-
Notifications
You must be signed in to change notification settings - Fork 111
/
Copy pathconfig.py
59 lines (56 loc) · 3.34 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import argparse
from utils.train_utils import add_flags_from_config
config_args = {
'training_config': {
'lr': (0.01, 'learning rate'),
'dropout': (0.0, 'dropout probability'),
'cuda': (-1, 'which cuda device to use (-1 for cpu training)'),
'epochs': (5000, 'maximum number of epochs to train for'),
'weight-decay': (0., 'l2 regularization strength'),
'optimizer': ('Adam', 'which optimizer to use, can be any of [Adam, RiemannianAdam]'),
'momentum': (0.999, 'momentum in optimizer'),
'patience': (100, 'patience for early stopping'),
'seed': (1234, 'seed for training'),
'log-freq': (1, 'how often to compute print train/val metrics (in epochs)'),
'eval-freq': (1, 'how often to compute val metrics (in epochs)'),
'save': (0, '1 to save model and logs and 0 otherwise'),
'save-dir': (None, 'path to save training logs and model weights (defaults to logs/task/date/run/)'),
'sweep-c': (0, ''),
'lr-reduce-freq': (None, 'reduce lr every lr-reduce-freq or None to keep lr constant'),
'gamma': (0.5, 'gamma for lr scheduler'),
'print-epoch': (True, ''),
'grad-clip': (None, 'max norm for gradient clipping, or None for no gradient clipping'),
'min-epochs': (100, 'do not early stop before min-epochs')
},
'model_config': {
'task': ('nc', 'which tasks to train on, can be any of [lp, nc]'),
'model': ('GCN', 'which encoder to use, can be any of [Shallow, MLP, HNN, GCN, GAT, HyperGCN]'),
'dim': (128, 'embedding dimension'),
'manifold': ('Euclidean', 'which manifold to use, can be any of [Euclidean, Hyperboloid, PoincareBall]'),
'c': (1.0, 'hyperbolic radius, set to None for trainable curvature'),
'r': (2., 'fermi-dirac decoder parameter for lp'),
't': (1., 'fermi-dirac decoder parameter for lp'),
'pretrained-embeddings': (None, 'path to pretrained embeddings (.npy file) for Shallow node classification'),
'pos-weight': (0, 'whether to upweight positive class in node classification tasks'),
'num-layers': (2, 'number of hidden layers in encoder'),
'bias': (1, 'whether to use bias (1) or not (0)'),
'act': ('relu', 'which activation function to use (or None for no activation)'),
'n-heads': (4, 'number of attention heads for graph attention networks, must be a divisor dim'),
'alpha': (0.2, 'alpha for leakyrelu in graph attention networks'),
'double-precision': ('0', 'whether to use double precision'),
'use-att': (0, 'whether to use hyperbolic attention or not'),
'local-agg': (0, 'whether to local tangent space aggregation or not')
},
'data_config': {
'dataset': ('cora', 'which dataset to use'),
'val-prop': (0.05, 'proportion of validation edges for link prediction'),
'test-prop': (0.1, 'proportion of test edges for link prediction'),
'use-feats': (1, 'whether to use node features or not'),
'normalize-feats': (1, 'whether to normalize input node features'),
'normalize-adj': (1, 'whether to row-normalize the adjacency matrix'),
'split-seed': (1234, 'seed for data splits (train/test/val)'),
}
}
parser = argparse.ArgumentParser()
for _, config_dict in config_args.items():
parser = add_flags_from_config(parser, config_dict)