forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprime_numbers.py
109 lines (98 loc) · 2.99 KB
/
prime_numbers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
import math
from collections.abc import Generator
def slow_primes(max_n: int) -> Generator[int, None, None]:
"""
Return a list of all primes numbers up to max.
>>> list(slow_primes(0))
[]
>>> list(slow_primes(-1))
[]
>>> list(slow_primes(-10))
[]
>>> list(slow_primes(25))
[2, 3, 5, 7, 11, 13, 17, 19, 23]
>>> list(slow_primes(11))
[2, 3, 5, 7, 11]
>>> list(slow_primes(33))
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]
>>> list(slow_primes(10000))[-1]
9973
"""
numbers: Generator = (i for i in range(1, (max_n + 1)))
for i in (n for n in numbers if n > 1):
for j in range(2, i):
if (i % j) == 0:
break
else:
yield i
def primes(max_n: int) -> Generator[int, None, None]:
"""
Return a list of all primes numbers up to max.
>>> list(primes(0))
[]
>>> list(primes(-1))
[]
>>> list(primes(-10))
[]
>>> list(primes(25))
[2, 3, 5, 7, 11, 13, 17, 19, 23]
>>> list(primes(11))
[2, 3, 5, 7, 11]
>>> list(primes(33))
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]
>>> list(primes(10000))[-1]
9973
"""
numbers: Generator = (i for i in range(1, (max_n + 1)))
for i in (n for n in numbers if n > 1):
# only need to check for factors up to sqrt(i)
bound = int(math.sqrt(i)) + 1
for j in range(2, bound):
if (i % j) == 0:
break
else:
yield i
def fast_primes(max_n: int) -> Generator[int, None, None]:
"""
Return a list of all primes numbers up to max.
>>> list(fast_primes(0))
[]
>>> list(fast_primes(-1))
[]
>>> list(fast_primes(-10))
[]
>>> list(fast_primes(25))
[2, 3, 5, 7, 11, 13, 17, 19, 23]
>>> list(fast_primes(11))
[2, 3, 5, 7, 11]
>>> list(fast_primes(33))
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]
>>> list(fast_primes(10000))[-1]
9973
"""
numbers: Generator = (i for i in range(1, (max_n + 1), 2))
# It's useless to test even numbers as they will not be prime
if max_n > 2:
yield 2 # Because 2 will not be tested, it's necessary to yield it now
for i in (n for n in numbers if n > 1):
bound = int(math.sqrt(i)) + 1
for j in range(3, bound, 2):
# As we removed the even numbers, we don't need them now
if (i % j) == 0:
break
else:
yield i
def benchmark():
"""
Let's benchmark our functions side-by-side...
"""
from timeit import timeit
setup = "from __main__ import slow_primes, primes, fast_primes"
print(timeit("slow_primes(1_000_000_000_000)", setup=setup, number=1_000_000))
print(timeit("primes(1_000_000_000_000)", setup=setup, number=1_000_000))
print(timeit("fast_primes(1_000_000_000_000)", setup=setup, number=1_000_000))
if __name__ == "__main__":
number = int(input("Calculate primes up to:\n>> ").strip())
for ret in primes(number):
print(ret)
benchmark()