-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtop_pc_auc_sess.m
283 lines (241 loc) · 8.15 KB
/
top_pc_auc_sess.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
%%
addpath('../workflow')
addpath(genpath('./'));
%%
clear;
load('mycc.mat');
setup_colors;
datasheet = get_data_sheet('multiarea');
warning off;
%% dataset information
opts = struct;
opts.base_dir = 'W:\Helmchen Group\Neurophysiology-Storage-03\Han\data\multiarea';
opts.data_dir = 'data_suite2p';
opts.result_dir = 'results_suite2p';
var_to_read = {'trial_vec', 'num_neuron', 'num_trial', 'trial_length', 'S_trial', ...
'ts', 'choice_time', 'task_label', 'F0', 'first_correct_lick'};
result_name = 'top_pc_auc_sess_2';
dataset = [131:186,188:256, 389:672];
% dataset = dataset(end:-1:1);
sess_len = 120; min_sess_len = 5;
standard_trial_structure = [0.5,1,1,0.5,2,4];
standard_fr = 10;
standard_ts = make_trial_structure(standard_trial_structure, standard_fr);
standard_ts_fr = cellfun(@(x) x/standard_fr, standard_ts, 'uniformoutput', false);
trial_len = standard_ts{end}(end);
tvec = (1:trial_len)/standard_fr;
num_shuff = 10;
num_ts = 6;
tnum = 2;
plot_result = 0;
%%
for dataid = dataset
%% dataset information
dinfo = data_info(datasheet, dataid, 'multiarea', opts.base_dir);
if dinfo.quality_idx==0; continue; end
eid = get_exp_condition_idx(dinfo);
if eid>=5; continue; end
spath = fullfile(dinfo.work_dir, opts.result_dir);
result_file = fullfile(spath, [result_name '.mat']);
% if exist(result_file); continue; end
fprintf('processing dataset %d\n', dataid);
%% assemble data from trials
data = load_data(dinfo, var_to_read, opts);
% for dataset 242, choice window is empty
if isempty(data.ts{4}); data.ts{4} = data.ts{3}(end):data.ts{5}(1); end
if data.ts{2}(1)==0; data.ts{2} = data.ts{2}(2:end); end
%% task labels
data.task_label.err_vec = data.task_label.rew_vec;
data.task_label.err_vec(data.task_label.err_vec>0) = 1;
data.task_label.err_vec(data.task_label.err_vec==0) = 2;
label = {data.task_label.cue_vec, ...
data.task_label.tex_vec, ...
data.task_label.choice_vec, ...
data.task_label.rew_vec};
%% normalize data
for a = 1:2
data.F0{a}(data.F0{a}==0) = 1;
data.S_trial{a} = data.S_trial{a}./repmat(data.F0{a}, 1, data.num_trial, data.trial_length);
end
% zscore each neuron
for a = 1:2
v = reshape(permute(data.S_trial{a},[3,2,1]), [], data.num_neuron(a));
v = zscore_nan(v, [], 1);
data.S_trial{a} = permute(reshape(v, data.trial_length, data.num_trial, data.num_neuron(a)), [3,2,1]);
end
% align data
for a = 1:2
data.S_rew{a} = align_data_by_choice(data.S_trial{a}, data.choice_time, data.ts);
data.S_rew_shift{a} = align_data_by_choice_shift(data.S_trial{a}, data.choice_time, data.ts);
end
S_num = data.num_neuron;
%% handle choice window
choice_tw = 5;
S_data = cell(1,2);
ts = data.ts;
for a = 1:2
S_data{a} = data.S_rew{a};
S_data{a}(:,:,ts{3}(end)+1:ts{3}(end)+choice_tw) = ...
data.S_rew_shift{a}(:,:,ts{4}(end)-choice_tw+1:ts{4}(end));
S_data{a} = S_data{a}(:,:,[1:ts{3}(end)+choice_tw, ts{5}(1):end]);
end
if isempty(ts{1}); ts{1} = 1:2; end
ts{4} = ts{3}(end)+1:ts{3}(end)+choice_tw;
ts{5} = (ts{4}(end)+1) : (ts{4}(end)+1) + length(ts{5});
ts{6} = (ts{5}(end)+1) : size(S_data{1},3);
data.trial_length = ts{6}(end);
%% remove mismatch trials
keep_idx = data.trial_vec<=4;
for a = 1:2
S_data{a} = S_data{a}(:,keep_idx,:);
end
data.trial_vec = data.trial_vec(keep_idx);
for n = 1:length(label)
label{n} = label{n}(keep_idx);
end
data.num_trial = sum(keep_idx);
%% split sessions
sess_idx = split_session(data.num_trial, sess_len, min_sess_len);
num_sess = length(sess_idx);
% behavior rate for each session
beh_rate = zeros(1,num_sess);
for n = 1:num_sess
n_act = sum(data.trial_vec(sess_idx{n})==1) + sum(data.trial_vec(sess_idx{n})==2) ...
+ sum(data.trial_vec(sess_idx{n})==3) + sum(data.trial_vec(sess_idx{n})==4);
n_correct = sum(data.trial_vec(sess_idx{n})==1) + sum(data.trial_vec(sess_idx{n})==2);
beh_rate(n) = n_correct/n_act*100;
end
%% align data to standard
for a = 1:2
S_data{a} = align_trial_to_standard(S_data{a}, ts, standard_ts);
end
data.trial_length = trial_len;
num_neuron = data.num_neuron;
num_trial = data.num_trial;
trial_vec = data.trial_vec;
%% split sessions
sess_idx = split_session(data.num_trial, sess_len, min_sess_len);
num_sess = length(sess_idx);
% behavior rate for each session
beh_rate = zeros(1,num_sess);
miss_rate = zeros(1,num_sess);
for n = 1:num_sess
n_act = sum(data.trial_vec(sess_idx{n})==1) + sum(data.trial_vec(sess_idx{n})==2) ...
+ sum(data.trial_vec(sess_idx{n})==3) + sum(data.trial_vec(sess_idx{n})==4)...
+ sum(data.trial_vec(sess_idx{n})==7.5) + sum(data.trial_vec(sess_idx{n})==8.5)...
+ sum(data.trial_vec(sess_idx{n})==7.6) + sum(data.trial_vec(sess_idx{n})==8.6);
n_noact = sum(data.trial_vec(sess_idx{n})==5) + sum(data.trial_vec(sess_idx{n})==6) ...
+ sum(data.trial_vec(sess_idx{n})==7) + sum(data.trial_vec(sess_idx{n})==8)...
+ sum(data.trial_vec(sess_idx{n})==13) + sum(data.trial_vec(sess_idx{n})==14);
n_correct = sum(data.trial_vec(sess_idx{n})==1) + sum(data.trial_vec(sess_idx{n})==2);
beh_rate(n) = n_correct/n_act*100;
miss_rate(n) = n_noact/length(sess_idx{n})*100;
end
%% sliding PCA on each sess
num_pc = 5;
S_sess = cell(num_sess,2);
trial_vec_sess = cell(num_sess,1);
label_sess = cell(num_sess,length(label));
for m = 1:num_sess
trial_vec_sess{m} = data.trial_vec(sess_idx{m});
for a = 1:2
S_sess{m,a} = nan(length(sess_idx{m}),trial_len,num_pc);
for t = 1:trial_len
v = S_data{a}(:,sess_idx{m},t)';
v(isnan(v)) = 0;
[~,sc] = pca(v);
if size(sc,2)<num_pc
sc = padarray(sc, [0, num_pc-size(sc,2)], NaN, 'post');
end
S_sess{m,a}(:,t,:) = sc(:,1:num_pc);
end
end
for k = 1:length(label)
label_sess{m,k} = label{k}(sess_idx{m});
end
end
%% AUC per PC
num_cond = length(label);
pc_auc = nan(num_sess, trial_len, num_cond, 2, num_pc);
for m = 1:num_sess
for k = 1:num_cond
Y = label_sess{m,k};
for a = 1:2
for i = 1:num_pc
X = S_sess{m,a}(:,:,i);
X(isnan(X)) = 0;
parfor t = 1:trial_len
x = X(:,t);
try
[~,~,~,pc_auc(m,t,k,a,i)] = perfcurve(Y,x,1);
catch ME
continue;
end
end
end
end
end
end
%% by trial type
pc_auc_tt = nan(num_sess, trial_len, num_cond, tnum, 2, num_pc);
for m = 1:num_sess
for k = 1:num_cond
Y = label_sess{m,k};
for tt = 1:tnum
t_idx = trial_vec_sess{m}==2*tt-1 | trial_vec_sess{m}==2*tt;
y = Y(t_idx);
for a = 1:2
for i = 1:num_pc
X = S_sess{m,a}(t_idx,:,i);
X(isnan(X)) = 0;
parfor t = 1:trial_len
x = X(:,t);
try
[~,~,~,pc_auc_tt(m,t,k,tt,a,i)] = perfcurve(y,x,1);
catch ME
continue;
end
end
end
end
end
end
end
%%
if plot_result
%% plot
k = 1;
figure;
for i = 1:num_pc
for a = 1:2
subplot(num_pc,2,(i-1)*2+a); hold on;
v = pc_auc(:,:,k,a,i)';
v = abs(v*2-1);
plot(v, 'color', 'k');
% plot([1 trial_len], [0 0], 'k:');
ylim([0 1]);
draw_trial_structure(standard_ts);
xlim([0 standard_ts{5}(end)]);
end
end
%% plot by trial type
k=1;
figure;
for i = 1:num_pc
for a = 1:2
subplot(num_pc,2,(i-1)*2+a); hold on;
for tt = 1:tnum
v = pc_auc_tt(:,:,k,tt,a,i)';
v = abs(v*2-1);
plot(v, 'color', cc_trial{2*tt-1});
end
ylim([0 1]);
draw_trial_structure(standard_ts);
xlim([0 standard_ts{5}(end)]);
end
end
end
%% save
save(result_file, 'beh_rate', 'miss_rate', 'sess_idx', 'num_sess',...
'pc_auc', 'pc_auc_tt', '-v7.3');
end