-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCOVID19_dialysis_print_results_final.py
312 lines (273 loc) · 17.7 KB
/
COVID19_dialysis_print_results_final.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
"""
Author: Hankyu Jang
Email: hankyu-jang@uiowa.edu
Last Modified: Aug, 2020
Description: This script prints numbers (e.g. infection count, attack rate, tranmission route percentages, etc) for paper
"""
import argparse
import numpy as np
def percentage_reduction(start_value, final_value):
return 100 * (start_value - final_value) / start_value
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Draw cumulative incidence')
parser.add_argument('-day', '--day', type=int, default=10,
help= 'day of csv file that contains the latent positions of hcws')
parser.add_argument('-s', '--scenario', type=int, default=0,
help= 'Infection source: scenario 0 = patient, scenario 1 = hcw')
args = parser.parse_args()
day = args.day
s = args.scenario
n_patients = 40
n_HCPs = 11
if s == 0:
source = "patient"
elif s == 1:
source = "hcw"
############################################################################################################3
# Read npzfile
npzfile = np.load("dialysis/results/day{}/final_scenario{}.npz".format(day, s))
B_n_inf_rec = npzfile["B_n_inf_rec"]
B_transmission_route = npzfile["B_transmission_route"]
B_population = npzfile["B_population"]
B_R0 = npzfile["B_R0"]
B_generation_time = npzfile["B_generation_time"]
H0_n_inf_rec = npzfile["H0_n_inf_rec"]
H0_transmission_route = npzfile["H0_transmission_route"]
H0_population = npzfile["H0_population"]
H0_R0 = npzfile["H0_R0"]
H0_generation_time = npzfile["H0_generation_time"]
H1_n_inf_rec = npzfile["H1_n_inf_rec"]
H1_transmission_route = npzfile["H1_transmission_route"]
H1_population = npzfile["H1_population"]
H1_R0 = npzfile["H1_R0"]
H1_generation_time = npzfile["H1_generation_time"]
P2_n_inf_rec = npzfile["P2_n_inf_rec"]
P2_transmission_route = npzfile["P2_transmission_route"]
P2_population = npzfile["P2_population"]
P2_R0 = npzfile["P2_R0"]
P2_generation_time = npzfile["P2_generation_time"]
H2P2_n_inf_rec = npzfile["H2P2_n_inf_rec"]
H2P2_transmission_route = npzfile["H2P2_transmission_route"]
H2P2_population = npzfile["H2P2_population"]
H2P2_R0 = npzfile["H2P2_R0"]
H2P2_generation_time = npzfile["H2P2_generation_time"]
H2P2v2_n_inf_rec = npzfile["H2P2v2_n_inf_rec"]
H2P2v2_transmission_route = npzfile["H2P2v2_transmission_route"]
H2P2v2_population = npzfile["H2P2v2_population"]
H2P2v2_R0 = npzfile["H2P2v2_R0"]
H2P2v2_generation_time = npzfile["H2P2v2_generation_time"]
N0_n_inf_rec = npzfile["N0_n_inf_rec"]
N0_transmission_route = npzfile["N0_transmission_route"]
N0_population = npzfile["N0_population"]
N0_R0 = npzfile["N0_R0"]
N0_generation_time = npzfile["N0_generation_time"]
N1_n_inf_rec = npzfile["N1_n_inf_rec"]
N1_transmission_route = npzfile["N1_transmission_route"]
N1_population = npzfile["N1_population"]
N1_R0 = npzfile["N1_R0"]
N1_generation_time = npzfile["N1_generation_time"]
H3P1_n_inf_rec = npzfile["H3P1_n_inf_rec"]
H3P1_transmission_route = npzfile["H3P1_transmission_route"]
H3P1_population = npzfile["H3P1_population"]
H3P1_R0 = npzfile["H3P1_R0"]
H3P1_generation_time = npzfile["H3P1_generation_time"]
Bp_n_inf_rec = npzfile["Bp_n_inf_rec"]
Bp_transmission_route = npzfile["Bp_transmission_route"]
Bp_population = npzfile["Bp_population"]
Bp_R0 = npzfile["Bp_R0"]
Bp_generation_time = npzfile["Bp_generation_time"]
Bpp_n_inf_rec = npzfile["Bpp_n_inf_rec"]
Bpp_transmission_route = npzfile["Bpp_transmission_route"]
Bpp_population = npzfile["Bpp_population"]
Bpp_R0 = npzfile["Bpp_R0"]
Bpp_generation_time = npzfile["Bpp_generation_time"]
Bppp_n_inf_rec = npzfile["Bppp_n_inf_rec"]
Bppp_transmission_route = npzfile["Bppp_transmission_route"]
Bppp_population = npzfile["Bppp_population"]
Bppp_R0 = npzfile["Bppp_R0"]
Bppp_generation_time = npzfile["Bppp_generation_time"]
npzfile.close()
npzfile = np.load("dialysis/results/day{}/baseline_scenario{}.npz".format(day, s))
B_n_inf_rec = npzfile["B_n_inf_rec"]
B_transmission_route = npzfile["B_transmission_route"]
B_population = npzfile["B_population"]
B_R0 = npzfile["B_R0"]
B_generation_time = npzfile["B_generation_time"]
npzfile.close()
############################################################################################################3
# Preprocess some of the result tables
############################################################################################################3
B_H_infection = B_n_inf_rec[:,:,:,0,0,:] + B_n_inf_rec[:,:,:,1,0,:] + B_n_inf_rec[:,:,:,2,0,:]
B_P_infection = B_n_inf_rec[:,:,:,0,1,:] + B_n_inf_rec[:,:,:,1,1,:] + B_n_inf_rec[:,:,:,2,1,:]
B_T_infection = B_H_infection + B_P_infection
B_T_cum_infection = np.cumsum(B_T_infection, axis=-1)
B_T_cum_attack_rate = B_T_cum_infection / B_population
H0_H_infection = H0_n_inf_rec[:,:,:,:,0,0,:] + H0_n_inf_rec[:,:,:,:,1,0,:] + H0_n_inf_rec[:,:,:,:,2,0,:]
H0_P_infection = H0_n_inf_rec[:,:,:,:,0,1,:] + H0_n_inf_rec[:,:,:,:,1,1,:] + H0_n_inf_rec[:,:,:,:,2,1,:]
H0_T_infection = H0_H_infection + H0_P_infection
H0_T_cum_infection = np.cumsum(H0_T_infection, axis=-1)
H0_T_cum_attack_rate = H0_T_cum_infection / H0_population
H1_H_infection = H1_n_inf_rec[:,:,:,:,0,0,:] + H1_n_inf_rec[:,:,:,:,1,0,:] + H1_n_inf_rec[:,:,:,:,2,0,:]
H1_P_infection = H1_n_inf_rec[:,:,:,:,0,1,:] + H1_n_inf_rec[:,:,:,:,1,1,:] + H1_n_inf_rec[:,:,:,:,2,1,:]
H1_T_infection = H1_H_infection + H1_P_infection
H1_T_cum_infection = np.cumsum(H1_T_infection, axis=-1)
H1_T_cum_attack_rate = H1_T_cum_infection / H1_population
P2_H_infection = P2_n_inf_rec[:,:,:,0,0,:] + P2_n_inf_rec[:,:,:,1,0,:] + P2_n_inf_rec[:,:,:,2,0,:]
P2_P_infection = P2_n_inf_rec[:,:,:,0,1,:] + P2_n_inf_rec[:,:,:,1,1,:] + P2_n_inf_rec[:,:,:,2,1,:]
P2_T_infection = P2_H_infection + P2_P_infection
P2_T_cum_infection = np.cumsum(P2_T_infection, axis=-1)
P2_T_cum_attack_rate = P2_T_cum_infection / P2_population
H2P2_H_infection = H2P2_n_inf_rec[:,:,:,0,0,:] + H2P2_n_inf_rec[:,:,:,1,0,:] + H2P2_n_inf_rec[:,:,:,2,0,:]
H2P2_P_infection = H2P2_n_inf_rec[:,:,:,0,1,:] + H2P2_n_inf_rec[:,:,:,1,1,:] + H2P2_n_inf_rec[:,:,:,2,1,:]
H2P2_T_infection = H2P2_H_infection + H2P2_P_infection
H2P2_T_cum_infection = np.cumsum(H2P2_T_infection, axis=-1)
H2P2_T_cum_attack_rate = H2P2_T_cum_infection / H2P2_population
H2P2v2_H_infection = H2P2v2_n_inf_rec[:,:,:,0,0,:] + H2P2v2_n_inf_rec[:,:,:,1,0,:] + H2P2v2_n_inf_rec[:,:,:,2,0,:]
H2P2v2_P_infection = H2P2v2_n_inf_rec[:,:,:,0,1,:] + H2P2v2_n_inf_rec[:,:,:,1,1,:] + H2P2v2_n_inf_rec[:,:,:,2,1,:]
H2P2v2_T_infection = H2P2v2_H_infection + H2P2v2_P_infection
H2P2v2_T_cum_infection = np.cumsum(H2P2v2_T_infection, axis=-1)
H2P2v2_T_cum_attack_rate = H2P2v2_T_cum_infection / H2P2v2_population
N0_H_infection = N0_n_inf_rec[:,:,:,:,0,0,:] + N0_n_inf_rec[:,:,:,:,1,0,:] + N0_n_inf_rec[:,:,:,:,2,0,:]
N0_P_infection = N0_n_inf_rec[:,:,:,:,0,1,:] + N0_n_inf_rec[:,:,:,:,1,1,:] + N0_n_inf_rec[:,:,:,:,2,1,:]
N0_T_infection = N0_H_infection + N0_P_infection
N0_T_cum_infection = np.cumsum(N0_T_infection, axis=-1)
N0_T_cum_attack_rate = N0_T_cum_infection / N0_population
N1_H_infection = N1_n_inf_rec[:,:,:,:,0,0,:] + N1_n_inf_rec[:,:,:,:,1,0,:] + N1_n_inf_rec[:,:,:,:,2,0,:]
N1_P_infection = N1_n_inf_rec[:,:,:,:,0,1,:] + N1_n_inf_rec[:,:,:,:,1,1,:] + N1_n_inf_rec[:,:,:,:,2,1,:]
N1_T_infection = N1_H_infection + N1_P_infection
N1_T_cum_infection = np.cumsum(N1_T_infection, axis=-1)
N1_T_cum_attack_rate = N1_T_cum_infection / N1_population
H3P1_H_infection = H3P1_n_inf_rec[:,:,:,:,0,0,:] + H3P1_n_inf_rec[:,:,:,:,1,0,:] + H3P1_n_inf_rec[:,:,:,:,2,0,:]
H3P1_P_infection = H3P1_n_inf_rec[:,:,:,:,0,1,:] + H3P1_n_inf_rec[:,:,:,:,1,1,:] + H3P1_n_inf_rec[:,:,:,:,2,1,:]
H3P1_T_infection = H3P1_H_infection + H3P1_P_infection
H3P1_T_cum_infection = np.cumsum(H3P1_T_infection, axis=-1)
H3P1_T_cum_attack_rate = H3P1_T_cum_infection / H3P1_population
Bp_H_infection = Bp_n_inf_rec[:,:,:,0,0,:] + Bp_n_inf_rec[:,:,:,1,0,:] + Bp_n_inf_rec[:,:,:,2,0,:]
Bp_P_infection = Bp_n_inf_rec[:,:,:,0,1,:] + Bp_n_inf_rec[:,:,:,1,1,:] + Bp_n_inf_rec[:,:,:,2,1,:]
Bp_T_infection = Bp_H_infection + Bp_P_infection
Bp_T_cum_infection = np.cumsum(Bp_T_infection, axis=-1)
Bp_T_cum_attack_rate = Bp_T_cum_infection / Bp_population
Bpp_H_infection = Bpp_n_inf_rec[:,:,:,:,0,0,:] + Bpp_n_inf_rec[:,:,:,:,1,0,:] + Bpp_n_inf_rec[:,:,:,:,2,0,:]
Bpp_P_infection = Bpp_n_inf_rec[:,:,:,:,0,1,:] + Bpp_n_inf_rec[:,:,:,:,1,1,:] + Bpp_n_inf_rec[:,:,:,:,2,1,:]
Bpp_T_infection = Bpp_H_infection + Bpp_P_infection
Bpp_T_cum_infection = np.cumsum(Bpp_T_infection, axis=-1)
Bpp_T_cum_attack_rate = Bpp_T_cum_infection / Bpp_population
Bppp_H_infection = Bppp_n_inf_rec[:,:,:,:,0,0,:] + Bppp_n_inf_rec[:,:,:,:,1,0,:] + Bppp_n_inf_rec[:,:,:,:,2,0,:]
Bppp_P_infection = Bppp_n_inf_rec[:,:,:,:,0,1,:] + Bppp_n_inf_rec[:,:,:,:,1,1,:] + Bppp_n_inf_rec[:,:,:,:,2,1,:]
Bppp_T_infection = Bppp_H_infection + Bppp_P_infection
Bppp_T_cum_infection = np.cumsum(Bppp_T_infection, axis=-1)
Bppp_T_cum_attack_rate = Bppp_T_cum_infection / Bppp_population
# Bpppp_H_infection = Bpppp_n_inf_rec[:,:,:,:,0,0,:] + Bpppp_n_inf_rec[:,:,:,:,1,0,:] + Bpppp_n_inf_rec[:,:,:,:,2,0,:]
# Bpppp_P_infection = Bpppp_n_inf_rec[:,:,:,:,0,1,:] + Bpppp_n_inf_rec[:,:,:,:,1,1,:] + Bpppp_n_inf_rec[:,:,:,:,2,1,:]
# Bpppp_T_infection = Bpppp_H_infection + Bpppp_P_infection
# Bpppp_T_cum_infection = np.cumsum(Bpppp_T_infection, axis=-1)
# Bpppp_T_cum_attack_rate = Bpppp_T_cum_infection / Bpppp_population
H0_replaced_HCPs = np.mean(H0_population[:,:,:,:,-1], axis=0) - (n_HCPs + n_patients)
H1_replaced_HCPs = np.mean(H1_population[:,:,:,:,-1], axis=0) - (n_HCPs + n_patients)
H3P1_replaced_HCPs = np.mean(H3P1_population[:,:,:,:,-1], axis=0) - (n_HCPs + n_patients)
Bpp_replaced_HCPs = np.mean(Bpp_population[:,:,:,:,-1], axis=0) - (n_HCPs + n_patients)
Bppp_replaced_HCPs = np.mean(Bppp_population[:,:,:,:,-1], axis=0) - (n_HCPs + n_patients)
############################################################################################################3
# Shape of arrays (B*)
# dim0: n_repeat
# dim1: n_Dtype
# dim2: n_cases
############################################################################################################3
# Shape of arrays (H*)
# dim0: n_repeat
# dim1: n_Dtype
# dim2: n_cases
# dim3: QC_list
############################################################################################################3
# >>> B_n_inf_rec.shape
# (500, 4, 3, 3, 4, 30)
# dim-3: [during incubation period, during symptomatic period, outside source (coming in infected)]
# dim-2: [hcw_infected, patient_infected, hcw_recovered, patient_recovered]
# dim-1: simulation period
############################################################################################################3
# >>> B_transmission_route.shape
# (500, 4, 3, 4, 30)
# dim-2: [h->p, p->h, h->h, p->p]
# dim-1: simulation period
############################################################################################################3
# >>> B_population.shape
# (500, 4, 3, 30)
# dim-1: simulation period
############################################################################################################3
# >>> B_generation_time.shape
# (500, 4, 3)
############################################################################################################3
# >>> B_R0.shape
# (500, 4, 3)
############################################################################################################3
np.set_printoptions(1)
n_simulations = B_T_cum_infection.shape[0]
DM_idx = 3 # this is exp/exp 60% model
R0_idx = 2 # this is R0 of 3.0
print()
print("*"*20)
print("Abstract")
print("\nattack rate B {:.1f}".format(100*np.mean(B_T_cum_attack_rate[:,DM_idx,R0_idx,-1])))
print("attack rate Bppp {:.1f}".format(100*np.mean(Bppp_T_cum_attack_rate[:,DM_idx,R0_idx,0,-1])))
start_value = 100*np.mean(B_T_cum_attack_rate[:,DM_idx,R0_idx,-1])
final_value = 100*np.mean(Bppp_T_cum_attack_rate[:,DM_idx,R0_idx,0,-1])
print("\npercentage reduction in attack rate in Bppp: {:.1f}".format(percentage_reduction(start_value, final_value)))
Bppp_T_cum_infection = Bppp_T_cum_infection.astype(int)
print("Likelihood of no additional infection in B: {:.1f}".format(100 * (B_T_cum_infection[:,3,2,-1] == 1).sum() / n_simulations))
print("Likelihood of no additional infection in Bppp: {:.1f}".format(100 * (Bppp_T_cum_infection[:,3,2,0,-1] == 1).sum() / n_simulations))
print()
print("*"*20)
print("Result")
print("Fraction of simulations near 100% attack rate in B")
n_repeat = B_R0.shape[0] # n_repeat=500
B_end_infection = B_T_infection[:,DM_idx,R0_idx,:].sum(axis=-1)
print("Simulations with >= 49 infections (>= 96.1% attack rate): {:.1f}".format(100*(B_end_infection >= 49).sum() / n_repeat))
B_TR = B_transmission_route[:,DM_idx,R0_idx,:,:].sum(axis=(0,-1))
transmission_route_ratio = 100 * B_TR / B_TR.sum()
print("transmission route ratio: {}".format(transmission_route_ratio))
print("h->p, p->h, h->h, p->p")
print("HCPs are source of {:.1f}% infections".format(transmission_route_ratio[0] + transmission_route_ratio[2]))
print("\nSelf-isolation, active surveillance")
print("[exp/exp 5%]")
print("attack rate H1 on R0 = 2 : {:.1f}".format(100*np.mean(H1_T_cum_attack_rate[:,2,0,0,-1], axis=0)))
print("attack rate H1 on R0 = 2.5: {:.1f}".format(100*np.mean(H1_T_cum_attack_rate[:,2,1,0,-1], axis=0)))
print("attack rate H1 on R0 = 3 : {:.1f}".format(100*np.mean(H1_T_cum_attack_rate[:,2,2,0,-1], axis=0)))
print("npercentage reduction in attack rate in H1 on R0 = 2 : {:.1f}".format(percentage_reduction(100*np.mean(B_T_cum_attack_rate[:,2,0,-1]), 100*np.mean(H1_T_cum_attack_rate[:,2,0,0,-1], axis=0))))
print("npercentage reduction in attack rate in H1 on R0 = 2.5: {:.1f}".format(percentage_reduction(100*np.mean(B_T_cum_attack_rate[:,2,1,-1]), 100*np.mean(H1_T_cum_attack_rate[:,2,1,0,-1], axis=0))))
print("npercentage reduction in attack rate in H1 on R0 = 3 : {:.1f}".format(percentage_reduction(100*np.mean(B_T_cum_attack_rate[:,2,2,-1]), 100*np.mean(H1_T_cum_attack_rate[:,2,2,0,-1], axis=0))))
print("\nmask")
print("attack rate P2 {:.1f}".format(100*np.mean(P2_T_cum_attack_rate[:,DM_idx,R0_idx,-1])))
print("attack rate H2P2v2 {:.1f}".format(100*np.mean(H2P2v2_T_cum_attack_rate[:,DM_idx,R0_idx,-1])))
print("attack rate H2P2 {:.1f}".format(100*np.mean(H2P2_T_cum_attack_rate[:,DM_idx,R0_idx,-1])))
start_value = 100*np.mean(B_T_cum_attack_rate[:,DM_idx,R0_idx,-1])
final_value = 100*np.mean(H2P2_T_cum_attack_rate[:,DM_idx,R0_idx,-1])
print("percentage reduction in attack rate in H2P2: {:.1f}".format(percentage_reduction(start_value, final_value)))
print("\nMoving chairs apart")
print("attack rate N1 {}".format(100*np.mean(N1_T_cum_attack_rate[:,DM_idx,R0_idx,:,-1], axis=0)))
print("\npatient isolation, early replacement")
print("attack rate H3P1 {}".format(100*np.mean(H3P1_T_cum_attack_rate[:,DM_idx,R0_idx,:,-1], axis=0)))
print("Early replacement k HCPs: 1, 2, 3, 4, 5")
print("\nBaseline+ Baseline++ Baseline+++")
print("attack rate Baseline+ {:.1f}".format(100*np.mean(Bp_T_cum_attack_rate[:,DM_idx,R0_idx,-1], axis=0)))
print("attack rate Baseline++, k=1 {:.1f}".format(100*np.mean(Bpp_T_cum_attack_rate[:,DM_idx,R0_idx,0,-1], axis=0)))
print("attack rate Baseline+++, k=1 {:.1f}".format(100*np.mean(Bppp_T_cum_attack_rate[:,DM_idx,R0_idx,0,-1], axis=0)))
# print()
# print("Discussion")
# print("N95 to 2 adj patients for 2 weeks")
# print("rows: exp/exp(5%), exp/exp(35%), cols: R0 2, 2.5, 3")
# print("{}".format(np.mean(Bpppp_T_cum_attack_rate[:,2:,:,0,-1], axis=0) * 100))
Bp_end_infection = Bp_T_infection[:,DM_idx,R0_idx,:].sum(axis=-1)
Bpp_end_infection = Bpp_T_infection[:,DM_idx,R0_idx,0,:].sum(axis=-1)
Bppp_end_infection = Bppp_T_infection[:,DM_idx,R0_idx,0,:].sum(axis=-1)
#print("B: 51 infection at the end: {} ({})".format((B_end_infection==51).sum(), (B_end_infection==51).sum() / n_repeat))
#print("B: 50 infection at the end: {} ({})".format((B_end_infection==50).sum(), (B_end_infection==50).sum() / n_repeat))
print("B: >= 46 infection at the end (>= 90% attack rate) : {} ({})".format((B_end_infection>=46).sum(), (B_end_infection>=46).sum() / n_repeat))
print("B: == 1 infection at the end (no transmission) : {} ({})".format((B_end_infection==1).sum(), (B_end_infection==1).sum() / n_repeat))
print("Bppp: == 1 infection at the end (no transmission) : {} ({})".format((Bppp_end_infection==1).sum(), (Bppp_end_infection==1).sum() / n_repeat))
print("Bpp: == 1 infection at the end (no transmission) : {} ({})".format((Bpp_end_infection==1).sum(), (Bpp_end_infection==1).sum() / n_repeat))
# B2p_end_infection = B2p_T_infection[:,2,2,:].sum(axis=-1)
# print("B2+: 1 infection at the end: {} ({})".format((B2p_end_infection==1).sum(), (B2p_end_infection==1).sum() / n_repeat))
# print("B2+: >= 39 infection at the end: {} ({})".format((B2p_end_infection>=39).sum(), (B2p_end_infection>=39).sum() / n_repeat))
# B2pp_end_infection = B2pp_T_infection[:,2,2,:].sum(axis=-1)
# H2P2_end_infection = H2P2_T_infection[:,2,2,:].sum(axis=-1)
# H12P2_end_infection = H12P2_T_infection[:,2,2,:].sum(axis=-1)