forked from TheAlgorithms/Python
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmax_product_subarray.py
53 lines (47 loc) · 1.56 KB
/
max_product_subarray.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
def max_product_subarray(numbers: list[int]) -> int:
"""
Returns the maximum product that can be obtained by multiplying a
contiguous subarray of the given integer list `nums`.
Example:
>>> max_product_subarray([2, 3, -2, 4])
6
>>> max_product_subarray((-2, 0, -1))
0
>>> max_product_subarray([2, 3, -2, 4, -1])
48
>>> max_product_subarray([-1])
-1
>>> max_product_subarray([0])
0
>>> max_product_subarray([])
0
>>> max_product_subarray("")
0
>>> max_product_subarray(None)
0
>>> max_product_subarray([2, 3, -2, 4.5, -1])
Traceback (most recent call last):
...
ValueError: numbers must be an iterable of integers
>>> max_product_subarray("ABC")
Traceback (most recent call last):
...
ValueError: numbers must be an iterable of integers
"""
if not numbers:
return 0
if not isinstance(numbers, (list, tuple)) or not all(
isinstance(number, int) for number in numbers
):
raise ValueError("numbers must be an iterable of integers")
max_till_now = min_till_now = max_prod = numbers[0]
for i in range(1, len(numbers)):
# update the maximum and minimum subarray products
number = numbers[i]
if number < 0:
max_till_now, min_till_now = min_till_now, max_till_now
max_till_now = max(number, max_till_now * number)
min_till_now = min(number, min_till_now * number)
# update the maximum product found till now
max_prod = max(max_prod, max_till_now)
return max_prod