-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgl_completeness.ml
716 lines (661 loc) · 30.7 KB
/
gl_completeness.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
(* ========================================================================= *)
(* Proof of the consistency and modal completeness of GL. *)
(* *)
(* (c) Copyright, Marco Maggesi, Cosimo Perini Brogi 2020-2022. *)
(* (c) Copyright, Antonella Bilotta, Marco Maggesi, *)
(* Cosimo Perini Brogi, Leonardo Quartini 2024. *)
(* ========================================================================= *)
let GL_AX = new_definition
`GL_AX = {Box (Box p --> p) --> Box p | p IN (:form)}`;;
let LOB_IN_GL_AX = prove
(`!q. (Box (Box q --> q) --> Box q) IN GL_AX`,
REWRITE_TAC[GL_AX; IN_ELIM_THM; IN_UNIV] THEN MESON_TAC[]);;
let GL_axiom_lob = prove
(`!q. [GL_AX. {} |~ (Box (Box q --> q) --> Box q)]`,
MESON_TAC[MODPROVES_RULES; LOB_IN_GL_AX]);;
(* ------------------------------------------------------------------------- *)
(* Transitive Noetherian frames. *)
(* ------------------------------------------------------------------------- *)
let MODAL_TRANS = prove
(`!W R.
(!w w' w'':W. w IN W /\ w' IN W /\ w'' IN W /\
R w w' /\ R w' w''
==> R w w'') <=>
(!p. holds_in (W,R) (Box p --> Box Box p))`,
MODAL_SCHEMA_TAC THEN MESON_TAC[]);;
let TRANSNT_DEF = new_definition
`TRANSNT =
{(W:W->bool,R:W->W->bool) |
~(W = {}) /\
(!x y:W. R x y ==> x IN W /\ y IN W) /\
(!x y z:W. x IN W /\ y IN W /\ z IN W /\ R x y /\ R y z ==> R x z) /\
WF(\x y. R y x)}`;;
let IN_TRANSNT = prove
(`(W:W->bool,R:W->W->bool) IN TRANSNT <=>
~(W = {}) /\
(!x y:W. R x y ==> x IN W /\ y IN W) /\
(!x y z:W. x IN W /\ y IN W /\ z IN W /\ R x y /\ R y z ==> R x z) /\
WF(\x y. R y x)`,
REWRITE_TAC[TRANSNT_DEF; IN_ELIM_PAIR_THM]);;
(* ------------------------------------------------------------------------- *)
(* Proof of soundness w.r.t. transitive noetherian frames. *)
(* ------------------------------------------------------------------------- *)
let LOB_IMP_TRANSNT = prove
(`!W R. (!x y:W. R x y ==> x IN W /\ y IN W) /\
(!p. holds_in (W,R) (Box (Box p --> p) --> Box p))
==> (!x y z. x IN W /\ y IN W /\ z IN W /\ R x y /\ R y z
==> R x z) /\
WF (\x y. R y x)`,
MODAL_SCHEMA_TAC THEN STRIP_TAC THEN CONJ_TAC THENL
[X_GEN_TAC `w:W` THEN FIRST_X_ASSUM(MP_TAC o SPECL
[`\v:W. v IN W /\ R w v /\ !w''. w'' IN W /\ R v w'' ==> R w w''`;
`w:W`]) THEN
MESON_TAC[];
REWRITE_TAC[WF_IND] THEN X_GEN_TAC `P:W->bool` THEN DISCH_TAC THEN
FIRST_X_ASSUM(MP_TAC o SPEC `\x:W. !w:W. x IN W /\ R w x ==> P x`) THEN
MATCH_MP_TAC MONO_FORALL THEN ASM_MESON_TAC[]]);;
let TRANSNT_IMP_LOB = prove
(`!W R. (!x y:W. R x y ==> x IN W /\ y IN W) /\
(!x y z. x IN W /\ y IN W /\ z IN W /\ R x y /\ R y z ==> R x z) /\
WF (\x y. R y x)
==> (!p. holds_in (W,R) (Box(Box p --> p) --> Box p))`,
MODAL_SCHEMA_TAC THEN REWRITE_TAC[WF_IND] THEN STRIP_TAC THEN
REPEAT GEN_TAC THEN REPEAT DISCH_TAC THEN FIRST_X_ASSUM MATCH_MP_TAC THEN
ASM_MESON_TAC[]);;
let TRANSNT_EQ_LOB = prove
(`!W R. (!x y:W. R x y ==> x IN W /\ y IN W)
==> ((!x y z. x IN W /\ y IN W /\ z IN W /\ R x y /\ R y z
==> R x z) /\
WF (\x y. R y x) <=>
(!p. holds_in (W,R) (Box(Box p --> p) --> Box p)))`,
REPEAT STRIP_TAC THEN EQ_TAC THEN STRIP_TAC THENL
[MATCH_MP_TAC TRANSNT_IMP_LOB THEN ASM_REWRITE_TAC[];
MATCH_MP_TAC LOB_IMP_TRANSNT THEN ASM_REWRITE_TAC[]]);;
let KAXIOM_TRANSNT_VALID = prove
(`!p. KAXIOM p ==> TRANSNT:(W->bool)#(W->W->bool)->bool |= p`,
MATCH_MP_TAC KAXIOM_INDUCT THEN REWRITE_TAC[valid] THEN FIX_TAC "f" THEN
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN
SPEC_TAC (`f:(W->bool)#(W->W->bool)`,`f:(W->bool)#(W->W->bool)`) THEN
MATCH_MP_TAC (MESON[PAIR_SURJECTIVE]
`(!W:W->bool R:W->W->bool. P (W,R)) ==> (!f. P f)`) THEN
REWRITE_TAC[IN_TRANSNT] THEN REPEAT GEN_TAC THEN REPEAT CONJ_TAC THEN
MODAL_TAC);;
let GL_AX_TRANSNT_VALID = prove
(`!p. p IN GL_AX ==> TRANSNT:(W->bool)#(W->W->bool)->bool |= p`,
REWRITE_TAC[GL_AX; FORALL_IN_GSPEC; valid; IN_UNIV] THEN FIX_TAC "f" THEN
REWRITE_TAC[RIGHT_FORALL_IMP_THM] THEN
SPEC_TAC (`f:(W->bool)#(W->W->bool)`,`f:(W->bool)#(W->W->bool)`) THEN
MATCH_MP_TAC (MESON[PAIR_SURJECTIVE]
`(!W:W->bool R:W->W->bool. P (W,R)) ==> (!f. P f)`) THEN
REWRITE_TAC[IN_TRANSNT] THEN REPEAT GEN_TAC THEN
STRIP_TAC THEN MATCH_MP_TAC TRANSNT_IMP_LOB THEN ASM_REWRITE_TAC[]);;
let GL_TRANSNT_VALID = prove
(`!H p. [GL_AX . H |~ p] /\
(!q. q IN H ==> TRANSNT:(W->bool)#(W->W->bool)->bool |= q)
==> TRANSNT:(W->bool)#(W->W->bool)->bool |= p`,
REWRITE_TAC[IMP_CONJ] THEN MATCH_MP_TAC MODPROVES_INDUCT THEN
CONJ_TAC THENL [SIMP_TAC[KAXIOM_TRANSNT_VALID]; ALL_TAC] THEN
CONJ_TAC THENL [SIMP_TAC[GL_AX_TRANSNT_VALID]; ALL_TAC] THEN
CONJ_TAC THENL [MESON_TAC[KAXIOM_TRANSNT_VALID]; ALL_TAC] THEN
CONJ_TAC THENL [MODAL_TAC; ALL_TAC] THEN
REWRITE_TAC[NOT_IN_EMPTY] THEN MODAL_TAC);;
(* ------------------------------------------------------------------------- *)
(* Proof of soundness w.r.t. ITF *)
(* ------------------------------------------------------------------------- *)
let ITF_DEF = new_definition
`ITF =
{(W:W->bool,R:W->W->bool) |
~(W = {}) /\
(!x y:W. R x y ==> x IN W /\ y IN W) /\
FINITE W /\
(!x. x IN W ==> ~R x x) /\
(!x y z. x IN W /\ y IN W /\ z IN W /\ R x y /\ R y z ==> R x z)}`;;
let IN_ITF = prove
(`(W:W->bool,R:W->W->bool) IN ITF <=>
~(W = {}) /\
(!x y:W. R x y ==> x IN W /\ y IN W) /\
FINITE W /\
(!x. x IN W ==> ~R x x) /\
(!x y z. x IN W /\ y IN W /\ z IN W /\ R x y /\ R y z ==> R x z)`,
REWRITE_TAC[ITF_DEF; IN_ELIM_PAIR_THM]);;
let ITF_SUBSET_NT = prove
(`ITF:(W->bool)#(W->W->bool)->bool SUBSET TRANSNT`,
REWRITE_TAC[SUBSET; FORALL_PAIR_THM; IN_ITF] THEN
INTRO_TAC "![W] [R]" THEN STRIP_TAC THEN
ASM_REWRITE_TAC[IN_TRANSNT] THEN MATCH_MP_TAC WF_FINITE THEN
CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
CONJ_TAC THENL [ASM_MESON_TAC[]; ALL_TAC] THEN
GEN_TAC THEN MATCH_MP_TAC FINITE_SUBSET THEN EXISTS_TAC `W:W->bool` THEN
ASM_REWRITE_TAC[] THEN ASM SET_TAC[]);;
let GL_ITF_VALID = prove
(`!p. [GL_AX . {} |~ p] ==> ITF:(W->bool)#(W->W->bool)->bool |= p`,
GEN_TAC THEN STRIP_TAC THEN
SUBGOAL_THEN `TRANSNT:(W->bool)#(W->W->bool)->bool |= p` MP_TAC THENL
[MATCH_MP_TAC GL_TRANSNT_VALID THEN ASM_MESON_TAC[NOT_IN_EMPTY];
REWRITE_TAC[valid; FORALL_PAIR_THM] THEN SET_TAC[ITF_SUBSET_NT]]);;
let GL_consistent = prove
(`~ [GL_AX . {} |~ False]`,
REFUTE_THEN (MP_TAC o MATCH_MP (INST_TYPE [`:num`,`:W`] GL_ITF_VALID)) THEN
REWRITE_TAC[valid; holds; holds_in; FORALL_PAIR_THM;
IN_ITF; NOT_FORALL_THM] THEN
MAP_EVERY EXISTS_TAC [`{0}`; `\x:num y:num. F`] THEN
REWRITE_TAC[NOT_INSERT_EMPTY; FINITE_SING; IN_SING] THEN MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Proposition for GL. *)
(* ------------------------------------------------------------------------- *)
let GL_schema_4 = prove
(`!p. [GL_AX . {} |~ (Box p --> Box (Box p))]`,
MESON_TAC[GL_axiom_lob; MLK_imp_box; MLK_and_pair_th; MLK_and_intro;
MLK_shunt; MLK_imp_trans; MLK_and_right_th; MLK_and_left_th;
MLK_box_and_th]);;
let GL_dot_box = prove
(`!p. [GL_AX . {} |~ (Box p --> Box p && Box (Box p))]`,
MESON_TAC[MLK_imp_refl_th; GL_schema_4; MLK_and_intro]);;
(* ------------------------------------------------------------------------- *)
(* Standard frames. *)
(* ------------------------------------------------------------------------- *)
let GL_STANDARD_FRAME_DEF = new_definition
`GL_STANDARD_FRAME p = GEN_STANDARD_FRAME ITF GL_AX p`;;
let IN_GL_STANDARD_FRAME = prove
(`!p W R. (W,R) IN GL_STANDARD_FRAME p <=>
W = {w | MAXIMAL_CONSISTENT GL_AX p w /\
(!q. MEM q w ==> q SUBSENTENCE p)} /\
(W,R) IN ITF /\
(!q w. Box q SUBFORMULA p /\ w IN W
==> (MEM (Box q) w <=> !x. R w x ==> MEM q x))`,
REPEAT GEN_TAC THEN
REWRITE_TAC[GL_STANDARD_FRAME_DEF; IN_GEN_STANDARD_FRAME;
IN_ITF; IN_FRAME] THEN
EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Standard models. *)
(* ------------------------------------------------------------------------- *)
let GL_STANDARD_MODEL_DEF = new_definition
`GL_STANDARD_MODEL = GEN_STANDARD_MODEL ITF GL_AX`;;
let ITF_SUBSET_FRAME = prove
(`ITF:(W->bool)#(W->W->bool)->bool SUBSET FRAME`,
REWRITE_TAC[SUBSET; FORALL_PAIR_THM] THEN INTRO_TAC "![W] [R]" THEN
REWRITE_TAC[IN_ITF] THEN STRIP_TAC THEN ASM_REWRITE_TAC[IN_FRAME]);;
let GL_STANDARD_MODEL_CAR = prove
(`!W R p V.
GL_STANDARD_MODEL p (W,R) V <=>
(W,R) IN GL_STANDARD_FRAME p /\
(!a w. w IN W ==> (V a w <=> MEM (Atom a) w /\ Atom a SUBFORMULA p)) `,
REPEAT GEN_TAC THEN REWRITE_TAC[GL_STANDARD_MODEL_DEF; GEN_STANDARD_MODEL_DEF] THEN
REWRITE_TAC[IN_GL_STANDARD_FRAME; IN_GEN_STANDARD_FRAME] THEN
EQ_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC (REWRITE_RULE[SUBSET] ITF_SUBSET_FRAME) THEN ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Truth Lemma. *)
(* ------------------------------------------------------------------------- *)
let GL_truth_lemma = prove
(`!W R p V q.
~ [GL_AX . {} |~ p] /\
GL_STANDARD_MODEL p (W,R) V /\
q SUBFORMULA p
==> !w. w IN W ==> (MEM q w <=> holds (W,R) V q w)`,
REWRITE_TAC[GL_STANDARD_MODEL_DEF] THEN MESON_TAC[GEN_TRUTH_LEMMA]);;
(* ------------------------------------------------------------------------- *)
(* Accessibility lemma. *)
(* ------------------------------------------------------------------------- *)
let GL_STANDARD_REL_DEF = new_definition
`GL_STANDARD_REL p w x <=>
GEN_STANDARD_REL GL_AX p w x /\
(!B. MEM (Box B) w ==> MEM (Box B) x) /\
(?E. MEM (Box E) x /\ MEM (Not (Box E)) w)`;;
let GL_STANDARD_REL_CAR = prove
(`!p w x.
GL_STANDARD_REL p w x <=>
MAXIMAL_CONSISTENT GL_AX p w /\ (!q. MEM q w ==> q SUBSENTENCE p) /\
MAXIMAL_CONSISTENT GL_AX p x /\ (!q. MEM q x ==> q SUBSENTENCE p) /\
(!B. MEM (Box B) w ==> MEM (Box B) x /\ MEM B x) /\
(?E. MEM (Box E) x /\ MEM (Not (Box E)) w)`,
REPEAT GEN_TAC THEN REWRITE_TAC[GL_STANDARD_REL_DEF; GEN_STANDARD_REL] THEN
EQ_TAC THEN REPEAT (ASM_MESON_TAC[]) THEN REPEAT (ASM_MESON_TAC[]));;
let ITF_MAXIMAL_CONSISTENT = prove
(`!S p. ~ [GL_AX . {} |~ p]
==> ({M | MAXIMAL_CONSISTENT GL_AX p M /\
(!q. MEM q M ==> q SUBSENTENCE p)},
GL_STANDARD_REL p) IN ITF `,
INTRO_TAC "!S p; p" THEN REWRITE_TAC[IN_ITF] THEN
(* Nonempty *)
CONJ_TAC THENL
[REWRITE_TAC[GSYM MEMBER_NOT_EMPTY; IN_ELIM_THM] THEN
ASM_MESON_TAC[NONEMPTY_MAXIMAL_CONSISTENT];
ALL_TAC] THEN
(* Well-defined *)
CONJ_TAC THENL
[REWRITE_TAC[GL_STANDARD_REL_CAR; IN_ELIM_THM] THEN MESON_TAC[];
ALL_TAC] THEN
(* Finite *)
CONJ_TAC THENL
[MATCH_MP_TAC FINITE_SUBSET THEN
EXISTS_TAC
`{l | NOREPETITION l /\
!q. MEM q l ==> q IN {q | q SUBSENTENCE p}}` THEN
CONJ_TAC THENL
[MATCH_MP_TAC FINITE_NOREPETITION THEN POP_ASSUM_LIST (K ALL_TAC) THEN
SUBGOAL_THEN
`{q | q SUBSENTENCE p} =
{q | q SUBFORMULA p} UNION IMAGE (Not) {q | q SUBFORMULA p}`
SUBST1_TAC THENL
[REWRITE_TAC[GSYM SUBSET_ANTISYM_EQ; SUBSET; FORALL_IN_UNION;
FORALL_IN_GSPEC; FORALL_IN_IMAGE] THEN
REWRITE_TAC[IN_UNION; IN_ELIM_THM; SUBSENTENCE_RULES] THEN
GEN_TAC THEN GEN_REWRITE_TAC LAND_CONV [SUBSENTENCE_CASES] THEN
DISCH_THEN STRUCT_CASES_TAC THEN ASM_REWRITE_TAC[] THEN
DISJ2_TAC THEN MATCH_MP_TAC FUN_IN_IMAGE THEN
ASM SET_TAC [];
ALL_TAC] THEN
REWRITE_TAC[FINITE_UNION; FINITE_SUBFORMULA] THEN
MATCH_MP_TAC FINITE_IMAGE THEN REWRITE_TAC[FINITE_SUBFORMULA];
ALL_TAC] THEN
REWRITE_TAC[SUBSET; IN_ELIM_THM; MAXIMAL_CONSISTENT] THEN
GEN_TAC THEN STRIP_TAC THEN ASM_REWRITE_TAC[];
ALL_TAC] THEN
(* Irreflexive *)
CONJ_TAC THENL
[REWRITE_TAC[FORALL_IN_GSPEC; GL_STANDARD_REL_CAR] THEN
INTRO_TAC "!M; M sub" THEN ASM_REWRITE_TAC[] THEN
INTRO_TAC "_ (@E. E1 E2)" THEN
SUBGOAL_THEN `~ CONSISTENT GL_AX M`
(fun th -> ASM_MESON_TAC[th; MAXIMAL_CONSISTENT]) THEN
MATCH_MP_TAC CONSISTENT_NC THEN ASM_MESON_TAC[];
ALL_TAC] THEN
(* Transitive *)
REWRITE_TAC[IN_ELIM_THM; GL_STANDARD_REL_CAR] THEN
INTRO_TAC "!x y z; (x1 x2) (y1 y2) (z1 z2) +" THEN
ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]);;
let GL_ACCESSIBILITY_LEMMA =
let MEM_FLATMAP_LEMMA = prove
(`!p l. MEM p (FLATMAP (\x. match x with Box c -> [Box c] | _ -> []) l) <=>
(?q. p = Box q /\ MEM p l)`,
GEN_TAC THEN LIST_INDUCT_TAC THEN REWRITE_TAC[MEM; FLATMAP] THEN
REWRITE_TAC[MEM_APPEND] THEN ASM_CASES_TAC `?c. h = Box c` THENL
[POP_ASSUM (CHOOSE_THEN SUBST_VAR_TAC) THEN ASM_REWRITE_TAC[MEM] THEN
MESON_TAC[];
ALL_TAC] THEN
SUBGOAL_THEN `~ MEM p (match h with Box c -> [Box c] | _ -> [])`
(fun th -> ASM_REWRITE_TAC[th]) THENL
[POP_ASSUM MP_TAC THEN STRUCT_CASES_TAC (SPEC `h:form` (cases "form")) THEN
REWRITE_TAC[MEM; distinctness "form"; injectivity "form"] THEN
MESON_TAC[];
ALL_TAC] THEN
POP_ASSUM (fun th -> MESON_TAC[th]))
and CONJLIST_FLATMAP_DOT_BOX_LEMMA = prove
(`!w. [GL_AX . {} |~
CONJLIST (FLATMAP (\x. match x with Box c -> [Box c] | _ -> []) w)
-->
CONJLIST (MAP (Box)
(FLATMAP (\x. match x with Box c -> [c; Box c] | _ -> []) w))]`,
LIST_INDUCT_TAC THENL
[REWRITE_TAC[FLATMAP; MAP; MLK_imp_refl_th]; ALL_TAC] THEN
REWRITE_TAC[FLATMAP; MAP_APPEND] THEN MATCH_MP_TAC MLK_imp_trans THEN
EXISTS_TAC
`CONJLIST (match h with Box c -> [Box c] | _ -> []) &&
CONJLIST (FLATMAP (\x. match x with Box c -> [Box c] | _ -> []) t)` THEN
CONJ_TAC THENL
[MATCH_MP_TAC MLK_iff_imp1 THEN MATCH_ACCEPT_TAC CONJLIST_APPEND;
ALL_TAC] THEN
MATCH_MP_TAC MLK_imp_trans THEN EXISTS_TAC
`CONJLIST (MAP (Box) (match h with Box c -> [c; Box c] | _ -> [])) &&
CONJLIST (MAP (Box)
(FLATMAP (\x. match x with Box c -> [c; Box c] | _ -> []) t))` THEN
CONJ_TAC THENL
[ALL_TAC;
MATCH_MP_TAC MLK_iff_imp2 THEN MATCH_ACCEPT_TAC CONJLIST_APPEND] THEN
MATCH_MP_TAC MLK_and_intro THEN CONJ_TAC THENL
[ALL_TAC; ASM_MESON_TAC[MLK_imp_trans; MLK_and_right_th]] THEN
MATCH_MP_TAC MLK_imp_trans THEN
EXISTS_TAC `CONJLIST (match h with Box c -> [Box c] | _ -> [])` THEN
CONJ_TAC THENL [MATCH_ACCEPT_TAC MLK_and_left_th; ALL_TAC] THEN
POP_ASSUM (K ALL_TAC) THEN
STRUCT_CASES_TAC (SPEC `h:form` (cases "form")) THEN
REWRITE_TAC[distinctness "form"; MAP; MLK_imp_refl_th] THEN
REWRITE_TAC[CONJLIST; NOT_CONS_NIL] THEN MATCH_ACCEPT_TAC GL_dot_box) in
prove
(`!p M w q.
~ [GL_AX . {} |~ p] /\
MAXIMAL_CONSISTENT GL_AX p M /\
(!q. MEM q M ==> q SUBSENTENCE p) /\
MAXIMAL_CONSISTENT GL_AX p w /\
(!q. MEM q w ==> q SUBSENTENCE p) /\
MEM (Not p) M /\
Box q SUBFORMULA p /\
(!x. GL_STANDARD_REL p w x ==> MEM q x)
==> MEM (Box q) w`,
REPEAT GEN_TAC THEN INTRO_TAC "p maxM subM maxw subw notp boxq rrr" THEN
REFUTE_THEN (LABEL_TAC "contra") THEN
REMOVE_THEN "rrr" MP_TAC THEN REWRITE_TAC[NOT_FORALL_THM] THEN
CLAIM_TAC "consistent_X"
`CONSISTENT GL_AX (CONS (Not q) (CONS (Box q)
(FLATMAP (\x. match x with Box c -> [c; Box c] | _ -> []) w)))` THENL
[REMOVE_THEN "contra" MP_TAC THEN REWRITE_TAC[CONSISTENT; CONTRAPOS_THM] THEN
INTRO_TAC "incons" THEN MATCH_MP_TAC MAXIMAL_CONSISTENT_LEMMA THEN
MAP_EVERY EXISTS_TAC [`GL_AX`; `p:form`;
`FLATMAP (\x. match x with Box c -> [Box c] | _ -> []) w`] THEN
ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
[GEN_TAC THEN REWRITE_TAC[MEM_FLATMAP_LEMMA] THEN MESON_TAC[];
ALL_TAC] THEN
MATCH_MP_TAC MLK_imp_trans THEN EXISTS_TAC `Box(Box q --> q)` THEN
REWRITE_TAC[GL_axiom_lob] THEN MATCH_MP_TAC MLK_imp_trans THEN EXISTS_TAC
`CONJLIST (MAP (Box)
(FLATMAP (\x. match x with Box c -> [c; Box c] | _ -> []) w))` THEN
CONJ_TAC THENL
[REWRITE_TAC[CONJLIST_FLATMAP_DOT_BOX_LEMMA]; ALL_TAC] THEN
CLAIM_TAC "XIMP"
`!x y l.
[GL_AX . {} |~ Not (Not y && CONJLIST (CONS x l))]
==> [GL_AX . {} |~ (CONJLIST (MAP (Box) l)) --> Box(x --> y)]` THENL
[REPEAT STRIP_TAC THEN MATCH_MP_TAC MLK_imp_trans THEN
EXISTS_TAC `Box (CONJLIST l)` THEN CONJ_TAC THENL
[MESON_TAC[CONJLIST_MAP_BOX;MLK_iff_imp1]; ALL_TAC] THEN
MATCH_MP_TAC MLK_imp_box THEN MATCH_MP_TAC MLK_shunt THEN
ONCE_REWRITE_TAC[GSYM MLK_contrapos_eq] THEN MATCH_MP_TAC MLK_imp_trans THEN
EXISTS_TAC `CONJLIST (CONS x l) --> False` THEN CONJ_TAC THENL
[ASM_MESON_TAC[MLK_shunt; MLK_not_def];
MATCH_MP_TAC MLK_imp_trans THEN EXISTS_TAC `Not (CONJLIST(CONS x l))` THEN
CONJ_TAC THENL
[MESON_TAC[MLK_axiom_not;MLK_iff_imp2];
MESON_TAC[MLK_contrapos_eq;CONJLIST_CONS; MLK_and_comm_th;
MLK_iff_imp2; MLK_iff_imp1; MLK_imp_trans]]];
ALL_TAC] THEN
POP_ASSUM MATCH_MP_TAC THEN
HYP_TAC "incons" (REWRITE_RULE[CONSISTENT]) THEN
HYP_TAC "incons" (ONCE_REWRITE_RULE[CONJLIST]) THEN
HYP_TAC "incons" (REWRITE_RULE[NOT_CONS_NIL]) THEN
POP_ASSUM MATCH_ACCEPT_TAC;
ALL_TAC] THEN
MP_TAC (SPECL
[`GL_AX`; `p:form`;
`CONS (Not q) (CONS (Box q)
(FLATMAP (\x. match x with Box c -> [c; Box c] | _ -> []) w))`]
EXTEND_MAXIMAL_CONSISTENT) THEN
ANTS_TAC THENL
[ASM_REWRITE_TAC[MEM] THEN GEN_TAC THEN STRIP_TAC THEN
REPEAT (FIRST_X_ASSUM SUBST_VAR_TAC) THENL
[MATCH_MP_TAC SUBFORMULA_IMP_NEG_SUBSENTENCE THEN
REWRITE_TAC[UNWIND_THM1] THEN HYP MESON_TAC "boxq"
[SUBFORMULA_TRANS; SUBFORMULA_INVERSION; SUBFORMULA_REFL];
MATCH_MP_TAC SUBFORMULA_IMP_SUBSENTENCE THEN ASM_REWRITE_TAC[];
ALL_TAC] THEN
POP_ASSUM (DESTRUCT_TAC "@y. +" o REWRITE_RULE[MEM_FLATMAP]) THEN
STRUCT_CASES_TAC (SPEC `y:form` (cases "form")) THEN REWRITE_TAC[MEM] THEN
STRIP_TAC THEN FIRST_X_ASSUM SUBST_VAR_TAC THENL
[MATCH_MP_TAC SUBFORMULA_IMP_SUBSENTENCE THEN
CLAIM_TAC "rmk" `Box a SUBSENTENCE p` THENL
[POP_ASSUM MP_TAC THEN HYP MESON_TAC "subw" []; ALL_TAC] THEN
HYP_TAC "rmk" (REWRITE_RULE[SUBSENTENCE_CASES; distinctness "form"]) THEN
TRANS_TAC SUBFORMULA_TRANS `Box a` THEN ASM_REWRITE_TAC[] THEN
MESON_TAC[SUBFORMULA_INVERSION; SUBFORMULA_REFL];
POP_ASSUM MP_TAC THEN HYP MESON_TAC "subw" []];
ALL_TAC] THEN
INTRO_TAC "@X. maxX subX subl" THEN EXISTS_TAC `X:form list` THEN
ASM_REWRITE_TAC[GL_STANDARD_REL_CAR; NOT_IMP] THEN CONJ_TAC THENL
[CONJ_TAC THENL
[INTRO_TAC "!B; B" THEN HYP_TAC "subl" (REWRITE_RULE[SUBLIST]) THEN
CONJ_TAC THEN REMOVE_THEN "subl" MATCH_MP_TAC THEN
REWRITE_TAC[MEM; distinctness "form"; injectivity "form"] THENL
[DISJ2_TAC THEN REWRITE_TAC[MEM_FLATMAP] THEN EXISTS_TAC `Box B` THEN
ASM_REWRITE_TAC[MEM];
DISJ2_TAC THEN DISJ2_TAC THEN REWRITE_TAC[MEM_FLATMAP] THEN
EXISTS_TAC `Box B` THEN ASM_REWRITE_TAC[MEM]];
ALL_TAC] THEN
EXISTS_TAC `q:form` THEN HYP_TAC "subl" (REWRITE_RULE[SUBLIST]) THEN
CONJ_TAC THENL
[REMOVE_THEN "subl" MATCH_MP_TAC THEN REWRITE_TAC[MEM]; ALL_TAC] THEN
ASM_MESON_TAC[MAXIMAL_CONSISTENT_MEM_NOT];
ALL_TAC] THEN
HYP_TAC "subl: +" (SPEC `Not q` o REWRITE_RULE[SUBLIST]) THEN
REWRITE_TAC[MEM] THEN
IMP_REWRITE_TAC[GSYM MAXIMAL_CONSISTENT_MEM_NOT] THEN
SIMP_TAC[] THEN INTRO_TAC "_" THEN MATCH_MP_TAC SUBFORMULA_TRANS THEN
EXISTS_TAC `Box q` THEN ASM_REWRITE_TAC[] THEN
ASM_MESON_TAC[SUBFORMULA_TRANS; SUBFORMULA_INVERSION; SUBFORMULA_REFL]) ;;
(* ------------------------------------------------------------------------- *)
(* Modal completeness theorem for GL. *)
(* ------------------------------------------------------------------------- *)
let GL_COUNTERMODEL = prove
(`!M p.
~ [GL_AX . {} |~ p] /\
MAXIMAL_CONSISTENT GL_AX p M /\
MEM (Not p) M /\
(!q. MEM q M ==> q SUBSENTENCE p)
==>
~holds
({M | MAXIMAL_CONSISTENT GL_AX p M /\
(!q. MEM q M ==> q SUBSENTENCE p)},
GL_STANDARD_REL p)
(\a w. Atom a SUBFORMULA p /\ MEM (Atom a) w)
p M`,
REPEAT GEN_TAC THEN STRIP_TAC THEN
MP_TAC (ISPECL
[`{M | MAXIMAL_CONSISTENT GL_AX p M /\ (!q. MEM q M ==> q SUBSENTENCE p)}`;
`GL_STANDARD_REL p`;
`p:form`;
`\a w. Atom a SUBFORMULA p /\ MEM (Atom a) w`;
`p:form`] GL_truth_lemma) THEN
ANTS_TAC THENL
[ASM_REWRITE_TAC[SUBFORMULA_REFL; GL_STANDARD_MODEL_CAR;
IN_GL_STANDARD_FRAME; GEN_STANDARD_MODEL_DEF] THEN
ASM_SIMP_TAC[ITF_MAXIMAL_CONSISTENT] THEN REWRITE_TAC[IN_ELIM_THM] THEN
CONJ_TAC THENL [ALL_TAC; MESON_TAC[]] THEN
INTRO_TAC "!q w; boxq w subf" THEN EQ_TAC THENL
[ASM_REWRITE_TAC[GL_STANDARD_REL_CAR] THEN SIMP_TAC[]; ALL_TAC] THEN
INTRO_TAC "hp" THEN MATCH_MP_TAC GL_ACCESSIBILITY_LEMMA THEN
MAP_EVERY EXISTS_TAC [`p:form`; `M:form list`] THEN
ASM_REWRITE_TAC[];
ALL_TAC] THEN
DISCH_THEN (MP_TAC o SPEC `M:form list`) THEN
ANTS_TAC THENL [ASM_REWRITE_TAC[IN_ELIM_THM]; ALL_TAC] THEN
DISCH_THEN (SUBST1_TAC o GSYM) THEN
ASM_MESON_TAC[MAXIMAL_CONSISTENT; CONSISTENT_NC]);;
let GL_COUNTERMODEL_ALT = prove
(`!p. ~ [GL_AX . {} |~ p]
==>
~holds_in
({M | MAXIMAL_CONSISTENT GL_AX p M /\
(!q. MEM q M ==> q SUBSENTENCE p)},
GL_STANDARD_REL p)
p`,
INTRO_TAC "!p; p" THEN
REWRITE_TAC[holds_in; NOT_FORALL_THM; NOT_IMP; IN_ELIM_THM] THEN
EXISTS_TAC `\a w. Atom a SUBFORMULA p /\ MEM (Atom a) w` THEN
DESTRUCT_TAC "@M. max mem subf"
(MATCH_MP NONEMPTY_MAXIMAL_CONSISTENT (ASSUME `~ [GL_AX . {} |~ p]`)) THEN
EXISTS_TAC `M:form list` THEN ASM_REWRITE_TAC[] THEN
MATCH_MP_TAC GL_COUNTERMODEL THEN ASM_REWRITE_TAC[]);;
let GL_COMPLETENESS_THM = prove
(`!p. ITF:(form list->bool)#(form list->form list->bool)->bool |= p
==> [GL_AX . {} |~ p]`,
GEN_TAC THEN GEN_REWRITE_TAC I [GSYM CONTRAPOS_THM] THEN
INTRO_TAC "p" THEN REWRITE_TAC[valid; NOT_FORALL_THM] THEN
EXISTS_TAC `({M | MAXIMAL_CONSISTENT GL_AX p M /\
(!q. MEM q M ==> q SUBSENTENCE p)},
GL_STANDARD_REL p)` THEN
REWRITE_TAC[NOT_IMP] THEN CONJ_TAC THENL
[MATCH_MP_TAC ITF_MAXIMAL_CONSISTENT THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
MATCH_MP_TAC GL_COUNTERMODEL_ALT THEN ASM_REWRITE_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Modal completeness for GL for models on a generic (infinite) domain. *)
(* ------------------------------------------------------------------------- *)
let GL_COMPLETENESS_THM_GEN = prove
(`!p. INFINITE (:A) /\ ITF:(A->bool)#(A->A->bool)->bool |= p
==> [GL_AX . {} |~ p]`,
SUBGOAL_THEN
`INFINITE (:A)
==> !p. ITF:(A->bool)#(A->A->bool)->bool |= p
==> ITF:(form list->bool)#(form list->form list->bool)->bool |= p`
(fun th -> MESON_TAC[th; GL_COMPLETENESS_THM]) THEN
INTRO_TAC "A" THEN MATCH_MP_TAC BISIMILAR_VALID THEN
REPEAT GEN_TAC THEN INTRO_TAC "itf1 w1" THEN
CLAIM_TAC "@f. inj" `?f:form list->A. (!x y. f x = f y ==> x = y)` THENL
[SUBGOAL_THEN `(:form list) <=_c (:A)` MP_TAC THENL
[TRANS_TAC CARD_LE_TRANS `(:num)` THEN
ASM_REWRITE_TAC[GSYM INFINITE_CARD_LE; GSYM COUNTABLE_ALT] THEN
ASM_SIMP_TAC[COUNTABLE_LIST; COUNTABLE_FORM];
REWRITE_TAC[le_c; IN_UNIV]];
ALL_TAC] THEN
MAP_EVERY EXISTS_TAC
[`IMAGE (f:form list->A) W1`;
`\x y:A. ?a b:form list.
a IN W1 /\ b IN W1 /\ x = f a /\ y = f b /\ R1 a b`;
`\a:string w:A. ?x:form list. w = f x /\ V1 a x`;
`f (w1:form list):A`] THEN
CONJ_TAC THENL
[REWRITE_TAC[IN_ITF] THEN
CONJ_TAC THENL [HYP SET_TAC "w1" []; ALL_TAC] THEN
CONJ_TAC THENL [SET_TAC[]; ALL_TAC] THEN
CONJ_TAC THENL [ASM_MESON_TAC[IN_ITF; FINITE_IMAGE]; ALL_TAC] THEN
CONJ_TAC THENL
[REWRITE_TAC[FORALL_IN_IMAGE] THEN
HYP_TAC "itf1: _ _ _ irrefl _" (REWRITE_RULE[IN_ITF]) THEN
HYP MESON_TAC " irrefl inj" [];
ALL_TAC] THEN
REWRITE_TAC[IMP_CONJ; RIGHT_FORALL_IMP_THM; FORALL_IN_IMAGE] THEN
HYP_TAC "itf1: _ _ _ _ trans" (REWRITE_RULE[IN_ITF]) THEN
HYP MESON_TAC " trans inj" [];
ALL_TAC] THEN
REWRITE_TAC[BISIMILAR] THEN
EXISTS_TAC `\w1:form list w2:A. w1 IN W1 /\ w2 = f w1` THEN
ASM_REWRITE_TAC[BISIMIMULATION] THEN REMOVE_THEN "w1" (K ALL_TAC) THEN
REPEAT GEN_TAC THEN STRIP_TAC THEN FIRST_X_ASSUM SUBST_VAR_TAC THEN
ASM_SIMP_TAC[FUN_IN_IMAGE] THEN
CONJ_TAC THENL [HYP MESON_TAC "inj" []; ALL_TAC] THEN
CONJ_TAC THENL
[REPEAT STRIP_TAC THEN REWRITE_TAC[EXISTS_IN_IMAGE] THEN
ASM_MESON_TAC[IN_ITF];
ALL_TAC] THEN
ASM_MESON_TAC[]);;
(* ------------------------------------------------------------------------- *)
(* Simple decision procedure for GL. *)
(* ------------------------------------------------------------------------- *)
let GL_TAC : tactic =
MATCH_MP_TAC GL_COMPLETENESS_THM THEN
REWRITE_TAC[valid; FORALL_PAIR_THM; holds_in; holds;
IN_ITF; GSYM MEMBER_NOT_EMPTY] THEN
MESON_TAC[];;
let GL_RULE tm =
prove(tm, REPEAT GEN_TAC THEN GL_TAC);;
GL_RULE `!p q r. [GL_AX . {} |~ p && q && r --> p && r]`;;
GL_RULE `!p. [GL_AX . {} |~ Box p --> Box (Box p)]`;;
GL_RULE `!p q. [GL_AX . {} |~ Box (p --> q) && Box p --> Box q]`;;
(* GL_RULE `!p. [GL_AX . {} |~ Box (Box p --> p) --> Box p]`;; *)
(* GL_RULE `[GL_AX . {} |~ Box (Box False --> False) --> Box False]`;; *)
(* GL_box_iff_th *)
GL_RULE `!p q. [GL_AX . {} |~ Box (p <-> q) --> (Box p <-> Box q)] `;;
(* ------------------------------------------------------------------------- *)
(* Countermodel using set of formulae (instead of lists of formulae). *)
(* ------------------------------------------------------------------------- *)
let GL_STDWORLDS_RULES,GL_STDWORLDS_INDUCT,GL_STDWORLDS_CASES =
new_inductive_set
`!M. MAXIMAL_CONSISTENT GL_AX p M /\
(!q. MEM q M ==> q SUBSENTENCE p)
==> set_of_list M IN GL_STDWORLDS p`;;
let GL_STDREL_RULES,GL_STDREL_INDUCT,GL_STDREL_CASES = new_inductive_definition
`!w1 w2. GL_STANDARD_REL p w1 w2
==> GL_STDREL p (set_of_list w1) (set_of_list w2)`;;
let GL_STDREL_IMP_GL_STDWORLDS = prove
(`!p w1 w2. GL_STDREL p w1 w2 ==>
w1 IN GL_STDWORLDS p /\
w2 IN GL_STDWORLDS p`,
GEN_TAC THEN MATCH_MP_TAC GL_STDREL_INDUCT THEN
REWRITE_TAC[GL_STANDARD_REL_CAR] THEN REPEAT STRIP_TAC THEN
MATCH_MP_TAC GL_STDWORLDS_RULES THEN ASM_REWRITE_TAC[]);;
let SET_OF_LIST_EQ_GL_STANDARD_REL = prove
(`!p u1 u2 w1 w2.
set_of_list u1 = set_of_list w1 /\ NOREPETITION w1 /\
set_of_list u2 = set_of_list w2 /\ NOREPETITION w2 /\
GL_STANDARD_REL p u1 u2
==> GL_STANDARD_REL p w1 w2`,
REPEAT GEN_TAC THEN REWRITE_TAC[GL_STANDARD_REL_CAR] THEN
STRIP_TAC THEN
CONJ_TAC THENL
[MATCH_MP_TAC SET_OF_LIST_EQ_MAXIMAL_CONSISTENT THEN ASM_MESON_TAC[];
ALL_TAC] THEN
CONJ_TAC THENL [ASM_MESON_TAC[SET_OF_LIST_EQ_IMP_MEM]; ALL_TAC] THEN
CONJ_TAC THENL
[MATCH_MP_TAC SET_OF_LIST_EQ_MAXIMAL_CONSISTENT THEN ASM_MESON_TAC[];
ALL_TAC] THEN
ASM_MESON_TAC[SET_OF_LIST_EQ_IMP_MEM]);;
let BISIMIMULATION_SET_OF_LIST = prove
(`!p. BISIMIMULATION
(
{M | MAXIMAL_CONSISTENT GL_AX p M /\
(!q. MEM q M ==> q SUBSENTENCE p)},
GL_STANDARD_REL p,
(\a w. Atom a SUBFORMULA p /\ MEM (Atom a) w)
)
(GL_STDWORLDS p,
GL_STDREL p,
(\a w. Atom a SUBFORMULA p /\ Atom a IN w))
(\w1 w2.
MAXIMAL_CONSISTENT GL_AX p w1 /\
(!q. MEM q w1 ==> q SUBSENTENCE p) /\
w2 IN GL_STDWORLDS p /\
set_of_list w1 = w2)`,
GEN_TAC THEN REWRITE_TAC[BISIMIMULATION] THEN REPEAT GEN_TAC THEN
STRIP_TAC THEN ASM_REWRITE_TAC[IN_ELIM_THM] THEN CONJ_TAC THENL
[GEN_TAC THEN FIRST_X_ASSUM SUBST_VAR_TAC THEN
REWRITE_TAC[IN_SET_OF_LIST];
ALL_TAC] THEN
CONJ_TAC THENL
[INTRO_TAC "![u1]; w1u1" THEN EXISTS_TAC `set_of_list u1:form->bool` THEN
HYP_TAC "w1u1 -> hp" (REWRITE_RULE[GL_STANDARD_REL_CAR]) THEN
ASM_REWRITE_TAC[] THEN CONJ_TAC THENL
[MATCH_MP_TAC GL_STDWORLDS_RULES THEN ASM_REWRITE_TAC[];
ALL_TAC] THEN
CONJ_TAC THENL
[MATCH_MP_TAC GL_STDWORLDS_RULES THEN ASM_REWRITE_TAC[];
ALL_TAC] THEN
FIRST_X_ASSUM SUBST_VAR_TAC THEN MATCH_MP_TAC GL_STDREL_RULES THEN
ASM_REWRITE_TAC[];
ALL_TAC] THEN
INTRO_TAC "![u2]; w2u2" THEN EXISTS_TAC `list_of_set u2:form list` THEN
REWRITE_TAC[CONJ_ACI] THEN
HYP_TAC "w2u2 -> @x2 y2. x2 y2 x2y2" (REWRITE_RULE[GL_STDREL_CASES]) THEN
REPEAT (FIRST_X_ASSUM SUBST_VAR_TAC) THEN
SIMP_TAC[SET_OF_LIST_OF_SET; FINITE_SET_OF_LIST] THEN
SIMP_TAC[MEM_LIST_OF_SET; FINITE_SET_OF_LIST; IN_SET_OF_LIST] THEN
CONJ_TAC THENL
[HYP_TAC "x2y2 -> hp" (REWRITE_RULE[GL_STANDARD_REL_CAR]) THEN
ASM_REWRITE_TAC[];
ALL_TAC] THEN
CONJ_TAC THENL
[MATCH_MP_TAC SET_OF_LIST_EQ_GL_STANDARD_REL THEN
EXISTS_TAC `x2:form list` THEN EXISTS_TAC `y2:form list` THEN
ASM_REWRITE_TAC[] THEN
SIMP_TAC[NOREPETITION_LIST_OF_SET; FINITE_SET_OF_LIST] THEN
SIMP_TAC[EXTENSION; IN_SET_OF_LIST; MEM_LIST_OF_SET;
FINITE_SET_OF_LIST] THEN
ASM_MESON_TAC[MAXIMAL_CONSISTENT];
ALL_TAC] THEN
CONJ_TAC THENL
[ASM_MESON_TAC[GL_STDREL_IMP_GL_STDWORLDS]; ALL_TAC] THEN
MATCH_MP_TAC SET_OF_LIST_EQ_MAXIMAL_CONSISTENT THEN
EXISTS_TAC `y2:form list` THEN
SIMP_TAC[NOREPETITION_LIST_OF_SET; FINITE_SET_OF_LIST] THEN
SIMP_TAC[EXTENSION; IN_SET_OF_LIST; MEM_LIST_OF_SET; FINITE_SET_OF_LIST] THEN
ASM_MESON_TAC[GL_STANDARD_REL_CAR]);;
let GL_COUNTERMODEL_FINITE_SETS = prove
(`!p. ~ [GL_AX . {} |~ p] ==> ~holds_in (GL_STDWORLDS p, GL_STDREL p) p`,
INTRO_TAC "!p; p" THEN
DESTRUCT_TAC "@M. max mem subf"
(MATCH_MP NONEMPTY_MAXIMAL_CONSISTENT (ASSUME `~ [GL_AX . {} |~ p]`)) THEN
REWRITE_TAC[holds_in; NOT_FORALL_THM; NOT_IMP] THEN
ASSUM_LIST (LABEL_TAC "hp" o MATCH_MP GL_COUNTERMODEL o
end_itlist CONJ o rev) THEN
EXISTS_TAC `\a w. Atom a SUBFORMULA p /\ Atom a IN w` THEN
EXISTS_TAC `set_of_list M:form->bool` THEN CONJ_TAC THENL
[MATCH_MP_TAC GL_STDWORLDS_RULES THEN ASM_REWRITE_TAC[]; ALL_TAC] THEN
REMOVE_THEN "hp" MP_TAC THEN
MATCH_MP_TAC (MESON[] `(p <=> q) ==> (~p ==> ~q)`) THEN
MATCH_MP_TAC BISIMIMULATION_HOLDS THEN
EXISTS_TAC
`(\w1 w2.
MAXIMAL_CONSISTENT GL_AX p w1 /\
(!q. MEM q w1 ==> q SUBSENTENCE p) /\
w2 IN GL_STDWORLDS p /\
set_of_list w1 = w2)` THEN
ASM_REWRITE_TAC[BISIMIMULATION_SET_OF_LIST] THEN
MATCH_MP_TAC GL_STDWORLDS_RULES THEN ASM_REWRITE_TAC[]);;