forked from BlinkDL/ChatRWKV
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark.py
87 lines (73 loc) · 2.82 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
########################################################################################################
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
########################################################################################################
import os, sys, types, json, math
try:
os.environ["CUDA_VISIBLE_DEVICES"] = sys.argv[1]
except:
pass
import numpy as np
np.set_printoptions(precision=4, suppress=True, linewidth=200)
with open(f"misc/lambada_test.jsonl", "r", encoding="utf-8") as f:
todo = [json.loads(line) for line in f]
todo = [[doc['text'].rsplit(' ', 1)[0], " " + doc['text'].rsplit(' ', 1)[1]] for doc in todo]
args = types.SimpleNamespace()
########################################################################################################
args.RUN_DEVICE = "cuda" # cuda / cpu
args.FLOAT_MODE = "fp16" # fp16 / fp32 / bf16
os.environ["RWKV_JIT_ON"] = '1' # 0 / 1
args.ctx_len = 1024
# args.MODEL_NAME = '/fsx/BlinkDL/HF-MODEL/rwkv-4-pile-14b/RWKV-4-Pile-14B-20230128-6782'
# args.n_layer = 40
# args.n_embd = 5120
args.MODEL_NAME = '/fsx/BlinkDL/HF-MODEL/rwkv-4-pile-1b5/RWKV-4-Pile-1B5-20220903-8040'
args.n_layer = 24
args.n_embd = 2048
# args.MODEL_NAME = '/fsx/BlinkDL/HF-MODEL/rwkv-4-pile-169m/RWKV-4-Pile-169M-20220807-8023'
# args.n_layer = 12
# args.n_embd = 768
PAD_SEQ = [187]
########################################################################################################
print(f'\nLoading ChatRWKV - {args.RUN_DEVICE} - {args.FLOAT_MODE}')
import torch
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.allow_tf32 = True
torch.backends.cuda.matmul.allow_tf32 = True
from torch.nn import functional as F
from src.model_run import RWKV_RNN
from src.utils import TOKENIZER
tokenizer = TOKENIZER("20B_tokenizer.json")
args.vocab_size = 50277
args.head_qk = 0
args.pre_ffn = 0
args.grad_cp = 0
args.my_pos_emb = 0
os.environ["RWKV_RUN_DEVICE"] = args.RUN_DEVICE
MODEL_NAME = args.MODEL_NAME
print(f'Loading model - {MODEL_NAME}')
model = RWKV_RNN(args)
print('Running...')
xsum = 0
xcnt = 0
xacc = 0
for d in todo:
src = PAD_SEQ + tokenizer.encode(d[0])
dst = tokenizer.encode(d[1])
logits = 0
correct = True
for i in range(len(dst)):
if i == 0:
out, model_state = model.forward(src, None)
else:
out, model_state = model.forward([dst[i-1]], model_state)
probs = F.softmax(out.float(), dim=-1)
logits += math.log(probs[dst[i]])
_, s_index = torch.sort(probs, descending=True)
pred = s_index[0].item()
if pred != dst[i]:
correct = False
xcnt += 1
xsum += logits
xacc += 1 if correct else 0
if xcnt % 100 == 0 or xcnt == len(todo):
print(xcnt, 'ppl', round(math.exp(-xsum / xcnt), 2), 'acc', round(xacc/xcnt*100, 2))#, 'pred', pred, 'dst', dst)