Skip to content

Latest commit

 

History

History
98 lines (97 loc) · 26.8 KB

File metadata and controls

98 lines (97 loc) · 26.8 KB

RECSYS2013 Paper List

论文 作者 组织 摘要 翻译 代码 引用数
Hidden factors and hidden topics: understanding rating dimensions with review text Julian J. McAuley, Jure Leskovec code 792
Exploring temporal effects for location recommendation on location-based social networks Huiji Gao, Jiliang Tang, Xia Hu, Huan Liu code 324
Spatial topic modeling in online social media for location recommendation Bo Hu, Martin Ester code 128
Recommendation in heterogeneous information networks with implicit user feedback Xiao Yu, Xiang Ren, Yizhou Sun, Bradley Sturt, Urvashi Khandelwal, Quanquan Gu, Brandon Norick, Jiawei Han code 109
Evaluation of recommendations: rating-prediction and ranking Harald Steck code 101
Top-N recommendations from implicit feedback leveraging linked open data Vito Claudio Ostuni, Tommaso Di Noia, Eugenio Di Sciascio, Roberto Mirizzi code 91
A fast parallel SGD for matrix factorization in shared memory systems Yong Zhuang, WeiSheng Chin, YuChin Juan, ChihJen Lin code 85
Personalized news recommendation with context trees Florent Garcin, Christos Dimitrakakis, Boi Faltings code 82
Hybrid event recommendation using linked data and user diversity Houda Khrouf, Raphaël Troncy code 69
Efficient top-n recommendation for very large scale binary rated datasets Fabio Aiolli code 58
Which app will you use next?: collaborative filtering with interactional context Nagarajan Natarajan, Donghyuk Shin, Inderjit S. Dhillon code 58
Location-aware music recommendation using auto-tagging and hybrid matching Marius Kaminskas, Francesco Ricci, Markus Schedl code 57
Learning to rank for recommender systems Alexandros Karatzoglou, Linas Baltrunas, Yue Shi code 57
Improving user profile with personality traits predicted from social media content Rui Gao, Bibo Hao, Shuotian Bai, Lin Li, Ang Li, Tingshao Zhu code 39
Personalized next-song recommendation in online karaokes Xiang Wu, Qi Liu, Enhong Chen, Liang He, Jingsong Lv, Can Cao, Guoping Hu code 38
Context-aware review helpfulness rating prediction Jiliang Tang, Huiji Gao, Xia Hu, Huan Liu code 37
Integrating trust and similarity to ameliorate the data sparsity and cold start for recommender systems Guibing Guo code 36
Trading-off among accuracy, similarity, diversity, and long-tail: a graph-based recommendation approach Lei Shi code 36
Sentimental product recommendation Ruihai Dong, Michael P. O'Mahony, Markus Schaal, Kevin McCarthy, Barry Smyth code 36
Movie recommender system for profit maximization Amos Azaria, Avinatan Hassidim, Sarit Kraus, Adi Eshkol, Ofer Weintraub, Irit Netanely code 34
Rating support interfaces to improve user experience and recommender accuracy Tien T. Nguyen, Daniel Kluver, TingYu Wang, PikMai Hui, Michael D. Ekstrand, Martijn C. Willemsen, John Riedl code 32
xCLiMF: optimizing expected reciprocal rank for data with multiple levels of relevance Yue Shi, Alexandros Karatzoglou, Linas Baltrunas, Martha A. Larson, Alan Hanjalic code 31
Xbox movies recommendations: variational bayes matrix factorization with embedded feature selection Noam Koenigstein, Ulrich Paquet code 29
ReComment: towards critiquing-based recommendation with speech interaction Peter Grasch, Alexander Felfernig, Florian Reinfrank code 27
Distributed matrix factorization with mapreduce using a series of broadcast-joins Sebastian Schelter, Christoph Boden, Martin Schenck, Alexander Alexandrov, Volker Markl code 27
Diffusion-aware personalized social update recommendation Ye Pan, Feng Cong, Kailong Chen, Yong Yu code 26
Nonlinear latent factorization by embedding multiple user interests Jason Weston, Ron J. Weiss, Hector Yee code 26
Towards scalable and accurate item-oriented recommendations Noam Koenigstein, Yehuda Koren code 26
Escape the bubble: guided exploration of music preferences for serendipity and novelty Maria Taramigkou, Efthimios Bothos, Konstantinos Christidis, Dimitris Apostolou, Gregoris Mentzas code 26
Learning to rank recommendations with the k-order statistic loss Jason Weston, Hector Yee, Ron J. Weiss code 25
Recommending scientific articles using bi-relational graph-based iterative RWR Geng Tian, Liping Jing code 25
Online multi-task collaborative filtering for on-the-fly recommender systems Jialei Wang, Steven C. H. Hoi, Peilin Zhao, Zhiyong Liu code 24
Selecting content-based features for collaborative filtering recommenders Royi Ronen, Noam Koenigstein, Elad Ziklik, Nir Nice code 24
Query-driven context aware recommendation Negar Hariri, Bamshad Mobasher, Robin D. Burke code 22
Personalised ranking with diversity Neil J. Hurley code 22
DrunkardMob: billions of random walks on just a PC Aapo Kyrola code 22
What to read next?: making personalized book recommendations for K-12 users Maria Soledad Pera, YiuKai Ng code 21
OFF-set: one-pass factorization of feature sets for online recommendation in persistent cold start settings Michal Aharon, Natalie Aizenberg, Edward Bortnikov, Ronny Lempel, Roi Adadi, Tomer Benyamini, Liron Levin, Ran Roth, Ohad Serfaty code 21
Cross social networks interests predictions based ongraph features Amit Tiroshi, Shlomo Berkovsky, Mohamed Ali Kâafar, Terence Chen, Tsvi Kuflik code 21
Orthogonal query recommendation Hossein Vahabi, Margareta Ackerman, David Loker, Ricardo BaezaYates, Alejandro LópezOrtiz code 18
Set-oriented personalized ranking for diversified top-n recommendation Ruilong Su, Li'ang Yin, Kailong Chen, Yong Yu code 17
Recommending branded products from social media Yongzheng Zhang, Marco Pennacchiotti code 17
Dynamic generation of personalized hybrid recommender systems Simon Dooms code 16
To personalize or not: a risk management perspective Weinan Zhang, Jun Wang, Bowei Chen, Xiaoxue Zhao code 16
When power users attack: assessing impacts in collaborative recommender systems David C. Wilson, Carlos E. Seminario code 15
Using maximum coverage to optimize recommendation systems in e-commerce Mikael Hammar, Robin Karlsson, Bengt J. Nilsson code 15
Agent-based computational investing recommender system Mona Taghavi, Kaveh Bakhtiyari, Edgar Scavino code 15
Retargeted matrix factorization for collaborative filtering Oluwasanmi Koyejo, Sreangsu Acharyya, Joydeep Ghosh code 14
Topic diversity in tag recommendation Fabiano Belém, Rodrygo L. T. Santos, Jussara M. Almeida, Marcos André Gonçalves code 14
Recommendation opportunities: improving item prediction using weighted percentile methods in collaborative filtering systems Panagiotis Adamopoulos, Alexander Tuzhilin code 13
Catch-up TV recommendations: show old favourites and find new ones Mengxi Xu, Shlomo Berkovsky, Sebastien Ardon, Sipat Triukose, Anirban Mahanti, Irena Koprinska code 13
An analysis of tag-recommender evaluation procedures Stephan Doerfel, Robert Jäschke code 13
Recommending patents based on latent topics Ralf Krestel, Padhraic Smyth code 13
Beyond rating prediction accuracy: on new perspectives in recommender systems Panagiotis Adamopoulos code 12
Local context modeling with semantic pre-filtering Victor Codina, Francesco Ricci, Luigi Ceccaroni code 12
Accuracy and robustness impacts of power user attacks on collaborative recommender systems Carlos E. Seminario code 10
Clustering-based factorized collaborative filtering Nima Mirbakhsh, Charles X. Ling code 10
You are what you consume: a bayesian method for personalized recommendations Konstantinos Babas, Georgios Chalkiadakis, Evangelos Tripolitakis code 9
Pairwise learning in recommendation: experiments with community recommendation on linkedin Amit Sharma, Baoshi Yan code 9
A food recommender for patients in a care facility Toon De Pessemier, Simon Dooms, Luc Martens code 9
RecSys challenge 2013 Jim Blomo, Martin Ester, Marty Field code 9
Exploratory and interactive daily deals recommendation Anísio Lacerda, Adriano Veloso, Nivio Ziviani code 8
Understanding and improving relational matrix factorization in recommender systems Li Pu, Boi Faltings code 8
Acquiring user profiles from implicit feedback in a conversational recommender system Henry Blanco, Francesco Ricci code 7
A people-to-people content-based reciprocal recommender using hidden markov models Ammar Alanazi, Michael Bain code 7
Improving augmented reality using recommender systems Zhuo Zhang, Shang Shang, Sanjeev R. Kulkarni, Pan Hui code 6
Differential data analysis for recommender systems Richard Chow, Hongxia Jin, Bart P. Knijnenburg, Gökay Saldamli code 6
Leveraging the citation graph to recommend keywords Ido Blank, Lior Rokach, Guy Shani code 6
Recommending improved configurations for complex objects with an application in travel planning Amihai Savir, Ronen I. Brafman, Guy Shani code 6
Sage: recommender engine as a cloud service Royi Ronen, Noam Koenigstein, Elad Ziklik, Mikael Sitruk, Ronen Yaari, Neta HaibyWeiss code 6
Evolving friend lists in social networks Jacob W. Bartel, Prasun Dewan code 6
Musical recommendations and personalization in a social network Dmitry Bugaychenko, Alexandr Dzuba code 5
Exploiting non-content preference attributes through hybrid recommendation method Fernando Mourão, Leonardo Rocha, Joseph A. Konstan, Wagner Meira Jr. code 5
Probabilistic collaborative filtering with negative cross entropy Alejandro Bellogín, Javier Parapar, Pablo Castells code 4
Design and evaluation of a client-side recommender system Chris Newell, Libby Miller code 4
Recommendation in social networks Martin Ester code 4
Prior ratings: a new information source for recommender systems in e-commerce Guibing Guo, Jie Zhang, Daniel Thalmann, Neil YorkeSmith code 3
Generating supplemental content information using virtual profiles Haishan Liu, Mohammad Shafkat Amin, Baoshi Yan, Anmol Bhasin code 3
PEN RecSys: a personalized news recommender systems framework Florent Garcin, Boi Faltings code 2
Interview process learning for top-n recommendation Fangwei Hu, Yong Yu code 2
Evaluating top-n recommendations "when the best are gone" Paolo Cremonesi, Franca Garzotto, Massimo Quadrana code 2
The curated web: a recommendation challenge Zurina Saaya, Rachael Rafter, Markus Schaal, Barry Smyth code 2
First workshop on large-scale recommender systems: research and best practice(LSRS 2013) Tao Ye, Danny Bickson, Quan Yuan code 1
Not by search alone: how recommendations complement search results Daria Dzyabura, Alexander Tuzhilin code 1
Using geospatial metadata to boost collaborative filtering Alexander Ostrikov, Lior Rokach, Bracha Shapira code 1
Beyond friendship: the art, science and applications of recommending people to people in social networks Luiz Augusto Pizzato, Anmol Bhasin code 1
GAIN: web service for user tracking and preference learning - a smart TV use case Jaroslav Kuchar, Tomás Kliegr code 1
A system for advice provision in multiple prospectselection problems Amos Azaria, Sarit Kraus, Ariella Richardson code 1
Effectiveness of the data generated on different time in latent factor model Qianru Zheng, Horace H. S. Ip code 1
Sample selection for MCMC-based recommender systems Thierry Silbermann, Immanuel Bayer, Steffen Rendle code 0
Anytime algorithms for top-N recommenders David BenShimon code 0
A heterogeneous graph-based recommendation simulator Yeonchan Ahn, Sungchan Park, Sangkeun Lee, Sanggoo Lee code 0
The fifth ACM RecSys workshop on recommender systems and the social web Bamshad Mobasher, Dietmar Jannach, Werner Geyer, Jill Freyne, Andreas Hotho, Sarabjot Singh Anand, Ido Guy code 0
Tutorial on preference handling Alexis Tsoukiàs, Paolo Viappiani code 0