-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDeviceLive.py
79 lines (67 loc) · 3.1 KB
/
DeviceLive.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
from datetime import datetime
from Device import Device
import joblib
import os
class DeviceLive(Device):
"""Class to connect to and read the stream from the Neurosity Crown device and do live predictions on the data"""
def __init__(self, ip, port, device, model_a, model_v, window_sec, logger, filename):
Device.__init__(self, device, ip, port, filename)
self.logger = logger
self.model_a = model_a
self.model_v = model_v
self.window_sec = window_sec
self.predictions_a = {}
self.predictions_v = {}
self.probas_a = {}
self.probas_v = {}
self.extracted_x = {}
self.window = None
def predict_incoming(self, *values):
eeg_data = []
# local timestamp
datetime_now = datetime.now()
# measured values
for val in values[0]:
eeg_data.append(val)
ready = self.window.next(eeg_data, None)
if ready:
# to make sure the data is still coming in properly
self.logger.info(f"Data at {datetime_now}: {eeg_data}")
# Arousal
pred_a = self.model_a.predict_one(self.window.x)
proba_a = self.model_a.predict_proba_one(self.window.x)
self.logger.info(f"Prediction for Arousal at {datetime_now}: {proba_a}, i.e. {pred_a}")
# Valence
pred_v = self.model_v.predict_one(self.window.x)
proba_v = self.model_v.predict_proba_one(self.window.x)
self.logger.info(f"Prediction for Valence at {datetime_now}: {proba_v}, i.e. {pred_v}")
# store values for later
self.extracted_x[datetime_now] = self.window.x
self.predictions_a[datetime_now] = pred_a
self.probas_a[datetime_now] = proba_a
self.predictions_v[datetime_now] = pred_v
self.probas_v[datetime_now] = proba_v
def learn_from_labels(self, address: str, *args):
vid_start = args[1]
vid_end = args[2]
label = 1 if args[3] >= 0.5 else 0
# get all the data points that lie in the video time period for which there is a label
for ts in self.extracted_x.keys():
if float(vid_start) <= ts.timestamp() <= float(vid_end):
try:
if "A" in args[0]:
self.model_a.learn_one(x=self.extracted_x[ts], y=int(label))
else:
self.model_v.learn_one(x=self.extracted_x[ts], y=int(label))
except Exception as e:
self.logger.info(f"A {e.__class__} occurred in learn_from_labels:\n {e}")
continue
self.logger.info(f"Video start, video end, dimension, label, label_norm\n"
f" {vid_start}, {vid_end}, {args[0]}, {args[3]}, {label}")
# save/override models after learning
self.save_models()
def save_models(self):
a_file = os.path.join('output_data', 'model_arousal_after.sav')
v_file = os.path.join('output_data', 'model_valence_after.sav')
joblib.dump(self.model_a, a_file)
joblib.dump(self.model_v, v_file)