forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsierpinski_triangle.py
84 lines (69 loc) · 2.65 KB
/
sierpinski_triangle.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
"""
Author Anurag Kumar | anuragkumarak95@gmail.com | git/anuragkumarak95
Simple example of fractal generation using recursion.
What is the Sierpiński Triangle?
The Sierpiński triangle (sometimes spelled Sierpinski), also called the
Sierpiński gasket or Sierpiński sieve, is a fractal attractive fixed set with
the overall shape of an equilateral triangle, subdivided recursively into
smaller equilateral triangles. Originally constructed as a curve, this is one of
the basic examples of self-similar sets—that is, it is a mathematically
generated pattern that is reproducible at any magnification or reduction. It is
named after the Polish mathematician Wacław Sierpiński, but appeared as a
decorative pattern many centuries before the work of Sierpiński.
Usage: python sierpinski_triangle.py <int:depth_for_fractal>
Credits:
The above description is taken from
https://en.wikipedia.org/wiki/Sierpi%C5%84ski_triangle
This code was written by editing the code from
https://www.riannetrujillo.com/blog/python-fractal/
"""
import sys
import turtle
def get_mid(p1: tuple[float, float], p2: tuple[float, float]) -> tuple[float, float]:
"""
Find the midpoint of two points
>>> get_mid((0, 0), (2, 2))
(1.0, 1.0)
>>> get_mid((-3, -3), (3, 3))
(0.0, 0.0)
>>> get_mid((1, 0), (3, 2))
(2.0, 1.0)
>>> get_mid((0, 0), (1, 1))
(0.5, 0.5)
>>> get_mid((0, 0), (0, 0))
(0.0, 0.0)
"""
return (p1[0] + p2[0]) / 2, (p1[1] + p2[1]) / 2
def triangle(
vertex1: tuple[float, float],
vertex2: tuple[float, float],
vertex3: tuple[float, float],
depth: int,
) -> None:
"""
Recursively draw the Sierpinski triangle given the vertices of the triangle
and the recursion depth
"""
my_pen.up()
my_pen.goto(vertex1[0], vertex1[1])
my_pen.down()
my_pen.goto(vertex2[0], vertex2[1])
my_pen.goto(vertex3[0], vertex3[1])
my_pen.goto(vertex1[0], vertex1[1])
if depth == 0:
return
triangle(vertex1, get_mid(vertex1, vertex2), get_mid(vertex1, vertex3), depth - 1)
triangle(vertex2, get_mid(vertex1, vertex2), get_mid(vertex2, vertex3), depth - 1)
triangle(vertex3, get_mid(vertex3, vertex2), get_mid(vertex1, vertex3), depth - 1)
if __name__ == "__main__":
if len(sys.argv) != 2:
raise ValueError(
"Correct format for using this script: "
"python fractals.py <int:depth_for_fractal>"
)
my_pen = turtle.Turtle()
my_pen.ht()
my_pen.speed(5)
my_pen.pencolor("red")
vertices = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle
triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))