-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodal.ml
327 lines (285 loc) · 13.4 KB
/
modal.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
(* ========================================================================= *)
(* Syntax and semantics of modal logic. *)
(* *)
(* (c) Copyright, Marco Maggesi, Cosimo Perini Brogi 2020-2022. *)
(* (c) Copyright, Antonella Bilotta, Marco Maggesi, *)
(* Cosimo Perini Brogi, Leonardo Quartini 2024. *)
(* *)
(* Part of this code is copied or adapted from *)
(* John Harrison (2017) The HOL Light Tutorial. *)
(* ========================================================================= *)
(* ------------------------------------------------------------------------- *)
(* Syntax of formulae. *)
(* ------------------------------------------------------------------------- *)
parse_as_infix("&&",(16,"right"));;
parse_as_infix("||",(15,"right"));;
parse_as_infix("-->",(14,"right"));;
parse_as_infix("<->",(13,"right"));;
parse_as_prefix "Not";;
parse_as_prefix "Box";;
let form_INDUCT,form_RECURSION = define_type
"form = False
| True
| Atom string
| Not form
| && form form
| || form form
| --> form form
| <-> form form
| Box form";;
let form_CASES = prove_cases_thm form_INDUCT;;
let form_DISTINCT = distinctness "form";;
let form_INJ = injectivity "form";;
(* ------------------------------------------------------------------------- *)
(* Kripke's Semantics of formulae. *)
(* ------------------------------------------------------------------------- *)
let holds =
let pth = prove
(`(!WP. P WP) <=> (!W:W->bool R:W->W->bool. P (W,R))`,
MATCH_ACCEPT_TAC FORALL_PAIR_THM) in
(end_itlist CONJ o map (REWRITE_RULE[pth] o GEN_ALL) o CONJUNCTS o
new_recursive_definition form_RECURSION)
`(holds WR V False (w:W) <=> F) /\
(holds WR V True w <=> T) /\
(holds WR V (Atom s) w <=> V s w) /\
(holds WR V (Not p) w <=> ~(holds WR V p w)) /\
(holds WR V (p && q) w <=> holds WR V p w /\ holds WR V q w) /\
(holds WR V (p || q) w <=> holds WR V p w \/ holds WR V q w) /\
(holds WR V (p --> q) w <=> holds WR V p w ==> holds WR V q w) /\
(holds WR V (p <-> q) w <=> holds WR V p w <=> holds WR V q w) /\
(holds WR V (Box p) w <=>
!w'. w' IN FST WR /\ SND WR w w' ==> holds WR V p w')`;;
let holds_in = new_definition
`holds_in (W,R) p <=> !V w:W. w IN W ==> holds (W,R) V p w`;;
parse_as_infix("|=",(11,"right"));;
let valid = new_definition
`L |= p <=> !f:(W->bool)#(W->W->bool). f IN L ==> holds_in f p`;;
(* ------------------------------------------------------------------------- *)
(* Some model-theoretic lemmas. *)
(* ------------------------------------------------------------------------- *)
let MODAL_TAC =
REWRITE_TAC[valid; FORALL_PAIR_THM; holds_in; holds] THEN MESON_TAC[];;
let MODAL_RULE tm = prove(tm,MODAL_TAC);;
let HOLDS_FORALL_LEMMA = prove
(`!W:W->bool R P. (!p V. P (holds (W,R) V p)) <=> (!U. P U)`,
REPEAT GEN_TAC THEN EQ_TAC THENL [ALL_TAC; SIMP_TAC[]] THEN
INTRO_TAC "hp; !U" THEN
SUBGOAL_THEN `P (\w:W. holds (W,R) (\a. U) (Atom a) w):bool`
(MP_TAC o REWRITE_RULE[holds]) THEN
ASM_REWRITE_TAC[ETA_AX]);;
let MODAL_SCHEMA_TAC =
REWRITE_TAC[holds_in; holds] THEN MP_TAC HOLDS_FORALL_LEMMA THEN
REPEAT(MATCH_MP_TAC MONO_FORALL THEN GEN_TAC) THEN
DISCH_THEN(fun th -> REWRITE_TAC[th]);;
(* ------------------------------------------------------------------------- *)
(* Subformulas. *)
(* ------------------------------------------------------------------------- *)
let IN_MINOR_RULES,IN_MINOR_INDUCT,IN_MINOR_CASES = new_inductive_set
`(!p. p IN MINOR (Not p)) /\
(!p q. p IN MINOR (p && q)) /\
(!p q. q IN MINOR (p && q)) /\
(!p q. p IN MINOR (p || q)) /\
(!p q. q IN MINOR (p || q)) /\
(!p q. p IN MINOR (p --> q)) /\
(!p q. q IN MINOR (p --> q)) /\
(!p q. p IN MINOR (p <-> q)) /\
(!p q. q IN MINOR (p <-> q)) /\
(!p. p IN MINOR (Box p))`;;
let MINOR_CLAUSES = prove
(`MINOR False = {} /\
MINOR True = {} /\
MINOR (Atom s) = {} /\
(!p. MINOR (Not p) = {p}) /\
(!p q. MINOR (p && q) = {p,q}) /\
(!p q. MINOR (p || q) = {p,q}) /\
(!p q. MINOR (p --> q) = {p,q}) /\
(!p q. MINOR (p <-> q) = {p,q}) /\
(!p. MINOR (Box p) = {p})`,
REWRITE_TAC[EXTENSION; IN_INSERT; NOT_IN_EMPTY; IN_MINOR_CASES;
distinctness "form"; injectivity "form"] THEN
MESON_TAC[]);;
parse_as_infix("SUBFORMULA",get_infix_status "SUBSET");;
let SUBFORMULA = new_definition
`(SUBFORMULA) = RTC (\p q. p IN MINOR q)`;;
let SUBFORMULA_REFL = prove
(`!p. p SUBFORMULA p`,
REWRITE_TAC[SUBFORMULA; RTC_REFL]);;
let SUBFORMULA_TRANS = prove
(`!p q r. p SUBFORMULA q /\ q SUBFORMULA r ==> p SUBFORMULA r`,
REWRITE_TAC[SUBFORMULA; RTC_TRANS]);;
let SUBFORMULA_CASES_L = prove
(`!p q. p SUBFORMULA q <=> p = q \/ (?r. p SUBFORMULA r /\ r IN MINOR q)`,
REWRITE_TAC[SUBFORMULA] THEN MESON_TAC[RTC_CASES_L]);;
let FINITE_SUBFORMULA = prove
(`!p. FINITE {q | q SUBFORMULA p}`,
MATCH_MP_TAC form_INDUCT THEN
REPEAT STRIP_TAC THEN ONCE_REWRITE_TAC[SUBFORMULA_CASES_L] THEN
ASM_REWRITE_TAC[MINOR_CLAUSES; IN_INSERT; NOT_IN_EMPTY;
SET_RULE `{x | x = a} = {a}`;
SET_RULE `{q | q = a \/ P q} = a INSERT {q | P q}`;
SET_RULE `{q | ?r. q SUBFORMULA r /\ r = a} = {q | q SUBFORMULA a}`;
SET_RULE `{q | ?r. q SUBFORMULA r /\ (r = a0 \/ r = a1)} =
{q | q SUBFORMULA a0} UNION {q | q SUBFORMULA a1}`;
EMPTY_GSPEC; FINITE_UNION; FINITE_INSERT; FINITE_EMPTY]);;
let FINITE_SUBSET_SUBFORMULAS_LEMMA = prove
(`!p. FINITE {A | A SUBSET {q | q SUBFORMULA p} UNION
{Not q | q SUBFORMULA p}}`,
REWRITE_TAC[FINITE_POWERSET_EQ; FINITE_UNION; FINITE_SUBFORMULA] THEN
REWRITE_TAC[SET_RULE `{Not q | q SUBFORMULA p} =
IMAGE (Not) {q | q SUBFORMULA p}`] THEN
GEN_TAC THEN MATCH_MP_TAC FINITE_IMAGE THEN
REWRITE_TAC[FINITE_SUBFORMULA]);;
let SUBFORMULA_INVERSION = prove
(`(!p. p SUBFORMULA False <=> p = False) /\
(!p. p SUBFORMULA True <=> p = True) /\
(!p s. p SUBFORMULA (Atom s) <=> p = Atom s) /\
(!p q. p SUBFORMULA (Not q) <=> p = Not q \/ p SUBFORMULA q) /\
(!p q r. p SUBFORMULA (q && r) <=>
p = q && r \/ p SUBFORMULA q \/ p SUBFORMULA r) /\
(!p q r. p SUBFORMULA (q || r) <=>
p = q || r \/ p SUBFORMULA q \/ p SUBFORMULA r) /\
(!p q r. p SUBFORMULA (q --> r) <=>
p = q --> r \/ p SUBFORMULA q \/ p SUBFORMULA r) /\
(!p q r. p SUBFORMULA (q <-> r) <=>
p = q <-> r \/ p SUBFORMULA q \/ p SUBFORMULA r) /\
(!p q. p SUBFORMULA (Box q) <=> p = Box q \/ p SUBFORMULA q)`,
REPEAT CONJ_TAC THEN REPEAT GEN_TAC THEN
GEN_REWRITE_TAC LAND_CONV [SUBFORMULA_CASES_L] THEN
REWRITE_TAC[MINOR_CLAUSES; IN_INSERT; NOT_IN_EMPTY] THEN
MESON_TAC[SUBFORMULA_REFL]);;
let SUBFORMULA_LIST = prove
(`!p. ?X. NOREPETITION X /\ (!q. MEM q X <=> q SUBFORMULA p)`,
GEN_TAC THEN EXISTS_TAC `list_of_set {q | q SUBFORMULA p}` THEN
SIMP_TAC[FINITE_SUBFORMULA; MEM_LIST_OF_SET; IN_ELIM_THM] THEN
SIMP_TAC[NOREPETITION_LIST_OF_SET; FINITE_SUBFORMULA]);;
(* ------------------------------------------------------------------------- *)
(* Cardinality of the type of formulae. *)
(* ------------------------------------------------------------------------- *)
let COUNTABLE_FORM = prove
(`COUNTABLE (:form)`,
(DESTRUCT_TAC "@size. size" o prove_general_recursive_function_exists)
`?depth.
depth False = 0 /\
depth True = 0 /\
(!a. depth (Atom a) = 0) /\
(!p. depth (Not p) = depth p + 1) /\
(!p q. depth (p && q) = MAX (depth p) (depth q) + 1) /\
(!p q. depth (p || q) = MAX (depth p) (depth q) + 1) /\
(!p q. depth (p --> q) = MAX (depth p) (depth q) + 1) /\
(!p q. depth (p <-> q) = MAX (depth p) (depth q) + 1) /\
(!p. depth (Box p) = depth p + 1)` THEN
ABBREV_TAC `u n = {p:form | p | size p < n}` THEN
POP_ASSUM (LABEL_TAC "u") THEN
SUBGOAL_THEN `(:form) = UNIONS {u n | n | n IN (:num)}` SUBST1_TAC THENL
[REWRITE_TAC[EXTENSION; IN_UNIV; IN_UNIONS; IN_ELIM_THM] THEN
X_GEN_TAC `p:form` THEN EXISTS_TAC `u (size (p:form)+1):form->bool` THEN
REMOVE_THEN "u" (fun th -> REWRITE_TAC[GSYM th]) THEN
REWRITE_TAC[IN_ELIM_THM; ARITH_RULE `m < m + 1`] THEN MESON_TAC[];
ALL_TAC] THEN
MATCH_MP_TAC COUNTABLE_UNIONS THEN CONJ_TAC THENL
[MATCH_MP_TAC COUNTABLE_SUBSET THEN
EXISTS_TAC `IMAGE u (:num):(form->bool)->bool` THEN
SIMP_TAC[NUM_COUNTABLE; COUNTABLE_IMAGE] THEN
REWRITE_TAC[SUBSET; FORALL_IN_GSPEC; IN_IMAGE; IN_UNIV] THEN
MESON_TAC[];
ALL_TAC] THEN
REWRITE_TAC[FORALL_IN_GSPEC; IN_UNIV] THEN
INDUCT_TAC THENL
[REMOVE_THEN "u" (fun th -> REWRITE_TAC[GSYM th]) THEN
REWRITE_TAC[ARITH_RULE `!n. ~(n < 0)`; EMPTY_GSPEC; COUNTABLE_EMPTY];
POP_ASSUM (LABEL_TAC "ind")] THEN
MATCH_MP_TAC COUNTABLE_SUBSET THEN
EXISTS_TAC
`u (n:num) UNION
{True, False} UNION
IMAGE Atom (:string) UNION
IMAGE (Not) (u n) UNION
IMAGE (\(op,p,q). op p q)
({(&&),(||),(-->),(<->)} CROSS (u n) CROSS (u n)) UNION
IMAGE (Box) (u n)` THEN
CONJ_TAC THENL
[ASM_REWRITE_TAC[COUNTABLE_UNION; COUNTABLE_INSERT; COUNTABLE_EMPTY] THEN
ASM_SIMP_TAC[COUNTABLE_IMAGE; COUNTABLE_STRING; COUNTABLE_CROSS;
COUNTABLE_INSERT; COUNTABLE_EMPTY];
ALL_TAC] THEN
USE_THEN "u" (SUBST1_TAC o GSYM o SPEC `SUC n`) THEN
REWRITE_TAC[SUBSET; FORALL_IN_GSPEC] THEN
CLAIM_TAC "u_alt" `!p:form n:num. size p < n <=> p IN u n` THENL
[USE_THEN "u" (fun th -> REWRITE_TAC[GSYM th]) THEN SET_TAC[]; ALL_TAC] THEN
CLAIM_TAC "max"
`!p q:form n:num. MAX (size p) (size q) < n <=> p IN u n /\ q IN u n` THENL
[USE_THEN "u" (fun th -> REWRITE_TAC[GSYM th]) THEN
SET_TAC[ARITH_RULE `!p q n. MAX p q < n <=> p < n /\ q < n`];
ALL_TAC] THEN
GEN_TAC THEN STRUCT_CASES_TAC (SPEC `p:form` (cases "form")) THEN
HYP REWRITE_TAC "size" [LT_0; IN_UNION; IN_INSERT; NOT_IN_EMPTY;
distinctness "form"; GSYM ADD1; LT_SUC] THEN
HYP REWRITE_TAC "u_alt max" [] THEN
ASM_SIMP_TAC[FUN_IN_IMAGE; IN_UNIV] THEN
REWRITE_TAC[IN_IMAGE; EXISTS_PAIR_THM; IN_CROSS; IN_INSERT; NOT_IN_EMPTY;
distinctness "form"; injectivity "form"] THEN
MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Bisimulation. *)
(* ------------------------------------------------------------------------- *)
let BISIMIMULATION = new_definition
`BISIMIMULATION (W1,R1,V1) (W2,R2,V2) Z <=>
(!w1:A w2:B.
Z w1 w2
==> w1 IN W1 /\ w2 IN W2 /\
(!a:string. V1 a w1 <=> V2 a w2) /\
(!w1'. R1 w1 w1' ==> ?w2'. w2' IN W2 /\ Z w1' w2' /\ R2 w2 w2') /\
(!w2'. R2 w2 w2' ==> ?w1'. w1' IN W1 /\ Z w1' w2' /\ R1 w1 w1'))`;;
let BISIMIMULATION_HOLDS = prove
(`!W1 R1 V1 W2 R2 V2 Z p w1:A w2:B.
BISIMIMULATION (W1,R1,V1) (W2,R2,V2) Z /\
Z w1 w2
==> (holds (W1,R1) V1 p w1 <=> holds (W2,R2) V2 p w2)`,
SUBGOAL_THEN
`!W1 R1 V1 W2 R2 V2 Z.
BISIMIMULATION (W1,R1,V1) (W2,R2,V2) Z
==> !p w1:A w2:B.
Z w1 w2
==> (holds (W1,R1) V1 p w1 <=> holds (W2,R2) V2 p w2)`
(fun th -> MESON_TAC[th]) THEN
REPEAT GEN_TAC THEN REWRITE_TAC[BISIMIMULATION] THEN DISCH_TAC THEN
MATCH_MP_TAC form_INDUCT THEN REWRITE_TAC[holds] THEN ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Bisimilarity. *)
(* ------------------------------------------------------------------------- *)
let BISIMILAR = new_definition
`BISIMILAR (W1,R1,V1) (W2,R2,V2) (w1:A) (w2:B) <=>
?Z. BISIMIMULATION (W1,R1,V1) (W2,R2,V2) Z /\ Z w1 w2`;;
let BISIMILAR_IN = prove
(`!W1 R1 V1 W2 R2 V2 w1:A w2:B.
BISIMILAR (W1,R1,V1) (W2,R2,V2) w1 w2 ==> w1 IN W1 /\ w2 IN W2`,
REWRITE_TAC[BISIMILAR; BISIMIMULATION] THEN MESON_TAC[]);;
let BISIMILAR_HOLDS = prove
(`!W1 R1 V1 W2 R2 V2 w1:A w2:B.
BISIMILAR (W1,R1,V1) (W2,R2,V2) w1 w2
==> (!p. holds (W1,R1) V1 p w1 <=> holds (W2,R2) V2 p w2)`,
REWRITE_TAC[BISIMILAR] THEN MESON_TAC[BISIMIMULATION_HOLDS]);;
let BISIMILAR_HOLDS_IN = prove
(`!W1 R1 W2 R2.
(!V1 w1:A. ?V2 w2:B. BISIMILAR (W1,R1,V1) (W2,R2,V2) w1 w2)
==> (!p. holds_in (W2,R2) p ==> holds_in (W1,R1) p)`,
REWRITE_TAC[holds_in] THEN MESON_TAC[BISIMILAR_HOLDS; BISIMILAR_IN]);;
let BISIMILAR_VALID = prove
(`!L1 L2 .
(!W1 R1 V1 w1:A.
(W1,R1) IN L1 /\ w1 IN W1
==> ?W2 R2 V2 w2:B.
(W2,R2) IN L2 /\
BISIMILAR (W1,R1,V1) (W2,R2,V2) w1 w2)
==> (!p. L2 |= p ==> L1 |= p)`,
REWRITE_TAC[valid; holds_in; FORALL_PAIR_THM] THEN
MESON_TAC[BISIMILAR_HOLDS; BISIMILAR_IN]);;
(* ----------------------------------------------------------------------- *)
(* Further operators. *)
(* ----------------------------------------------------------------------- *)
parse_as_prefix "Diam";;
parse_as_prefix "Dotbox";;
let diam_DEF = new_definition
`Diam p = Not Box Not p`;;
let dotbox_DEF = new_definition
`Dotbox p = (Box p && p)`;;