-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathMGTAB-ML.py
133 lines (118 loc) · 4.49 KB
/
MGTAB-ML.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
from Dataset import MGTAB
import numpy as np
from sklearn.utils import shuffle
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import AdaBoostClassifier, RandomForestClassifier
from xgboost import XGBClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from utils import sample_mask
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--task', type=str, default='bot', help='detection task of stance or bot')
parser.add_argument('--models_list', type=int, default=[1,2,3,5], nargs='+', help='Selection of classifiers')
parser.add_argument('--random_seed', type=int, default=[0,1,2,3,4], nargs='+', help='Selection of random seeds')
args = parser.parse_args()
print(args)
modelDict = {
1: "AdaBoost",
2: "RandomForest",
3: "DecisionTree",
4: "XGBoot",
5: "SVM",
6: "Lr",
7: "GB",
8: "knn"
}
assert set(args.models_list).issubset(modelDict.keys()), 'models should be choose in modelDict'
dataset = MGTAB('./Dataset/MGTAB')
data = dataset[0]
if args.task == 'stance':
out_dim = 3
data.y = data.y1
else:
out_dim = 2
data.y = data.y2
x = np.array(data.x)
labels = np.array(data.y)
sample_number = len(labels)
for i in args.models_list:
acc_list = []
precision_list = []
recall_list = []
f1_list = []
for j in range(len(args.random_seed)):
shuffled_idx = shuffle(np.array(range(sample_number)), random_state=args.random_seed[j])
train_idx = shuffled_idx[:int(0.7 * sample_number)]
val_idx = shuffled_idx[int(0.7 * sample_number):int(0.9 * sample_number)]
test_idx = shuffled_idx[int(0.9 * sample_number):]
data.train_mask = sample_mask(train_idx, sample_number)
data.val_mask = sample_mask(val_idx, sample_number)
data.test_mask = sample_mask(test_idx, sample_number)
x_train = x[data.train_mask]
y_train = labels[data.train_mask]
x_test = x[data.test_mask]
y_test = labels[data.test_mask]
if i == 1:
clf = AdaBoostClassifier(
random_state=args.random_seed[j],
n_estimators=50,
learning_rate=1.0,
algorithm='SAMME.R',
)
elif i == 2:
clf = RandomForestClassifier(
n_estimators=100,
random_state=args.random_seed[j],
n_jobs=-1
)
elif i == 3:
clf = DecisionTreeClassifier(
random_state=args.random_seed[j],
criterion='gini',
splitter='best',
min_samples_split=2,
min_samples_leaf=1
)
elif i == 4:
clf = XGBClassifier(
learning_rate=0.1,
random_state=args.random_seed[j],
n_estimators=200,
max_depth=5,
min_child_weight=1,
colsample_bytree=0.8,
objective='binary:logistic'
)
elif i == 5:
clf = SVC(
kernel='rbf',
C=10,
random_state=args.random_seed[j],
probability=True
)
elif i == 6:
clf = LogisticRegression(
C=0.1,
random_state=args.random_seed[j],
max_iter=500
)
elif i == 7:
clf = GaussianNB()
elif i == 8:
clf = KNeighborsClassifier(n_neighbors=7)
clf.fit(X=x_train, y=y_train)
y_pred = clf.predict(x_test)
acc_list.append(accuracy_score(y_true=y_test, y_pred=y_pred)*100)
precision_list.append(precision_score(y_true=y_test, y_pred=y_pred, average='macro')*100)
recall_list.append(recall_score(y_true=y_test, y_pred=y_pred, average='macro')*100)
f1_list.append(f1_score(y_true=y_test, y_pred=y_pred, average='macro')*100)
print('\n'+'*'*30)
print('model: {}'.format(modelDict[i]))
print('acc: {:.2f} + {:.2f}'.format(np.array(acc_list).mean(), np.std(acc_list)))
print('precision: {:.2f} + {:.2f}'.format(np.array(precision_list).mean(), np.std(precision_list)))
print('recall: {:.2f} + {:.2f}'.format(np.array(recall_list).mean(), np.std(recall_list)))
print('f1: {:.2f} + {:.2f}'.format(np.array(f1_list).mean(), np.std(f1_list)))