-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTrained.py
executable file
·53 lines (52 loc) · 1.72 KB
/
Trained.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
from PIL import Image
import numpy as np
from collections import Counter
import os,random,time, csv, cv2
import pandas as pd
class Recog:
@staticmethod
def train(filename):
PATH = os.getcwd()
img_list = os.listdir("dataSet")
random.shuffle(img_list)
total_img = len(img_list)
with open(filename,'w',newline='') as f:
fieldnames = ['label', 'Image']
thewriter = csv.DictWriter(f,fieldnames=fieldnames)
thewriter.writeheader()
for i in range(0,total_img):
a = img_list[i].split('.')
label = a[0]
imgFilename = img_list[i]
img = Image.open('dataSet/'+imgFilename)
imgAr = np.array(img)
imgAr_str = str(imgAr.tolist())
thewriter.writerow({'label':label, "Image": imgAr_str})
@staticmethod
def recognize(image):
matchedAr = []
df = pd.read_csv("data.csv")
length = len(df)
iar = np.array(image)
arList = iar.tolist()
query = str(arList)
eachQueImg = query.split('],')
for i in range(0,length):
label = df.label[i]
curImg=df.Image[i]
eachCurImg = curImg.split('],')
x = 0
while x<len(eachCurImg):
if eachCurImg[x]==eachQueImg[x]:
matchedAr.append(int(label))
x+=1
x = Counter(matchedAr)
try:
lala = x.most_common(1)[0][0]
kala = x.most_common(1)[0][1]
if kala>150:
return (lala, kala)
except:
pass
x = Recog()
x.train('data.csv')