-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgen.rmd
211 lines (180 loc) · 8.26 KB
/
gen.rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
---
title: "Binaries valuation"
output:
pdf_document:
toc: false
number_sections: false
toc_depth: 2
keep_md: false
keep_tex: false
template: NULL
#pandoc_args: [
# --template=extras/haptic_template.tex
#]
html_document: default
tables: yes
geometry: margin=35mm
latex_engine: pdflatex
header-includes:
- \usepackage{float}
- \usepackage{pdfpages}
- \usepackage{tabu}
- \usepackage{lipsum}
- \usepackage{booktabs}
- \usepackage[justification=raggedright,labelfont=bf,singlelinecheck=false]{caption}
- \usepackage{array}
- \usepackage{xcolor}
- \usepackage{color, colortbl}
- \usepackage{amsmath}
- \usepackage{mathtools,mathptmx}
- \usepackage{bbm}
- \usepackage{tabularx}
- \usepackage{background}
- \usepackage[english]{babel}
- \usepackage{csquotes}
- \usepackage[style=alphabetic, backend=bibtex]{biblatex}
- \bibliography{bibliography/haptic.bib}
- \usepackage{tikz}
- \usepackage[font=small,labelfont=bf]{caption}
- \usetikzlibrary{shapes,positioning}
- \usepackage{wrapfig}
- \usepackage{eso-pic,graphicx,transparent}
- \DeclareUnicodeCharacter{2212}{-}
- \newcommand{\Tau}{\scalebox{1.22}{$\tau$}}
- \backgroundsetup{pages={some},contents={}, opacity={0.3}, color={gray}}
knit: (function(inputFile, encoding) {
rmarkdown::render(inputFile, encoding = encoding, output_dir = "pdf") })
---
\captionsetup[table]{labelformat=empty}
\captionsetup[table]{labelfont=bf}
\section{Notation and Definitions}
\begin{table}[H]
\centering
\begin{tabular}{ll}
\toprule
\textbf{Parameter} & \textbf{Description} \\
\midrule
$S$ & Spot price of the underlying asset at time $\tau$ \\
$K$ & Strike price of the option \\
$r$ & Risk-free interest rate \\
$\sigma$ & Volatility of the underlying asset \\
$\Tau$ & Time to expiry \\
$T$ & Maturity of the option \\
$\Phi$ & Cumulative distribution function of the standard normal distribution \\
$C$ & Value of a call option \\
$P$ & Value of a put option \\
$V_{AC}$ & Value of an asset-or-nothing call option \\
$V_{AP}$ & Value of an asset-or-nothing put option \\
$V_{CC}$ & Value of a cash-or-nothing call option \\
$V_{CP}$ & Value of a cash-or-nothing put option \\
\bottomrule
\end{tabular}
\end{table}
\section{Black-Scholes formula}
The value of a call option for a non-dividend-paying underlying stock in terms of the Black–Scholes parameters is:
\begin{flalign}
C & = S\Phi(d_{1}) − e^{−r\tau} K\Phi(d_{2}) \nonumber \\
\nonumber \\
d_{2} & = −\frac{\ln\Big(\frac{K}{S}\Big)− \Big(r−\frac{1}{2}\sigma^{2}\Big)\Tau}{\sigma\sqrt{\Tau}} \nonumber \\
\nonumber \\
d_{1} & = d_{2} + \sigma\sqrt{\Tau} \nonumber
\end{flalign}
The formula can be interpreted as breaking down a call option into the difference between two distinct binary options: an asset-or-nothing call option and a cash-or-nothing call option. Essentially, it involves going long on an asset-or-nothing call option while simultaneously going short on a cash-or-nothing call option. A standard call option allows the holder to trade cash for an asset upon its expiration, whereas an asset-or-nothing call option grants the holder the asset without any cash exchanged, and a cash-or-nothing call option provides the holder with cash without transferring any asset. The Black-Scholes formula for the call option value consists of the difference beteween the value of the two binary options. The payoff of the call option at maturity $T$ is given by:
\begin{flalign}
C_{(T)} & = max\{0, \text{\:}S_{(T)} − K\} = \left\{
\begin{array}{ll}
S_{(T)} - K, & S_{(T)} > K, \\
0, & \text{otherwise}.
\end{array}
\right. \nonumber
\end{flalign}
The first component is the payment of the exercise price contingent to the option ending in the money. The payoff of this component is:
\begin{flalign}
C^{1}_{(T)} & = \left\{
\begin{array}{ll}
− K, & S_{(T)} > K, \\
0, & \text{otherwise}.
\end{array}
\right. \nonumber
\end{flalign}
The second component is the receipt of the asset, again contingent to the option ending in the money. The payoff of this component is:
\begin{flalign}
C^{2}_{(T)} & = \left\{
\begin{array}{ll}
S_{(T)}, & S_{(T)} > K, \\
0, & \text{otherwise}.
\end{array}
\right. \nonumber
\end{flalign}
\subsection{Asset-or-nothing Call}
With this type of option, the payout is one unit of the underlying asset if the spot price $S$ at maturity $T$ ($S_{(T)}$) is above the strike price $K$ or zero otherwise. The payoff of this option contingent to the receipt of the asset equals the expected value, computed using risk-adjusted probabilities and discounted ad the risk-less rate. The expected future value of this option is the product of the partial expectation of the asset price at exercise and the probability of the exercise event. $\Phi(d_{1})$ is a measure by which the discounted expected value of contingent receipt of the asset exceeds the present value of the asset.
\begin{flalign}
V_{AC_{(T)}} & = \left\{
\begin{array}{ll}
S_{(T)}, & S_{(T)} > K, \\
0, & \text{otherwise}.
\end{array}
\right. \nonumber \\
\nonumber \\
V_{AC} & = {\rm e}^{−r\tau} \underbrace{ \mathbb{E}[S_{(T)}\mathbbm{1}_{[S_{(T)} > K]}]
}_\text{Partial expectation} \underbrace{\mathbb{P}\{S_{(T)} > K\}}_\text{Probability of exercise} \nonumber \\
\nonumber \\
& \mathbb{E}[S_{(T)}\mathbbm{1}_{[S_{(T)} > K]}] \mathbb{P}\{S_{(T)} > K\} = S{\rm e}^{r\tau} \Phi(d_{1}) \nonumber \\
\nonumber \\
V_{AC} & = {\rm e}^{−r\tau} S{\rm e}^{r\tau} \Phi(d_{1}) = S{\rm e}^{−r\tau} \Phi(d_{1}) \label{eq:1}
\end{flalign}
\subsection{Asset-or-nothing Put}
With this type of option, the payout is one unit of the underlying asset if the spot price S at maturity is below the strike price K or zero otherwise.
\begin{flalign}
V_{AP_{(T)}} =\left\{
\begin{array}{ll}
S_{(T)}, & \text{if } S_{(T)} < K, \\
0, & \text{otherwise}.
\end{array}
\right. \nonumber
\end{flalign}
Using put-call parity, we can derive the value of an asset-or-nothing binary put option ($V_{AP}$) by substituting \eqref{eq:1} in the formula for $V_{AP}$:
\begin{flalign}
V_{AP} & = S {\rm e}^{−r\tau} − V_{AC} \nonumber \\
& = S{\rm e}^{−r\tau}−S{\rm e}^{−r\tau} \Phi(d_{1}) \nonumber \\
& = S{\rm e}^{−r\tau} (1 − \Phi(d_{1})) \nonumber \\
& = S{\rm e}^{−r\tau} \Phi(−d_{1}) \label{eq:2}
\end{flalign}
\subsection{Cash-or-nothing Call}
For cash-or-nothing call, the payout is one unit of risk-less asset if the spot price S at maturity $T$ is above the strike price K or zero otherwise. Since this type of option does not involve receiving an asset, the payoff does not depend on the expectation of the asset price at exercise but rather on the probability of the exercise event.
\begin{flalign}
V_{CC_{(T)}} & = \left\{
\begin{array}{ll}
1, & \text{if } S_{(T)} > K, \\
0, & \text{otherwise}.
\end{array}
\right. \nonumber \\
\nonumber \\
V_{CC} & = {\rm e}^{−r\tau} \mathbb{E}[v_{CC}(T, S_{(T)})] \nonumber \\
& = {\rm e}^{−r\tau} \mathbb{E}[\mathbbm{1}_{[S_{(T)}>K]}] \nonumber \\
& = {\rm e}^{−r\tau} \underbrace{\mathbb{P} [S_{(T)}>K]}_\text{Tail probability} \nonumber \\
\nonumber \\
& \mathbb{P}[S_{(T)} > K] = \Phi(d_{2}) \nonumber \\
\nonumber \\
V_{CC} & = {\rm e}^{−r\tau} \Phi(d_{2}) \label{eq:3}
\end{flalign}
The value of a this option equals the risk-free compounding factor multiplied by $\Phi{(d_{2})}$, the risk-adjusted probability that the option will be exercised.
\subsection{Cash-or-nothing Put}
With this type of option, the payout is one unit of risk-less asset if the spot price S at maturity $T$ is below the strike price K or zero otherwise.
\begin{flalign}
V_{CP_{(T)}} =\left\{
\begin{array}{ll}
1, & \text{if } S_{(T)} < K, \\
0, & \text{otherwise}.
\end{array}
\right. \nonumber
\end{flalign}
Using put-call parity, we can derive the value of an cash-or-nothing binary put option ($V_{CP}$) by substituing the value of $V_{CC}$ in the formula for $V_{CP}$:
\begin{flalign}
V_{CP} & = {\rm e}^{−r\tau} − V_{CC} \nonumber \\
& = {\rm e}^{−r\tau} − {\rm e}^{−r\tau} \Phi(d_{2}) \nonumber \\
& = {\rm e}^{−r\tau} (1 − \Phi(d_{2})) \nonumber \\
& = {\rm e}^{−r\tau} \Phi(−d_{2}) \label{eq:4}
\end{flalign}
\newpage
\printbibliography