-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
124 lines (93 loc) · 2.49 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
import torch
import albumentations as A
from albumentations.pytorch import ToTensorV2
from tqdm import tqdm
import torch.nn as nn
import torch.optim as optim
from model import UNet
from utils import(
load_checkpoint,
save_checkpoint,
get_loaders,
save_predictions_as_imgs,
check_accuracy,
)
#hyperparameters:
learning_rate = 1e-4
device = 'cuda' if torch.cuda.is_available() else'cpu'
batch_size = 32
num_epochs = 1
num_workers = 2
image_height = 160 #1280 og
image_width = 240 #1918 og
pin_memory = True
load_model = False
train_img_dir = 'train_imges/'
train_mask_dir = 'train_masks/'
val_img_dir = 'val_images/'
val_mask_dir='val_masks/'
def train_fn(loader,model,optimizer,loss_fn,scaler):
loop = tqdm(loader)
for batch_idx,(data,targets) in enumerate(loop):
data = data.to(device)
targets = targets.float().unsqueeze(1).to(device=device)
with torch.cuda.amp.autocast():
predictions = model(data)
loss = loss_fn(predictions,targets)
optimizer.zero_grad()
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
#tqdmloop
loop.set_postfix(loss=loss.item())
def main():
train_transform = A.Compose(
[
A.Resize(height=image_height,width = image_width),
A.Rotate(limit=35,p=1.0),
A.HorizontalFlip(p=0.5),
A.VerticalFlip(p=0.1),
A.Normalize(
mean=[0.0,0.0,0.0],
std=[1.0,1.0,1.0],
max_pixel_value = 255.0
),
ToTensorV2(), ] )
val_transforms = A.Compose(
[
A.Resize(height=image_height,width = image_width),
A.Normalize(
mean=[0.0,0.0,0.0],
std=[1.0,1.0,1.0],
max_pixel_value = 255.0
),
ToTensorV2(), ] )
model = UNet(in_channels=3,out_channels=1).to(device)
loss_fn = nn.BCEWithLogitsLoss()
optimizer = optim.Adam(model.parameters(),lr=learning_rate)
train_loader,val_loader = get_loaders(
train_img_dir,
train_mask_dir,
val_img_dir,
val_mask_dir,
batch_size,
train_transform,
val_transforms,
num_workers,
pin_memory,
)
scaler = torch.cuda.amp.GradScaler()
for epoch in range(num_workers):
train_fn(train_loader,model,optimizer,loss_fn,scaler)
#save
#check accuracy
checkpoint = {
'state_dic':model.state_dict(),
'optimizer':optimizer.state_dict(),
}
save_checkpoint(checkpoint)
check_accuracy(val_loader,model,device=device)
save_predictions_as_imgs(
val_loader,model,folder='saved_images/',device=device)
if __name__=='__main__':
main()