-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_mnist.py
153 lines (101 loc) · 4 KB
/
train_mnist.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
from tqdm import tqdm
import os
import logging
import torch
import argparse
import torch.utils as utils
import torch.utils.data as data
import torch.nn.functional as F
from torch.optim.lr_scheduler import CosineAnnealingLR
from torchvision.datasets import MNIST
from torchvision import transforms
from setproctitle import setproctitle
from core.configs import cfg
from core.utils import *
from core.model import build_model
from core.optim import build_optimizer
def train(train_loader, model, optimizer, epoch, device, logger):
train_accuracy, train_loss = 0., 0.
model.train()
logger.info('\nTrain start')
for images, labels in tqdm(train_loader):
images, labels = images.to(device), labels.to(device)
optimizer.zero_grad()
out = model(images)
loss = F.cross_entropy(out, labels)
loss.backward()
optimizer.step()
train_loss += loss.item()
preds = out.argmax(dim=-1)
train_accuracy += torch.sum(preds==labels).item() / len(labels)
logger.info(f"epoch: {epoch+1}")
logger.info(f"train_loss: {train_loss / len(train_loader)}")
logger.info(f"train_accuracy: {train_accuracy / len(train_loader)}")
return train_loss, train_accuracy
def val(test_loader, model, epoch, device, logger):
correct_list = []
model.eval()
logger.info('\nEval start')
with torch.no_grad():
for images, labels in tqdm(test_loader):
images, labels = images.to(device), labels.to(device)
out = model(images)
correct_list.append(out.argmax(dim=-1).eq(labels))
logger.info(f"epoch: {epoch+1}")
logger.info(f"validation_accuracy: {torch.concat(correct_list).float().mean()}")
return torch.concat(correct_list).float().mean().item()
def Trainer(cfg):
logger = logging.getLogger("TRAINER.train_time")
device = 'cuda' if torch.cuda.is_available() else 'cpu'
model = build_model(cfg)
model.to(device)
optimizer = build_optimizer(cfg)(model.parameters())
scheduler = CosineAnnealingLR(optimizer, T_max=100)
transform = transforms.Compose([
transforms.ToTensor()
])
train_dataset = MNIST(root=cfg.DATA_DIR, train=True, transform=transform, download=True)
test_dataset = MNIST(root=cfg.DATA_DIR, train=False, transform=transform, download=False)
train_dataloader = data.DataLoader(train_dataset, batch_size=cfg.TEST.BATCH_SIZE, shuffle=True, drop_last=True)
test_dataloader = data.DataLoader(test_dataset, batch_size=cfg.TEST.BATCH_SIZE)
train_epoch = 100
best_val = 0.
for epoch in range(train_epoch):
train(train_dataloader, model, optimizer, epoch, device, logger)
scheduler.step(epoch=epoch)
val_res = val(test_dataloader, model, epoch, device, logger)
if val_res >= best_val:
best_val = val_res
if not os.path.exists('./ckpt/mnist/source'):
os.makedirs('./ckpt/mnist/source/', exist_ok=True)
torch.save(model.state_dict(), './ckpt/mnist/source/resnet18.pth')
def main():
parser = argparse.ArgumentParser("Pytorch Implementation for Test Time Adaptation!")
parser.add_argument(
'-dcfg',
'--dataset-config-file',
metavar="FILE",
default="",
help="path to dataset config file",
type=str)
parser.add_argument(
'opts',
help='modify the configuration by command line',
nargs=argparse.REMAINDER,
default=None)
args = parser.parse_args()
if len(args.opts) > 0:
args.opts[-1] = args.opts[-1].strip('\r\n')
torch.backends.cudnn.benchmark = True
cfg.merge_from_file(args.dataset_config_file)
cfg.merge_from_list(args.opts)
cfg.freeze()
ds = cfg.CORRUPTION.DATASET
if cfg.OUTPUT_DIR:
mkdir(cfg.OUTPUT_DIR)
logger = setup_logger('TRAINER', cfg.OUTPUT_DIR, 0, filename=cfg.LOG_DEST)
logger.info(args)
set_random_seed(cfg.SEED)
Trainer(cfg)
if __name__ == "__main__":
main()