forked from Bayer-Group/sas2r
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path08-plots-examples-waterfall.Rmd
255 lines (220 loc) · 9.8 KB
/
08-plots-examples-waterfall.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
### Waterfall Plot
#### Packages and Sample Data
```{r, message = FALSE, warning = FALSE, error = FALSE}
# Packages
library(gridExtra)
library(grid)
# Data
wp <- data.frame(subjidn = 1:30,
trtp = sample(c('Drug','Placebo'), replace = T, 30),
aval = runif(30, min = -40, max = 40))
```
```{r echo = F}
head(wp) %>%
kableExtra::kable(align = 'c')
```
#### Basic Waterfall Plot
Create an initial waterfall plot
```{r, message = FALSE, warning = FALSE, error = FALSE}
basic_waterfall <- ggplot(wp, aes(y = aval,x = reorder(subjidn, -aval))) +
geom_bar(stat = "identity")
basic_waterfall
```
#### Adding Customizations
Add a few customizations to the waterfall plot
1. Bar fill color is determined by trtp value
2. Specify custom colors, name the legend
3. Specify Y-axis goes from -40 to 40, by increments of 10
4. Add in a Y-axis label
5. Specify a base theme
6. Remove the X-axis
7. Move legend to bottom of graph
#### Customized Waterfall Plot
```{r, message = FALSE, warning = FALSE, error = FALSE}
custom_waterfall <- ggplot(wp, aes(y = aval, x = reorder(subjidn, -aval), fill = trtp)) +
geom_bar(stat = "identity") +
scale_fill_manual("Planned Treatment Arm", values = c('#00bbff','#89d329')) +
scale_y_continuous(limits = c(-40,40), breaks = seq(-40, 40, by = 10)) +
ylab("Maximum reduction of tumor size (%)\n") +
theme_light() +
theme(axis.title.x = element_blank(),
axis.line.x = element_blank(),
axis.text.x = element_blank(),
axis.ticks.x = element_blank(),
legend.position = "bottom")
custom_waterfall
```
#### Study Example
* A special waterfall plot layout is needed in a real study. In this layout, biomarker information in the subject level needs to be added at the bottom of the waterfall plots.
* The dataset for the plot was derived from ADRS and ADSL in SAS; simulated data is used in this demo.
Simulate Data:
```{r, message=FALSE, warnings=FALSE}
set.seed(100)
n <- 120 # size/records of simulated data
dat_all <-
data.frame(SUBJID = 120010100:(120010100+n-1),
AVAL = c(rnorm(round(0.8*n), 0, 20), rep(0, round(0.2*n))) %>% sample(),
OVERALLRESP = c("PR", "SD","PD") %>% sample(size=n, replace=TRUE),
AMEDGRPN = seq(10, 50, 10) %>% sample(size=n, replace=TRUE),
DOR = rpois(n, 40),
AVISIT = c("C1", "C2", "C3","EOT") %>% sample(size=n, replace=TRUE),
ATMLOSS_L = c("E", "L", "Data unavailable") %>% sample(size=n, replace=TRUE),
ATMLOSS_P = c("E", "L", "Data unavailable") %>% sample(size=n, replace=TRUE),
ATMLOSS_R = c("E", "L", "Data unavailable") %>% sample(size=n, replace=TRUE),
IDFOOT = "Bayer: /study/path/.../f_waterfall.sas 30NOV2021 16:06"
) %>%
mutate_at(vars("OVERALLRESP", "DOR", "IDFOOT"), as.character)
```
* X: SUBJID
* Y: AVAL (derived from ADRS.AVAL when ADRS.PARAM = "Maximum Tumor Reduction (%)")
* Label: OVERALLRESP (derived from ADRS.AVAL when ADRS.PARAM = "Best Overall Response")
* Subset: AMEDGRPN (5 groups)
* A graph function is created in the real study for different analysis groups, in this demo, we subset data to AMEDGRPN = 50.
```{r, echo=FALSE, message=FALSE, warnings=FALSE}
dat_all %>%
filter(AMEDGRPN==50) %>%
select(SUBJID, AVAL, OVERALLRESP, AMEDGRPN,
DOR, AVISIT, ATMLOSS_L, ATMLOSS_P, ATMLOSS_R) %>%
head() %>%
kableExtra::kable(align = 'c')
dat <- dat_all %>% filter(AMEDGRPN==50)
```
**Create a waterfall plot with simulated data and below customization**
1. Add x/y-axis labels through function "labs"
2. SUBJID has long digits, below functions are used to avoid overlapping at x-axis:
+ function stringr::str_wrap: add split character “\n" between digits
+ function gsub: add space between digits to enable the use of str_wrap
+ function stringr::str_replace_all: remove space
3. Specify legend title, order/colors (similar to SAS sgplot - dattrmap)
4. Annotation on the top of the bar when Y=0
5. Adjust background, legend, and size/color/font of x/y-axis aesthetics through Theme
```{r, message=FALSE, warnings=FALSE, fig.dim = c(9, 4)}
waterfall.plot <- dat %>% ggplot(aes(reorder(SUBJID, -AVAL), AVAL, fill =OVERALLRESP)) +
geom_bar(stat="identity") +
labs(x = "Subject",
y = "Best % Change from baseline \n in sum of diameters \n (target lesions)\n") +
scale_x_discrete(labels = function(x) stringr::str_wrap(gsub("([0-9])([0-9])", "\\1 \\2 ", x),
width = 5) %>%
stringr::str_replace_all(" ", "")) +
scale_fill_manual("Best Response",
breaks = c("PR", "SD","PD"),
values=c("PR"='#89d329',
"SD"="#756bb1",
"PD"='#00bbff')) +
geom_text(aes(label = if_else(AVAL == 0,OVERALLRESP,""),fontface="bold"),
vjust = -1,
size=3,
color="black") + theme_bw() +
theme(
axis.text = element_text(size=12,color="black",face = "bold"),
axis.title.y = element_text(size=12, face="bold"),
axis.title.x = element_blank(),
legend.background = element_rect(color = "steelblue", linetype = "solid"),
legend.justification = c(1, 1),
legend.position = c(1, 1),
legend.direction = "horizontal",
legend.text = element_text(size=8, color = "black", face = "bold"),
legend.title = element_text(size=8, color = "black", face = "bold"),
plot.caption = element_text(hjust = 0, size = 10, color = "blue"),
plot.caption.position = "plot"
)
waterfall.plot
```
As requested from the study, more information at subject level needs to be added in the bottom of the waterfall plots. Thus, two more plots are created (add-in plot1/2) to display the subject level information.
* Add-in plot 1: visit and duration of response information at subject level
```{r, message=FALSE, warnings=FALSE, fig.dim = c(9, 3)}
var <- c("DOR", "AVISIT")
var_label <- c("Duration (days)", "Timepoint")
add.plot1 <- dat %>%
reshape2::melt(measure.vars = eval(var), value.name = "label", variable.name = "layer") %>%
mutate(layer = factor(layer, levels = var, labels = var_label)) %>%
ggplot(aes(reorder(SUBJID, -AVAL))) +
geom_text(aes(y = layer, label = label), size = 3, fontface = "bold") +
labs(y = "", x = NULL) +
theme_minimal() +
theme(
axis.text.y = element_text(
size = 10,
colour = "black",
face = "bold"
),
axis.line = element_blank(),
axis.ticks = element_blank(),
axis.text.x = element_blank(),
panel.grid = element_blank(),
strip.text = element_blank()
) +
coord_fixed(ratio = .8)
add.plot1
```
* Add-in plot 2: biomarker-related information at subject level, footnotes are added in this plot
+ wrap long footnote by adding "\\n\" or using stringr::str_wrap
+ display SAS macro variable "&idfoot."
Footnotes:
```{r}
footnote1 <- 'Footnote1: "\\n\" can be used to split long footnote into next line.'
footnote2 <- "Footnote2: To avoid manually adding split character. The function stringr::str_wrap can be used here to wrap the long text with a specified width."
footnote <- lapply(c(footnote1,
footnote2,
"",
dat$IDFOOT[1]),
function(x) stringr::str_wrap(x, width=120)) %>% # apply str_wrap to individual footnote
unlist() %>% # convert list structure to vector
stringr::str_flatten('\n') # add split character(new line) between footnotes
```
```{r, error = FALSE, message=FALSE, warnings=FALSE, fig.dim = c(9, 3)}
var <- c("ATMLOSS_L", "ATMLOSS_P","ATMLOSS_R")
var_label <- c("Local", "Prospective", "Retrospective")
add.plot2 <- dat %>%
reshape2::melt(measure.vars = eval(var),
value.name = "label",
variable.name = "layer") %>%
mutate(label=case_when(
label == "L" ~ "ATM Loss",
label == "E" ~ "ATM Expressed",
label == "9" ~ "Data unavailable",
TRUE ~ label
)) %>%
mutate(layer = factor(layer, levels = rev(var), labels = rev(var_label))) %>%
ggplot() +
aes(reorder(SUBJID, -AVAL), layer, color=label,shape=label) +
geom_point(size=3)+
scale_shape_manual(breaks = c("ATM Loss","ATM Expressed", "Data unavailable"),
values = c("ATM Loss"=15,"ATM Expressed"=0,
"Data unavailable"=7))+
scale_color_manual(values = c("ATM Loss"="black", "ATM Expressed"="black",
"Data unavailable"= 'black'))+
theme_classic()+
theme(axis.text=element_text(size=10, colour = "black",face = "bold"),
axis.title=element_blank(),
axis.line = element_blank(),
axis.ticks = element_blank(),
axis.text.x = element_blank(),
legend.title = element_blank(),
legend.text = element_text(size=10, color = "black", face = "bold"),
legend.position = "bottom",
panel.border = element_blank(),
panel.grid = element_blank(),
strip.text = element_blank(),
plot.caption = element_text(hjust = 0, size = 10),
plot.caption.position = "plot"
)+
coord_fixed(ratio=.9)+
labs(caption = footnote)
add.plot2
```
* The following functions are used to combine three plots aligned with x value.
+ ggplot2::ggplotGrob
+ gridExtra::gtable_rbind
+ grid::grid.draw
* Align the three plots with the same x-axis (SUBJID).
+ waterfall.plot
+ add.plot1
+ add.plot2
```{r, message=FALSE, warnings=FALSE, fig.dim = c(10, 7)}
p1 <- waterfall.plot %>% ggplotGrob()
p2 <- add.plot1 %>% ggplotGrob()
p3 <- add.plot2 %>% ggplotGrob()
gtable_rbind(p1, p2, p3,
size='first') %>% grid.draw()
```