__':
test()