-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdata_processing.py
517 lines (405 loc) · 24.4 KB
/
data_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
# data_processing.py
import os
import cv2
import json
import random
import warnings
import numpy as np
import pandas as pd
from torch.utils.data import Dataset
from torch.utils.data.sampler import SubsetRandomSampler
from rdkit import Chem
from rdkit.Chem import Draw
from concurrent.futures import ProcessPoolExecutor
import time
import multiprocessing
import csv
from torch.utils.data import Dataset, DataLoader, SubsetRandomSampler
from chemprop.data import make_split_indices
warnings.filterwarnings(action='ignore')
current_path_beginning = os.getcwd().split("DEEPScreen")[0]
current_path_version = os.getcwd().split("DEEPScreen")[1].split("/")[0]
project_file_path = "{}DEEPScreen{}".format(current_path_beginning, current_path_version)
training_files_path = "{}/training_files".format(project_file_path)
result_files_path = "{}/result_files".format(project_file_path)
trained_models_path = "{}/trained_models".format(project_file_path)
IMG_SIZE = 300
def get_chemblid_smiles_inchi_dict(smiles_inchi_fl):
chemblid_smiles_inchi_dict = pd.read_csv(smiles_inchi_fl, sep=",", index_col=False).set_index('molecule_chembl_id').T.to_dict('list')
return chemblid_smiles_inchi_dict
def save_comp_imgs_from_smiles(tar_id, comp_id, smiles, rotations, target_prediction_dataset_path, SIZE=300, rot_size=300):
mol = Chem.MolFromSmiles(smiles)
if mol is None:
print(f"Invalid SMILES: {smiles}")
return
Draw.DrawingOptions.atomLabelFontSize = 55
Draw.DrawingOptions.dotsPerAngstrom = 100
Draw.DrawingOptions.bondLineWidth = 1.5
base_path = os.path.join(target_prediction_dataset_path, tar_id, "imgs")
if not os.path.exists(base_path):
os.makedirs(base_path)
try:
image = Draw.MolToImage(mol, size=(SIZE, SIZE))
image_array = np.array(image)
image_bgr = cv2.cvtColor(image_array, cv2.COLOR_RGB2BGR)
for rot, suffix in rotations:
if rot != 0:
full_image = np.full((rot_size, rot_size, 3), (255, 255, 255), dtype=np.uint8)
gap = rot_size - SIZE
(cX, cY) = (gap // 2, gap // 2)
full_image[cY:cY + SIZE, cX:cX + SIZE] = image_bgr
(cX, cY) = (rot_size // 2, rot_size // 2)
M = cv2.getRotationMatrix2D((cX, cY), rot, 1.0)
full_image = cv2.warpAffine(full_image, M, (rot_size, rot_size), borderMode=cv2.INTER_LINEAR,
borderValue=(255, 255, 255))
else:
full_image = image_bgr
path_to_save = os.path.join(base_path, f"{comp_id}{suffix}.png")
#print(path_to_save)
cv2.imwrite(path_to_save, full_image)
except Exception as e:
print(f"Error creating PNG for {comp_id}: {e}")
def initialize_dirs(targetid , target_prediction_dataset_path):
if not os.path.exists(os.path.join(target_prediction_dataset_path, targetid, "imgs")):
os.makedirs(os.path.join(target_prediction_dataset_path, targetid, "imgs"))
f = open(os.path.join(target_prediction_dataset_path, targetid, "prediction_dict.json"), "w+")
json_dict = {"prediction": list()}
json_object = json.dumps(json_dict)
f.write(json_object)
f.close()
def process_smiles(smiles_data):
current_smiles, compound_id, target_prediction_dataset_path, targetid,act_inact,test_val_train_situation = smiles_data
rotations = [(0, "_0"), *[(angle, f"_{angle}") for angle in range(10, 360, 10)]]
local_dict = {test_val_train_situation: []}
try:
save_comp_imgs_from_smiles(targetid, compound_id, current_smiles, rotations, target_prediction_dataset_path)
for i in range(0,360,10):
local_dict[test_val_train_situation].append([compound_id + "_" + str(i), int(act_inact)])
except:
pass
return local_dict
def generate_images(smiles_file, targetid, max_cores,tar_train_val_test_dict,target_prediction_dataset_path):
smiles_list = pd.read_csv(smiles_file)["canonical_smiles"].tolist()
compound_ids = pd.read_csv(smiles_file)["molecule_chembl_id"].tolist()
act_inact_situations = pd.read_csv(smiles_file)["act_inact_id"].tolist()
test_val_train_situations = pd.read_csv(smiles_file)["test_val_train"].tolist()
smiles_data_list = [(smiles, compound_ids[i], target_prediction_dataset_path, targetid,act_inact_situations[i],test_val_train_situations[i]) for i, smiles in enumerate(smiles_list)]
start_time = time.time()
with ProcessPoolExecutor(max_workers=max_cores) as executor:
results = list(executor.map(process_smiles, smiles_data_list))
end_time = time.time()
for result in results:
for key, value in result.items():
tar_train_val_test_dict[key].extend(value)
print(f"Time taken for all: {end_time - start_time}")
total_image_count = len(smiles_list) * len([(0, ""), *[(angle, f"_{angle}") for angle in range(10, 360, 10)]])
print(f"Total images generated: {total_image_count}")
def get_uniprot_chembl_sp_id_mapping(chembl_uni_prot_mapping_fl):
id_mapping_fl = open("{}/{}".format(training_files_path, chembl_uni_prot_mapping_fl))
lst_id_mapping_fl = id_mapping_fl.read().split("\n")
id_mapping_fl.close()
uniprot_to_chembl_dict = dict()
for line in lst_id_mapping_fl[1:-1]:
uniprot_id, chembl_id, prot_name, target_type = line.split("\t")
if target_type=="SINGLE PROTEIN":
if uniprot_id in uniprot_to_chembl_dict:
uniprot_to_chembl_dict[uniprot_id].append(chembl_id)
else:
uniprot_to_chembl_dict[uniprot_id] = [chembl_id]
return uniprot_to_chembl_dict
def get_chembl_uniprot_sp_id_mapping(chembl_mapping_fl):
id_mapping_fl = open("{}/{}".format(training_files_path, chembl_mapping_fl))
lst_id_mapping_fl = id_mapping_fl.read().split("\n")
id_mapping_fl.close()
chembl_to_uniprot_dict = dict()
for line in lst_id_mapping_fl[1:-1]:
uniprot_id, chembl_id, prot_name, target_type = line.split("\t")
if target_type=="SINGLE PROTEIN":
if chembl_id in chembl_to_uniprot_dict:
chembl_to_uniprot_dict[chembl_id].append(uniprot_id)
else:
chembl_to_uniprot_dict[chembl_id] = [uniprot_id]
return chembl_to_uniprot_dict
def get_act_inact_list_for_all_targets(fl):
act_inact_dict = dict()
with open(fl) as f:
for line in f:
if line.strip() != "": # Satırın boş olmadığından emin ol
parts = line.strip().split("\t")
if len(parts) == 2: # Satırın doğru şekilde ayrıştırıldığından emin ol
chembl_part, comps = parts
chembl_target_id, act_inact = chembl_part.split("_")
if act_inact == "act":
act_list = comps.split(",")
act_inact_dict[chembl_target_id] = [act_list, []]
else:
inact_list = comps.split(",")
act_inact_dict[chembl_target_id][1] = inact_list
return act_inact_dict
def create_act_inact_files_for_targets(fl, target_id, chembl_version, pchembl_threshold=6, target_prediction_dataset_path=None):
# Create target directory if it doesn't exist
target_dir = os.path.join(target_prediction_dataset_path, target_id)
os.makedirs(target_dir, exist_ok=True)
# Read the initial dataframe
pre_filt_chembl_df = pd.read_csv(fl, sep=",", index_col=False)
# Add active/inactive labels based on pchembl_threshold
pre_filt_chembl_df['activity_label'] = (pre_filt_chembl_df['pchembl_value'] >= pchembl_threshold).astype(int)
# Now split the labeled data
train_ids, val_ids, test_ids = train_val_test_split(pre_filt_chembl_df, split_ratios=(0.8, 0.1, 0.1),
scaffold_split=True)
# Create separate dataframes for train/val/test
train_df = pre_filt_chembl_df[pre_filt_chembl_df['molecule_chembl_id'].isin(train_ids)]
val_df = pre_filt_chembl_df[pre_filt_chembl_df['molecule_chembl_id'].isin(val_ids)]
test_df = pre_filt_chembl_df[pre_filt_chembl_df['molecule_chembl_id'].isin(test_ids)]
# Process and write files for each split
for split_name, split_df in [('train', train_df), ('val', val_df), ('test', test_df)]:
# Group by activity label
act_rows = split_df[split_df['activity_label'] == 1]['molecule_chembl_id'].tolist()
inact_rows = split_df[split_df['activity_label'] == 0]['molecule_chembl_id'].tolist()
# Create the output files
comp_file_path = os.path.join(target_dir,
f"{chembl_version}_{split_name}_preprocessed_filtered_act_inact_comps_pchembl_{pchembl_threshold}.tsv")
count_file_path = os.path.join(target_dir,
f"{chembl_version}_{split_name}_preprocessed_filtered_act_inact_count_pchembl_{pchembl_threshold}.tsv")
# Write the files
with open(comp_file_path, 'w') as comp_file:
comp_file.write(f"{target_id}_act\t{','.join(act_rows)}\n")
comp_file.write(f"{target_id}_inact\t{','.join(inact_rows)}\n")
with open(count_file_path, 'w') as count_file:
count_file.write(f"{target_id}\t{len(act_rows)}\t{len(inact_rows)}\n")
# Create the combined file that get_act_inact_list_for_all_targets expects
combined_file_path = os.path.join(target_dir,
f"{chembl_version}_preprocessed_filtered_act_inact_comps_pchembl_{pchembl_threshold}.tsv")
with open(combined_file_path, 'w') as combined_file:
# Combine all actives and inactives
all_act_rows = pre_filt_chembl_df[pre_filt_chembl_df['activity_label'] == 1]['molecule_chembl_id'].tolist()
all_inact_rows = pre_filt_chembl_df[pre_filt_chembl_df['activity_label'] == 0]['molecule_chembl_id'].tolist()
combined_file.write(f"{target_id}_act\t{','.join(all_act_rows)}\n")
combined_file.write(f"{target_id}_inact\t{','.join(all_inact_rows)}\n")
def create_act_inact_files_similarity_based_neg_enrichment_threshold(act_inact_fl, blast_sim_fl, sim_threshold):
data_point_threshold = 100
uniprot_chemblid_dict = get_uniprot_chembl_sp_id_mapping("chembl27_uniprot_mapping.txt")
chemblid_uniprot_dict = get_chembl_uniprot_sp_id_mapping("chembl27_uniprot_mapping.txt")
all_act_inact_dict = get_act_inact_list_for_all_targets(act_inact_fl)
new_all_act_inact_dict = dict()
count = 0
for targ in all_act_inact_dict.keys():
act_list, inact_list = all_act_inact_dict[targ]
if len(act_list)>=data_point_threshold and len(inact_list)>=data_point_threshold:
count += 1
seq_to_other_seqs_score_dict = dict()
with open("{}/{}".format(training_files_path, blast_sim_fl)) as f:
for line in f:
parts = line.split("\t")
u_id1, u_id2, score = parts[0].split("|")[1], parts[1].split("|")[1], float(parts[2])
if u_id1!=u_id2:
if u_id1 in seq_to_other_seqs_score_dict:
seq_to_other_seqs_score_dict[u_id1][u_id2] = score
else:
seq_to_other_seqs_score_dict[u_id1] = dict()
seq_to_other_seqs_score_dict[u_id1][u_id2] = score
if u_id2 in seq_to_other_seqs_score_dict:
seq_to_other_seqs_score_dict[u_id2][u_id1] = score
else:
seq_to_other_seqs_score_dict[u_id2] = dict()
seq_to_other_seqs_score_dict[u_id2][u_id1] = score
for u_id in seq_to_other_seqs_score_dict:
seq_to_other_seqs_score_dict[u_id] = {k: v for k, v in sorted(seq_to_other_seqs_score_dict[u_id].items(), key=lambda item: item[1], reverse=True)}
count = 0
for chembl_target_id in all_act_inact_dict.keys():
count += 1
target_act_list, target_inact_list = all_act_inact_dict[chembl_target_id]
target_act_list, target_inact_list = target_act_list[:], target_inact_list[:]
uniprot_target_id = chemblid_uniprot_dict[chembl_target_id][0]
if uniprot_target_id in seq_to_other_seqs_score_dict:
for uniprot_other_target in seq_to_other_seqs_score_dict[uniprot_target_id]:
if seq_to_other_seqs_score_dict[uniprot_target_id][uniprot_other_target]>=sim_threshold:
try:
other_target_chembl_id = uniprot_chemblid_dict[uniprot_other_target][0]
other_act_lst, other_inact_lst = all_act_inact_dict[other_target_chembl_id]
set_non_act_inact = set(other_inact_lst) - set(target_act_list)
set_new_inacts = set_non_act_inact - (set(target_inact_list) & set_non_act_inact)
target_inact_list.extend(list(set_new_inacts))
except:
pass
new_all_act_inact_dict[chembl_target_id] = [target_act_list, target_inact_list]
act_inact_comp_fl = open("{}/{}_blast_comp_{}.txt".format(training_files_path, act_inact_fl.split(".tsv")[0], sim_threshold), "w")
act_inact_count_fl = open("{}/{}_blast_count_{}.txt".format(training_files_path, act_inact_fl.split(".tsv")[0], sim_threshold), "w")
for targ in new_all_act_inact_dict.keys():
if len(new_all_act_inact_dict[targ][0])>=data_point_threshold and len(new_all_act_inact_dict[targ][1])>=data_point_threshold:
while "" in new_all_act_inact_dict[targ][0]:
new_all_act_inact_dict[targ][0].remove("")
while "" in new_all_act_inact_dict[targ][1]:
new_all_act_inact_dict[targ][1].remove("")
str_act = "{}_act\t".format(targ) + ",".join(new_all_act_inact_dict[targ][0])
act_inact_comp_fl.write("{}\n".format(str_act))
str_inact = "{}_inact\t".format(targ) + ",".join(new_all_act_inact_dict[targ][1])
act_inact_comp_fl.write("{}\n".format(str_inact))
str_act_inact_count = "{}\t{}\t{}\n".format(targ, len(new_all_act_inact_dict[targ][0]), len(new_all_act_inact_dict[targ][1]))
act_inact_count_fl.write(str_act_inact_count)
act_inact_count_fl.close()
act_inact_comp_fl.close()
def create_final_randomized_training_val_test_sets(activity_data,max_cores,targetid,target_prediction_dataset_path, pchembl_threshold=6):
chemblid_smiles_dict = get_chemblid_smiles_inchi_dict(activity_data)
create_act_inact_files_for_targets(activity_data, targetid, "chembl", pchembl_threshold, target_prediction_dataset_path)
act_inact_dict = get_act_inact_list_for_all_targets("{}/{}/{}_preprocessed_filtered_act_inact_comps_pchembl_{}.tsv".format(target_prediction_dataset_path, targetid, "chembl", pchembl_threshold))
for tar in act_inact_dict:
target_img_path = os.path.join(target_prediction_dataset_path, tar, "imgs")
if not os.path.exists(target_img_path):
os.makedirs(target_img_path)
act_list, inact_list = act_inact_dict[tar]
print("len act :" + str(len(act_list)))
print("len inact :" + str(len(inact_list)))
random.shuffle(act_list)
random.shuffle(inact_list)
act_training_validation_size = int(0.8 * len(act_list))
act_training_size = int(0.8 * act_training_validation_size)
act_val_size = act_training_validation_size - act_training_size
training_act_comp_id_list = act_list[:act_training_size]
val_act_comp_id_list = act_list[act_training_size:act_training_size+act_val_size]
test_act_comp_id_list = act_list[act_training_size+act_val_size:]
inact_training_validation_size = int(0.8 * len(inact_list))
inact_training_size = int(0.8 * inact_training_validation_size)
inact_val_size = inact_training_validation_size - inact_training_size
training_inact_comp_id_list = inact_list[:inact_training_size]
val_inact_comp_id_list = inact_list[inact_training_size:inact_training_size+inact_val_size]
test_inact_comp_id_list = inact_list[inact_training_size+inact_val_size:]
print(tar, "all training act", len(act_list), len(training_act_comp_id_list), len(val_act_comp_id_list), len(test_act_comp_id_list))
print(tar, "all training inact", len(inact_list), len(training_inact_comp_id_list), len(val_inact_comp_id_list), len(test_inact_comp_id_list))
tar_train_val_test_dict = dict()
tar_train_val_test_dict["training"] = []
tar_train_val_test_dict["validation"] = []
tar_train_val_test_dict["test"] = []
directory = "{}/{}".format(target_prediction_dataset_path,targetid)
if not os.path.exists(directory):
os.makedirs(directory)
file_name = "smilesfile.csv"
last_smiles_file = os.path.join(directory, file_name)
with open(last_smiles_file, mode='w', newline='') as file:
writer = csv.writer(file)
writer.writerow(["canonical_smiles", "molecule_chembl_id", "act_inact_id","test_val_train"])
for comp_id in training_act_comp_id_list:
with open(last_smiles_file, mode='a', newline='') as file:
writer = csv.writer(file)
writer.writerow([chemblid_smiles_dict[comp_id][3], comp_id, "1","training"])
for comp_id in val_act_comp_id_list:
with open(last_smiles_file, mode='a', newline='') as file:
writer = csv.writer(file)
writer.writerow([chemblid_smiles_dict[comp_id][3], comp_id, "1","validation"])
for comp_id in test_act_comp_id_list:
with open(last_smiles_file, mode='a', newline='') as file:
writer = csv.writer(file)
writer.writerow([chemblid_smiles_dict[comp_id][3], comp_id, "1","test"])
for comp_id in training_inact_comp_id_list:
with open(last_smiles_file, mode='a', newline='') as file:
writer = csv.writer(file)
writer.writerow([chemblid_smiles_dict[comp_id][3], comp_id, "0","training"])
for comp_id in val_inact_comp_id_list:
with open(last_smiles_file, mode='a', newline='') as file:
writer = csv.writer(file)
writer.writerow([chemblid_smiles_dict[comp_id][3], comp_id, "0","validation"])
for comp_id in test_inact_comp_id_list:
with open(last_smiles_file, mode='a', newline='') as file:
writer = csv.writer(file)
writer.writerow([chemblid_smiles_dict[comp_id][3], comp_id, "0","test"])
#parser.add_argument('--dataset_file', type=str, default="{}/smilesfile.csv".format(directory), help='Path to the dataset file')
#parser.add_argument('--max_cores', type=int, default = max_cores, help='Maximum number of cores to use')
#args = parser.parse_args()
if max_cores > multiprocessing.cpu_count():
print(f"Warning: Maximum number of cores is {multiprocessing.cpu_count()}. Using maximum available cores.")
max_cores = multiprocessing.cpu_count()
smiles_file = last_smiles_file
initialize_dirs(targetid , target_prediction_dataset_path)
generate_images(smiles_file , targetid , max_cores , tar_train_val_test_dict,target_prediction_dataset_path)
random.shuffle(tar_train_val_test_dict["training"])
random.shuffle(tar_train_val_test_dict["validation"])
random.shuffle(tar_train_val_test_dict["test"])
with open(os.path.join(target_prediction_dataset_path, tar, 'train_val_test_dict.json'), 'w') as fp:
json.dump(tar_train_val_test_dict, fp)
def train_val_test_split(smiles_file, split_ratios=(0.8, 0.1, 0.1), scaffold_split=True):
"""
Split data into train/val/test sets using either random or scaffold-based splitting
Args:
smiles_file: Path to CSV file containing SMILES and target data
target_column_number: Column index for target values (default=1)
scaffold_split: Whether to use scaffold-based splitting (default=False)
Returns:
Lists of compound IDs for train/val/test splits
"""
df = smiles_file
df.sample(frac=1, random_state=42).reset_index(drop=True) # Shuffle with fixed seed
# Get SMILES and compound IDs
smiles = df["canonical_smiles"].tolist()
compound_ids = df["molecule_chembl_id"].tolist()
if scaffold_split:
print("scaffold split")
# Create MoleculeDatapoints for scaffold splitting
molecule_list = [Chem.MolFromSmiles(smi) for smi in smiles]
train_indices, val_indices, test_indices = make_split_indices(molecule_list,
split = "scaffold_balanced",
sizes=(split_ratios), seed=42)
train_df = df.iloc[train_indices[0]]
val_df = df.iloc[val_indices[0]]
test_df = df.iloc[test_indices[0]]
train_ids = train_df["molecule_chembl_id"].tolist()
val_ids = val_df["molecule_chembl_id"].tolist()
test_ids = test_df["molecule_chembl_id"].tolist()
else:
print("random split")
# Random split
n = len(df)
train_size = int(n * split_ratios[0])
val_size = int(n * split_ratios[1])
# Get random indices for train/val/test
indices = list(range(n))
random.shuffle(indices)
# Split indices into train/val/test
train_indices = indices[:train_size]
val_indices = indices[train_size:train_size + val_size]
test_indices = indices[train_size + val_size:]
# Get compound IDs for each split
train_ids = [compound_ids[i] for i in train_indices]
val_ids = [compound_ids[i] for i in val_indices]
test_ids = [compound_ids[i] for i in test_indices]
return train_ids, val_ids, test_ids
class DEEPScreenDataset(Dataset):
def __init__(self, target_id, train_val_test):
self.target_id = target_id
self.train_val_test = train_val_test
self.training_dataset_path = "{}/target_training_datasets/{}".format(training_files_path, target_id)
self.train_val_test_folds = json.load(open(os.path.join(self.training_dataset_path, "train_val_test_dict.json")))
self.compid_list = [compid_label[0] for compid_label in self.train_val_test_folds[train_val_test]]
self.label_list = [compid_label[1] for compid_label in self.train_val_test_folds[train_val_test]]
def __len__(self):
return len(self.compid_list)
def __getitem__(self, index):
comp_id = self.compid_list[index]
# Tüm açılar için görüntüleri okuyun
#img_paths = [os.path.join(self.training_dataset_path, "imgs", "{}_{}.png".format(comp_id, angle)) for angle in range(0, 360, 10)]
img_paths = [os.path.join(self.training_dataset_path, "imgs", "{}.png".format(comp_id))]
img_path = random.choice([path for path in img_paths if os.path.exists(path)])
if not os.path.exists(img_path):
raise FileNotFoundError(f"Image not found for compound ID: {comp_id}")
img_arr = cv2.imread(img_path)
if img_arr is None:
raise FileNotFoundError(f"Image not found or cannot be read: {img_path}")
img_arr = np.array(img_arr) / 255.0
img_arr = img_arr.transpose((2, 0, 1))
label = self.label_list[index]
return img_arr, label, comp_id
def get_train_test_val_data_loaders(target_id, batch_size=32):
training_dataset = DEEPScreenDataset(target_id, "training")
validation_dataset = DEEPScreenDataset(target_id, "validation")
test_dataset = DEEPScreenDataset(target_id, "test")
train_sampler = SubsetRandomSampler(range(len(training_dataset)))
train_loader = DataLoader(training_dataset, batch_size=batch_size, sampler=train_sampler)
validation_sampler = SubsetRandomSampler(range(len(validation_dataset)))
validation_loader = DataLoader(validation_dataset, batch_size=batch_size, sampler=validation_sampler)
test_sampler = SubsetRandomSampler(range(len(test_dataset)))
test_loader = DataLoader(test_dataset, batch_size=batch_size, sampler=test_sampler)
return train_loader, validation_loader, test_loader
def get_training_target_list(chembl_version):
target_df = pd.read_csv(os.path.join(training_files_path, "{}_training_target_list.txt".format(chembl_version)), index_col=False, header=None)
# print(target_df)
# print(list(target_df[0]), len(list(target_df[0])))
return list(target_df[0])