forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrandom_normal_distribution_quicksort.py
62 lines (48 loc) · 1.45 KB
/
random_normal_distribution_quicksort.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
from random import randint
from tempfile import TemporaryFile
import numpy as np
def _in_place_quick_sort(a, start, end):
count = 0
if start < end:
pivot = randint(start, end)
temp = a[end]
a[end] = a[pivot]
a[pivot] = temp
p, count = _in_place_partition(a, start, end)
count += _in_place_quick_sort(a, start, p - 1)
count += _in_place_quick_sort(a, p + 1, end)
return count
def _in_place_partition(a, start, end):
count = 0
pivot = randint(start, end)
temp = a[end]
a[end] = a[pivot]
a[pivot] = temp
new_pivot_index = start - 1
for index in range(start, end):
count += 1
if a[index] < a[end]: # check if current val is less than pivot value
new_pivot_index = new_pivot_index + 1
temp = a[new_pivot_index]
a[new_pivot_index] = a[index]
a[index] = temp
temp = a[new_pivot_index + 1]
a[new_pivot_index + 1] = a[end]
a[end] = temp
return new_pivot_index + 1, count
outfile = TemporaryFile()
p = 100 # 1000 elements are to be sorted
mu, sigma = 0, 1 # mean and standard deviation
X = np.random.normal(mu, sigma, p)
np.save(outfile, X)
print("The array is")
print(X)
outfile.seek(0) # using the same array
M = np.load(outfile)
r = len(M) - 1
z = _in_place_quick_sort(M, 0, r)
print(
"No of Comparisons for 100 elements selected from a standard normal distribution"
"is :"
)
print(z)