-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodel.py
89 lines (58 loc) · 2.14 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import torch
import torch.nn as nn
import torchvision.transforms.functional as TF
class DoubleConv(nn.Module):
def __init__(self,in_channels,out_channels):
super(DoubleConv,self).__init__()
self.conv = nn.Sequential(
nn.Conv2d(in_channels,out_channels,3,1,1,bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels,out_channels,3,1,1,bias=False),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True))
def forward(self,x):
return self.conv(x)
class UNet(nn.Module):
def __init__(self,in_channels = 3,out_channels = 1,features=[64,128,256,512]):
super(UNet,self).__init__()
self.ups=nn.ModuleList()
self.downs = nn.ModuleList()
self.pool = nn.MaxPool2d(kernel_size=2,stride=2)
#going down
for feature in features:
self.downs.append(DoubleConv(in_channels,feature))
in_channels = feature
#bottom layer
self.bottleneck = DoubleConv(features[-1],features[-1]*2)
#going up
for feature in reversed(features):
self.ups.append(nn.ConvTranspose2d(feature*2 , feature, kernel_size =2,stride=2,))
self.ups.append(DoubleConv(feature*2,feature))
self.final_conv = nn.Conv2d(features[0],out_channels,kernel_size=1)
def forward(self,x):
skip_connections = []
for layers in self.downs:
x = layers(x)
skip_connections.append(x)
x = self.pool(x)
x = self.bottleneck(x)
skip_connections = skip_connections[::-1] #reverse the list
#skip_connections = skip_connections.reverse()
for idx in range(0,len(self.ups),2):
x = self.ups[idx](x)
skip_connection = skip_connections[idx //2]
if x.shape != skip_connection.shape:
x = TF.resize(x,size=skip_connection.shape[2:]) #resize ,[2:] get the current shape
concat_skip = torch.cat((skip_connection,x),dim=1)
x = self.ups[idx+1](concat_skip)
x = self.final_conv(x)
return x
def test():
x = torch.rand((3,1,161,161))
model = UNet(in_channels=1,out_channels=1)
pred = model(x)
print(pred.shape)
assert pred.shape==x.shape
if __name__ =='__main__':
test()