-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclosest_city.py
141 lines (108 loc) · 4.61 KB
/
closest_city.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#!/usr/bin/python
# haversine distances to major population centers by Greg Bernard
import numpy as np
import pandas as pd
import sqlite3
import re
class CityAppend:
def __init__(self, filename='EloquaDB.db', table='GeoIP'):
self.filename = filename
self.table = table
self.db = sqlite3.connect(self.filename, detect_types=sqlite3.PARSE_DECLTYPES | sqlite3.PARSE_COLNAMES)
try:
self.cities = pd.read_pickle("converted_city_data.p")
except FileNotFoundError:
self.cities = self.pull_cities()
self.data = self.pull_data()
def pull_cities(self):
"""
Pulls city longitude and latitude info from Wikipedia
:return: data frame with city information
"""
countries = ['Canada', 'United States']
list_of_locations = 'https://en.wikipedia.org/wiki/' \
'List_of_population_centers_by_latitude'
self.cities = pd.read_html(list_of_locations)
self.cities[0].dropna(inplace=True)
self.cities = self.cities[0].loc[self.cities[0][4].isin(countries)]
def convert(coord):
coord_list = re.split("\W+", coord)
print(coord_list)
new_coord = (float(coord_list[0]) + (float(coord_list[1]) / 60)) * \
(-1 if ('S' in coord_list[2] or 'W' in coord_list[2]) else 1)
return new_coord
self.cities['Lat'] = self.cities.apply(lambda row: convert(row[0]), axis=1)
self.cities['Lon'] = self.cities.apply(lambda row: convert(row[1]), axis=1)
self.cities.to_pickle("converted_city_data.p")
return self.cities
def pull_data(self):
"""
Pulls current GeoIP data from the database
:return: data frame with data
"""
sql_data = pd.read_sql("""SELECT * FROM GeoIP;""", con=self.db)
return sql_data
def haversine(self):
"""
Distance between two sets of coordinates in kilometers (5% inaccurate)
:return: list of closest cities, country those cities are in, distance in kilometers
"""
radius = 6371 # radius of Earth in KM
try:
lat = np.radians(self.data.latitude)
lon = np.radians(self.data.longitude)
except AttributeError:
lat = np.radians(self.data[3])
lon = np.radians(self.data[4])
end_lon = np.radians(self.cities.Lon)
end_lat = np.radians(self.cities.Lat)
city = self.cities[2]
country = self.cities[4]
min_distances = []
min_cities = []
min_countries = []
# Return ID of row with minimum value, then pick the row with that ID from city and country
for row in zip(lat, lon):
x = (end_lon - row[1]) * np.cos(0.5 * (end_lat + row[0]))
y = end_lat - row[0]
distance = radius * np.sqrt(x ** 2 + y ** 2)
row_value = distance.idxmin()
min_distances.append(distance.loc[row_value])
min_cities.append(city.loc[row_value])
min_countries.append(country.loc[row_value])
return min_cities, min_countries, min_distances
def closest_cities(self):
"""
Calculate the closest major population center for every possible marketing activity
:return: updated data data frame
"""
print("-"*50)
print("Calculating closest city for each IP.")
self.data['cc_city'], self.data['cc_country'], self.data['cc_distance_in_km'] = self.haversine()
return self.data
def load_to_database(self):
"""
Load data back into database
"""
data_types = {'city': 'TEXT',
'country': 'TEXT',
'latitude': 'REAL',
'longitude': 'REAL',
'postal': 'TEXT',
'registered_country': 'TEXT',
'IpAddress': 'TEXT PRIMARY KEY',
'cc_city': 'TEXT',
'cc_country': 'TEXT',
'cc_distance_in_km': 'REAL',
}
print("Loading to database.")
self.data.to_sql(self.table, con=self.db, if_exists='replace', index=False, dtype=data_types)
self.db.commit()
self.db.close()
def main():
ca = CityAppend()
print(ca.closest_cities())
ca.load_to_database()
# closest_cities().to_csv("closest_city.csv", sep=',', header=True, index=False)
if __name__ == "__main__":
main()