-
Notifications
You must be signed in to change notification settings - Fork 188
/
Copy pathutil.py
104 lines (94 loc) · 3.16 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import numpy as np
import cv2
import os
def transpose_range(samples):
merged_sample = np.zeros_like(samples[0])
for sample in samples:
merged_sample = np.maximum(merged_sample, sample)
merged_sample = np.amax(merged_sample, axis=0)
min_note = np.argmax(merged_sample)
max_note = merged_sample.shape[0] - np.argmax(merged_sample[::-1])
return min_note, max_note
def generate_add_centered_transpose(samples):
num_notes = samples[0].shape[1]
min_note, max_note = transpose_range(samples)
s = num_notes/2 - (max_note + min_note)/2
out_samples = samples
out_lens = [len(samples), len(samples)]
for i in xrange(len(samples)):
out_sample = np.zeros_like(samples[i])
out_sample[:,min_note+s:max_note+s] = samples[i][:,min_note:max_note]
out_samples.append(out_sample)
return out_samples, out_lens
def generate_all_transpose(samples, radius=6):
num_notes = samples[0].shape[1]
min_note, max_note = transpose_range(samples)
min_shift = -min(radius, min_note)
max_shift = min(radius, num_notes - max_note)
out_samples = []
out_lens = []
for s in xrange(min_shift, max_shift):
for i in xrange(len(samples)):
out_sample = np.zeros_like(samples[i])
out_sample[:,min_note+s:max_note+s] = samples[i][:,min_note:max_note]
out_samples.append(out_sample)
out_lens.append(len(samples))
return out_samples, out_lens
def sample_to_pic(fname, sample, thresh=None):
if thresh is not None:
inverted = np.where(sample > thresh, 0, 1)
else:
inverted = 1.0 - sample
cv2.imwrite(fname, inverted * 255)
def samples_to_pics(dir, samples, thresh=None):
if not os.path.exists(dir): os.makedirs(dir)
for i in xrange(samples.shape[0]):
sample_to_pic(dir + '/s' + str(i) + '.png', samples[i], thresh)
def pad_songs(y, y_lens, max_len):
y_shape = (y_lens.shape[0], max_len) + y.shape[1:]
y_train = np.zeros(y_shape, dtype=np.float32)
cur_ix = 0
for i in xrange(y_lens.shape[0]):
end_ix = cur_ix + y_lens[i]
for j in xrange(max_len):
k = j % (end_ix - cur_ix)
y_train[i,j] = y[cur_ix + k]
cur_ix = end_ix
assert(end_ix == y.shape[0])
return y_train
def sample_to_pattern(sample, ix, size):
num_pats = 0
pat_types = {}
pat_list = []
num_samples = len(sample) if type(sample) is list else sample.shape[0]
for i in xrange(size):
j = (ix + i) % num_samples
measure = sample[j].tobytes()
if measure not in pat_types:
pat_types[measure] = num_pats
num_pats += 1
pat_list.append(pat_types[measure])
return str(pat_list), pat_types
def embed_samples(samples):
note_dict = {}
n, m, p = samples.shape
samples.flags.writeable = False
e_samples = np.empty(samples.shape[:2], dtype=np.int32)
for i in xrange(n):
for j in xrange(m):
note = samples[i,j].data
if note not in note_dict:
note_dict[note] = len(note_dict)
e_samples[i,j] = note_dict[note]
samples.flags.writeable = True
lookup = np.empty((len(note_dict), p), dtype=np.float32)
for k in note_dict:
lookup[note_dict[k]] = k
return e_samples, note_dict, lookup
def e_to_samples(e_samples, lookup):
samples = np.empty(e_samples.shape + lookup.shape[-1:], dtype=np.float32)
n, m = e_samples.shape
for i in xrange(n):
for j in xrange(m):
samples[i,j] = lookup[e_samples[i,j]]
return samples